
Teaching Computer Architecture Using an
Architecture Description Language

Sandro Rigo, Marcio Juliato, Rodolfo Azevedo, Guido Araújo, Paulo Centoducatte
Computer Systems Laboratory - Institute of Computing, University of Campinas

Cidade Universitária Zeferino Vaz, Po. Box 6176, Campinas-SP, Brazil�
srigo, marcio.juliato, rodolfo, guido, ducatte � @ic.unicamp.br

Abstract

This paper presents the use of the ArchC Architec-
ture Description Language (ADL) as a support tool
for computer architecture courses. ArchC enables
students to perform several experiments using its au-
tomatically generated SystemC simulators, covering
topics from simple single-cycle (functional) models
to pipeline and memory hierarchy simulation. We
show how instructive may be the process of modeling
a processor using an ADL and suggest several possi-
ble exercises, following the course development struc-
ture presented in the classical Hennessy and Patter-
son’s computer architecture didactical book. More-
over, we report how the experience of assigning stu-
dents to study and to model modern embedded archi-
tectures has provided good results on an undergrad-
uate computer architecture course at IC-UNICAMP.
The simplicity and flexibility of the ADL, along with
its simulation features, proved to be an useful tool not
only for research, but also for computer architecture
education.

1 Introduction

Architecture description languages (ADL) have been
introduced to help designers face the development
challenges that have arisen in the past few years, due
to the increasing complexity of modern architectures.
These difficulties have forced hardware architects and
software engineers to reconsider how designs are spec-
ified, partitioned and verified. As a consequence, de-
signers are starting to move from hardware description
languages (VHDL, Verilog) and also beyond the RTL
level of abstraction toward the so called system level
design, where a tool for evaluating a new designed in-
struction set architecture, which automatically gener-
ates a software toolkit composed of assemblers, sim-
ulators, etc is mandatory. Such tools are commonly
based on an architecture description language.

Besides their application and well known suitabil-
ity for designing and experimenting with new archi-
tectures in the industry, architecture description lan-
guages can be very useful for academic purposes, like
teaching/researching computer architecture at under-
graduate and graduate level. On one hand, at the

undergraduate level, models of well known architec-
tures are appropriate to learn how a pipelined archi-
tecture works, including interlocking, hazard detec-
tion and register forwarding. If allowed by the ADL,
this model can be plugged to different memory hier-
archies in order to illustrate how the performance of
a given application can vary, depending on the choice
made for cache size, policy, associativity, etc. On the
other hand, at the graduate level, researchers can use
ADLs to model modern architectures and experiment
with their ISA and structure with all the flexibility de-
manded in research projects. This paper is focused on
the application of an ADL in a computer architecture
course.

A common structure of an introductory computer
architecture course is presented in the classical com-
puter architecture book by Hennessy and Patterson [5].
The course starts with the instruction set architecture
(ISA), i.e., presenting different instruction formats and
how the processor manage to decode each instruction
during execution. Some knowledge of assembly lan-
guage programming is exercised at this moment. Af-
ter understanding how an ISA is built, the student is
ready to learn how instructions are really executed,
how the data and computation flow inside the proces-
sor. The truth is: it is difficult to students to realize
how all these features are implemented, and how they
really work together inside a micro-processor with-
out a tool to experiment with. This is the point were
a software toolkit based on an ADL becomes very
useful. Students can grab the knowledge about ISAs
and pipelines from books and classes, and then fix it
through the implementation of a processor model us-
ing an ADL, and get a simulator to experiment with
and really see the whole thing running.

ArchC [6, 9] is an open-source ADL that fits very
well in this context. It is being used as a support tool
for computer architecture courses in the Institute of
Computing, at University of Campinas, Brazil. Since
the language, documentation, its parser, and simulator
generator tools are all in public domain on the Internet,
it is easy to students to get and to start using ArchC.
This paper shows how to use ArchC MIPS models
to illustrate computer architecture courses following
exactly the structure presented in [5]. Moreover, we
present how modeling modern computer architectures
may be a good exercise for students.

The remaining of this paper uses the Hennessy and
Patterson’s book as a guide for presenting architecture
concepts were ArchC may be a useful tool for illustra-
tion and experimentation. The text is organized as fol-
lows: Section 2 mentions some related work, Section 3
contains a brief introduction to the ArchC language,
Section 4 shows how the ADL may be a useful tool on
a computer architecture course, covering instruction
set introduction, single-cycle, multi-cycle, pipelined,
and memory hierarchy examples, Section 5 shows that
an ADL enables teachers to introduce modern archi-
tectures even in an introductory course. Finally, we
present our conclusions in Section 6.

2 Related Work

Considering automatic generation of a software toolkit
for architecture exploration, one can find several
ADLs on the literature, like: nML [2], ISDL [3], EX-
PRESSION [4], and LISA [11]. But no work has been
published reporting and/or exploring the didactical ca-
pabilities of these languages. In fact, they have a se-
rious drawback considering their application on com-
puter architecture education, since none of these lan-
guages has all its tools and models published on pub-
lic domain. All ArchC tools mentioned in this work,
along with several architecture models can be freely
obtained from [6].

Architecture simulators like SPIM [7] or Sim-
pleScalar [1] may be used for didactical purposes.
SPIM is a MIPS assembly simulator, compatible with
the R2000/R3000 processors. It reads and executes
assembly language code, but is not capable of exe-
cuting binary files. SimpleScalar offers a MIPS like
ISA, called PISA, for didactical purposes, along with
a GCC port to this target. MASE [10] is a graphical
simulation environment built on top of SimpleScalar.
RaVi [8] comprises a set of multimedia MIPS based-
modules for dynamic visualization of hardware behav-
ior. These approaches do not provide automatic retar-
getability of their simulators and do not offer the flex-
ibility of describing architecture behaviors in several
levels of abstraction, or the easiness to model new ar-
chitectures as provided by C++ based ADLs.

3 The ArchC Architecture De-
scription Language

ArchC is an architecture description language initially
conceived for processor architecture description, aim-
ing to facilitate and accelerate processor description,
combined with enough expression power to model
several classes of architectures (RISC, CISC, DSPs,
etc). ArchC allows users to fast explore a new ISA by
automatically generating software tools, like SystemC
simulators. Nowadays, ArchC is capable of describing

processors as well as a memory subsystem. Memory
hierarchies can be declared, containing several levels
of memories and caches. Caches can be configured
to simulate different set associativities, write polices,
replacement strategies, and line sizes.

A processor architecture description in ArchC
is divided in two parts, making clear the ne-
cessity of both behavioral and structural informa-
tion. The Instruction Set Architecture
(AC ISA) description is where the designer pro-
vides details about instruction formats, size and names
combined with all information necessary to decod-
ing and the behavior of each instruction. In the Ar-
chitecture resources (AC ARCH) descrip-
tion, he/she informs ArchC about storage devices,
pipeline structure, memory hierarchies, etc. Based on
these two descriptions, ArchC will generate a behav-
ioral simulator written in SystemC for the architecture,
that may be purely functional or cycle-accurate, de-
pending on the abstraction level used for instruction
behavior descriptions. One important characteristic is
that instruction behaviors, which are the largest part of
the code in a processor model in ArchC, are described
in pure C++ code. There is no restrictions, so model
designers are capable of declaring their own methods
and variables. C/C++ are largely used and it becomes
very easy to students to start using ArchC. Moreover,
there are complete GCC ports for MIPS and SPARC,
including libraries to generate binary elf files ready to
be loaded on ArchC simulators. This enables users
to experiment with their own programs using ArchC
simulators, and to execute real-world applications, in-
cluding system calls emulation, like JPEG and MPEG
coders.

We are going to use several pieces of ArchC code
to illustrate our examples in this text, explaining some
characteristics of the language as necessary, but read-
ers should refer to the Archc Language Reference
Manual [9] for a complete description of the ArchC’s
syntax and tools.

4 ArchC as a Support Tool for
Teaching Computer Architec-
ture

This section describes how ArchC can be a useful tool
for developing projects and exercises, on a computer
architecture course based on the classical didactical
book from Hennessy and Patterson: “Computer Orga-
nization & Design” [5]. As this reference will be fre-
quently mentioned throughout this text, for the sake of
simplicity, we are going to refer to this book as COD
from this point on.

AC_ISA(mips){

ac_format Type_R = "%op:6 %rs:5 %rt:5 %rd:5 0x00:5 %func:6";
ac_format Type_I = "%op:6 %rs:5 %rt:5 %imm:16:s";
ac_format Type_J = "%op:6 %addr:26";

ac_instr<Type_R> add, addu, subu, multu, divu, sltu;
ac_instr<Type_I> lw, sw, beq, bne;
ac_instr<Type_I> addi, andi, ori, lui, slti;
ac_instr<Type_J> j, jal;

ISA_CTOR(mips){

load.set_asm("lw %rt, %imm(%rs)");
load.set_decoder(op=0x23);

store.set_asm("sw %rt, %imm(%rs)");
store.set_decoder(op=0x2B);

add.set_asm("add %rd, %rs, %rt");
add.set_decoder(op=0x00, func=0x20);

addu.set_asm("addu %rd, %rs, %rt");
addu.set_decoder(op=0x00, func=0x21);

...
};

};

Figure 1: MIPS ISA Description in ArchC

4.1 Instruction Types, Assembly
Mnemonics and Decoding

The use of ArchC in a computer architecture course
can start as early as in the third chapter of COD,
where the authors introduce the instruction represen-
tation inside a computer: the Instruction Set Architec-
ture (ISA).

First, the MIPS assembly language is introduced,
followed by information on how to translate it to the
MIPS machine language. In order to do this transla-
tion students must learn about MIPS instruction for-
mats and binary encoding, and finally how machine
code is decoded by the processor. This is exactly the
information contained inside an AC ISA description,
as illustrated by Figure 1. Students can do an AC ISA
implementation using the knowledge they are gather-
ing from the book on instructions, assembly syntax,
formats, fields and decodification, and also do some
experiments with the decoder generated by ArchC,
issuing some instructions in binary format to see if
they supplied enough decoding information for each
instruction in the ISA.

4.2 The Single-cycle and Multi-cycle
Datapaths

By doing the simple exercises related in the previous
section, the students can have their first contact with
instruction set definitions and with the ArchC tools.
This experience is important to the following tasks.

We call a functional model in ArchC a model that
does not have any timing information, i.e., a model
that executes one instruction per cycle. That is ex-
actly the first example of a datapath construction pre-

sented in the book. Of course, the high abstraction
level of ArchC models does not comprise functional
units and signals, but the exercise of modeling the be-
havior of each instruction in C++ and trying to figure
out which functional units and signals would be nec-
essary to build a single-cycle datapath capable of exe-
cuting such a behavior may be very instructive. COD
authors suggest exercises like: write a functional sim-
ulator for the single-cycle and the multi-cycle versions
of the datapath presented in the book using a hardware
description language, like Verilog or VHDL. Authors
predicted that students would take a week to develop
each one of these simulators. Both of them can be
easily coded in ArchC, for such a short and simple in-
struction set. Figure 2 (A) shows the functional ver-
sion of the MIPS add instruction behavior, and Fig-
ure 2 (B) shows its multi-cycle version, according to
the description given in COD pages 385–388. We es-
timate that a functional model of a fifteen or twenty-
instruction of a MIPS-like ISA could be developed in
three or four hours of work, after going through the
theory presented in the book. Remember that instruc-
tion behaviors are written in C++, which is a language
that most of the students are very familiar with. An-
other three or four hours of work would be enough
to refine this functional model to a multi-cycle model,
which is exactly the process of re-writing instruction
behaviors to make them look like the example in Fig-
ure 2 (B).

4.3 The Multi-cycle Datapath with
Pipeline

After the single and multi-cycle datapath concepts are
sedimented, it is natural to introduce the concept of

void ac_behavior(add){ void ac_behavior(add, cycle){

ac_pc += 4; switch(cycle){
RB.write(rd, RB.read(rs) + case 1:

RB.read(rt)); ac_pc += 4;
}; break;

case 2:
A = RB.read(rs);
B = RB.read(rt);
break;

case 3:
ALUout = A + B;
break;

case 4:
Rb.write(rd, ALUout);
break;

default:
break;

}
};

(A) (B)

Figure 2: Single-cycle and Multi-cycle Behavior Description

pipelining, where multiple instructions are overlapped
in execution. The ArchC language contemplates this
approach by supporting pipelining, in which we evolve
from a functional model to a cycle accurate model, dif-
fering from the first in the timing precision. While
functional models execute all instructions in one clock
cycle, a cycle accurate model has instruction behavior
descriptions reflecting the real number of clock cycles
taken by the instructions. The great benefit brought by
the use of an ADL like ArchC is that students can take
advantage of his previous developed functional model
to, gradually refine it to a new pipelined implementa-
tion, and get it running as a software simulator for the
target architecture.

ArchC provides the necessary constructions for
pipeline simulation but, in order to get a complete
model of the MIPS architecture with a pipeline, stu-
dents will have to consider its mechanisms, like reg-
ister forwarding or data hazard detection, inside their
behavior description. The first step is to insert infor-
mation regarding the pipeline registers and pipeline
stages into the functional model, as shown in Fig-
ure 3. It is important to emphasize that the same in-
structions continue to exist and the Instruction Set Ar-
chitecture (ISA) remains unchanged for the pipelined
model, i.e., no modification on the AC ISA descrip-
tion file, showed in Figure 1, is required.

The pipelined model divides the instructions in
minor execution units to be executed in the sev-
eral pipeline stages, which are declared using the
ac pipe keyword. However, the stages communi-
cate to each other through the pipeline registers, which
have their particular structures, i.e, their fields. The
students, while modeling the pipeline, have to declare
the pipeline register structures, and thus, they have
inevitably to have a complete understanding about

how the pipeline works, what fields are necessary in
each pipeline register, and what are their functions.
Pipeline registers are declared by the combination of
the ac format and the ac reg keywords. Let us
take the ID/EX pipeline register of a MIPS proces-
sor, like described in COD, as an example. Such
processor has a 5-stage pipeline (Fetch, Identifica-
tion, Execution, Memory Access and Write-Back),
and four pipeline registers (IF/ID, ID/EX, EX/MEM,
MEM/WB). The student should declare a format (field
structure) for each register and give a name for it, as it
is done for registers in Figure 3.

From this point on, all the necessary structural in-
formation is already inserted in the model. But be-
fore running this new model, it is necessary to take the
second step, which is the refinement of the instruction
behaviors. This is necessary because in a pipelined
model the instructions are split into several parts, and
each of these parts are executed in a different pipeline
stage. It is important to notice that, in despite of the
higher abstraction level of ArchC models if compared
with the datapaths presented in the book, student must
have consolidated the concepts of pipelining and its
physical structure in order to be able to model it cor-
rectly.

ArchC automatically fetches the instruction pointed
by its program counter (ac pc), i.e., the student does
not have to worry about the instruction fetch, but do
need to take care of the PC increment. ArchC also
generate a decoder for the architecture, based on the
information provided in the AC ISA description. But
in a pipelined model there are other tasks that must be
performed at the ID stage. Let us take the instruction
add as an example. Still in the ID stage, the contents
of the ID/EX register must be filled-up, from where the
execution stage will access the correct values for the

AC_ARCH(mips){
...
ac_format F_IF_ID = "%npc:32";
ac_format F_ID_EX = "%npc:32 %data1:32 %data2:32 %imm:32:s rs:5 %rt:5 %rd:5

%regwrite:1 %memread:1 %memwrite:1";
ac_format F_EX_MEM = "%alures:32 %wdata:32 %rdest:5 %regwrite:1 %memread:1 %memwrite:1";
ac_format F_MEM_WB = "%wbdata:32 %rdest:5 %regwrite:1";

ac_reg<F_IF_ID> IF_ID;
ac_reg<F_ID_EX> ID_EX;
ac_reg<F_EX_MEM> EX_MEM;
ac_reg<F_MEM_WB> MEM_WB;

ac_pipe PIPE = {IF,ID,EX,MEM,WB};

ARCH_CTOR(mips) {
...

Figure 3: Inserting Structural Information Regarding the Pipeline and its Registers into the MIPS I ArchC Descrip-
tion

operand registers and the program counter of the cur-
rent instruction, along with some signals to control ex-
ecution into further stages. Figure 4 shows an excerpt
of a possible add behavior description. After that,
the add instruction goes to the execution stage (EX),
where the actual computation of the sum takes place,
followed by setting the fields in the next pipeline regis-
ter. In the case of the add instruction, the memory ac-
cess stage (MEM) has just to copy the EX MEM reg-
ister contents to the MEM WB register and, finally the
instruction reaches the write back stage (WB), where
the result of the sum is stored into the correct destina-
tion register.

...
case ID:

ID_EX.regwrite = 1;
ID_EX.memread = 0;
ID_EX.memwrite = 0;
ID_EX.npc = IF_ID.npc;
ID_EX.data1 = RB.read(rs);
ID_EX.data2 = RB.read(rt);

...
case EX:

EX_MEM.alures= ID_EX.data1 + ID_EX.data2;
EX_MEM.regwrite= ID_EX.regwrite;
EX_MEM.rdest = ID_EX.rd;

...
break;
...

Figure 4. Modeling Instruction Behaviors Considering the Pipeline

The main point of this example is that, assuming
that students are familiar with the basics of C/C++
programming languages, this operations are quite sim-
ple to be implemented, because they are nothing else
than simple C++ statements. One very important
thing when applying ArchC to computer architecture
classes, is that the simplicity of the language brings the

focus of the work to the architecture being described,
and do not add an extra burden to the learning pro-
cess due to syntax details of the language. Another
advantage of using ArchC is its flexibility, since stu-
dents are able to call their own functions inside behav-
ior description methods, in order to debug the simula-
tion. This facilitates the visualization of the pipeline
internals, i.e., the student is free to watch whatever he
wants by printing such data on screen, while running
the simulator.

Notice that the code presented in Figure 4 does not
consider the possibility of data hazards. With such a
model in hands, a teacher could give some small exam-
ples of MIPS machine code where, for example, an in-
struction needs to use a register, but this register is be-
ing used by another instruction inside the pipeline, i.e,
it is still not written in the register bank. Asking stu-
dents to identify the problem and to add, for example,
a register forwarding mechanism to their model can
be a very useful exercise, which would help to solid-
ify some important pipelining concepts. When model-
ing a processor with ArchC, a student can implement
data forwarding in a way that is very similar to the de-
scribed by didactical books. Lets take the if statement
showed in COD, page 480, as a didactical example on
how to insert data forwarding to our pipeline. In Fig-
ure 5 (A) we see how register forwarding is shown in
the book, and in Figure 5 (B), how it is modeled in
ArchC.

An ADL that generates C++ based simulators is also
a well suitable tool for exercises like those suggested
at the end of Chapter 6 in COD, mainly the last two
exercises. The first asks students to collect statistics
on data hazards for a C program and write a subrou-
tine to model the five-stage pipeline presented in the
book. Authors are asking for statistics like: num-
ber of instructions executed, number of data hazards,
etc. This could be accomplished by implementing a

BOOK: ArchC MODEL:

if(EX/MEM.RegWrite and if((EX_MEM.regwrite == 1) &&
(EX/MEM.RegisterRd != 0) and (EX_MEM.rdest != 0) &&
(EX/MEM.RegisterRd = ID/EX.RegiterRs)) (EX_MEM.rdest != ID_EX.rs))
ForwardA = 10; operand1 = MEM_WB.wbdata;

... ...

(A) (B)

Figure 5: Register Forwarding for the rs Register in Didactical Books and in an ArchC Implementation

pipelined model in ArchC. The last exercise asks for
students to elaborate a model of the single-cycle dat-
apath in a HDL like Verilog, and then refine it to-
ward a pipelined model. A single-cycle or multi-cycle
model implemented in ArchC, like those described in
Section 4.2, can be refined toward the pipelined im-
plementation required for this exercise. By using an
ADL, this task certainly would be accomplished faster
than by a HDL. A interesting approach is to divide the
class in groups of students, and assign some of them
to use an HDL like Verilog or VHDL, some to use
SystemC, and some to write models using ArchC. At
the end, students could share their experiences, point-
ing out the advantages and disadvantages of each ap-
proach. As suggested by the authors, this would be a
project that would take students at least a month to be
done. ArchC simulators are also capable of executing
pipeline stalls and flushes so, there are several other
possibilities of experiments that can be suggested to
students, while teaching pipelining in a computer ar-
chitecture course.

4.4 Memory Hierarchy

Continuing with our course based on COD, the next
topic would be memory hierarchies. ArchC is capa-
ble of describing hierarchies composed of caches and
memories distributed at different levels. Caches can
be customized by the user by choosing parameters for
associativity, number of lines, words per line, replace-
ment strategy, and write policies. This is illustrated
in the cache declarations contained in the example in
Figure 6. The user creates the hierarchy by describ-
ing the connections among these devices, through the
method bindsTo, as illustrated in the last two lines
of the example.

So, by adding such a memory hierarchy description
to our functional model, students can experiment dif-
ferent cache and hierarchy configurations. A possi-
ble exercise would be to choose a particular applica-
tion, or a small set of applications, and let students ex-
periment with cache parameters for a given hierarchy.
They would be able to analyze the simulation results,
to compare miss rates, and determine the best config-
uration for each application. ArchC simulators auto-

AC_ARCH(mips){

ac_cache icache("dm", 128, "wt", "war");
ac_cache dcache("2w", 64, 4, "lru", "wt", "war");
ac_mem MEM:256K;

ac_regbank RB:34;
ac_wordsize 32;

ARCH_CTOR(mips){
ac_isa("mips_isa.ac");

icache.bindsTo(MEM); //Memory hierarchy
dcache.bindsTo(MEM); //construction

};
};

Figure 6. Memory Hierarchy Declaration in ArchC.

matically keep track of all access to storage devices,
so reporting miss rates and total number of accesses to
each device declared in the AC ARCH description.

After going through all the theory in COD’s 7th
chapter, students have a bunch of exercises to work on,
in order to fix the concepts presented in the book. In
addition to the theoretical exercises, students may use
ArchC simulators to experiment with memory hierar-
chies. For example, one of the exercises proposed by
the authors ask students to analyze a trace produced by
GCC for different cache organizations. For MIPS and
SPARC architectures, there is a GCC port available
for generating code to be run in ArchC simulators [6].
So, students can perform such an experiment using
real-world applications, like JPEG or MPEG coders
or some cryptography algorithm, using more than one
processor and a number of different cache organiza-
tions. Moreover, they are able to compile their own
programs, or examples provided by teachers, in order
to do this kind of analysis. The simulation statistics
provided by ArchC simulators combined with some
pre-defined miss and/or hit penalty may be used to
compute the performance numbers for each configura-
tion tested. The most important part, they would actu-
ally see that the memory hierarchy may have a strong
impact on the performance, and get a felling of how
hard may be to tune a processor + memory system to
a given real-world multi-media application, a common
task for embedded systems designers.

5 Modeling Modern Architec-
tures

An alternative approach for teaching computer archi-
tecture would be to use the MIPS architecture, follow-
ing the COD book, in classes and to adopt different
projects to be developed by the students. In one of the
computer architecture courses at IC-UNICAMP, stu-
dents were divided into several groups, and each one
of those groups was assigned to a different project.
The project was basically to develop a new func-
tional model of a real-world architecture, most of them
largely used in the industry as part of SoCs and em-
bedded systems. For example, in this first semester
of 2004, there are groups developing models of In-
tel XScale, IBM/Motorola PowerPC, Altera Nios, In-
fineon TriCore 2, OpenCores OR1K, and Motorola
68k/ColdFire ISAs as part of the computer architec-
ture course. These functional models are heavily based
on the instruction set, not concerning specific pipeline
or cycle-accurate details of these complex architec-
tures. They all execute one instruction per cycle. But
the experience of getting into contact with different
ISAs, more complex and modern than the simple RISC
MIPS-I that is usually used in this kind of course, is
instructive and attractive for students. They have the
opportunity of learning details about architectures that
are state-of-the-art in the industry, which is an extra
motivation for the course. Moreover, students are get-
ting some experience on how to build cross-compilers
for GCC, in order to be able to create binary files to be
loaded in their simulators.

6 Conclusions

ArchC is an architecture description language re-
cently developed by the Computer Systems Labora-
tory (LSC), at IC-UNICAMP. Its based on C++ and
automatically generates SystemC simulators from pro-
cessor descriptions. ArchC is also capable of describ-
ing memory hierarchies. Its simulators have several
capabilities to help simulation debugging and statistics
collection that become useful in computer architecture
education.

The language has been used for the last two
semesters in computer architecture courses at IC-
UNICAMP, both at the undergraduate and gradu-
ate levels, and the feedback received from the stu-
dents was very positive. Among other projects, stu-
dents developed functional models for real-world ar-
chitectures like PowerPC and XScale. They got very
motivated while developing their projects, and some
of them even contributed with improvements on the
ArchC tools that ended up as new features adopted
by the ArchC Team in the official distribution, result-
ing in a kind of integration between education and
research. The experience of developing architecture

models gave students a deeper understanding of the
concepts recently learned from the book and classes.

7 Acknowledgments

We would like to thank FAPESP (Grants 00/14376-
2, 03/11674-0, and 2000/15083-9) and CNPq
(ChameLeon Project) for the financial support to this
work. We are also very grateful to all the students and
teachers that are using ArchC, for education and/or re-
search, whose feedback has been extremely valuable
to the continuous improvement in ArchC tools.

References
[1] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating

Future Microprocessors: The SimpleScalar Tool Set. Techni-
cal Report CS-TR-1996-1308, University of Wisconsin. Com-
puter Sciencies Department., 1996.

[2] Markus Freericks. The nML Machine Description Formal-
ism. Technical report, Technische Universitt Berlin, Fach-
bereich Informatiky, July 1993. Updated and Revised Version
1.5(Draft).

[3] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas.
ISDL: An instruction set description language for retargetabil-
ity. In Design Automation Conference, pages 299–302, 1997.

[4] A. Halambi, P.Grun, V.Ganesh, A.Khare, N.Dutt, and
A.Nicolau. EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability. In
in Proc. European Conference on Design, Automation and
Test(DATE), March 1999.

[5] J.L. Hennessy and D.A. Patterson. Computer Organization
& Design: The Hardware/Software Interface. Morgan Kauf-
mann, 1998.

[6] http://www.archc.org. The ArchC Resource Center.

[7] http://www.cs.wisc.edu/ larus/spim.html. SPIM MIPS
R2000/R3000 Simulator Homepage.

[8] Peter Marwedel and Birgit Sirocic. Multimedia Components
for the Visualization of Dynamic Behavior in Computer Ar-
chitectures. In Proceedings of the Workshop on Computer Ar-
chitecture Education, 2003.

[9] The ArchC Team. The ArchC Architecture Description Lan-
guage Reference Manual. Computer Systems Laboratory
(LSC) - Institute of Computing, University of Campinas,
http://www.archc.org, 2004.

[10] C. T. Weaver, E. Larson, and T. Austin. Effective Support
of Simulation on Computer Architecture Instruction. In Pro-
ceedings of the Workshop on Computer Architecture Educa-
tion, 2002.

[11] Vojin Zivojnovic, Stefan Pees, and Heinrich Meyr. Lisa -
machine description language and generic machine model for
hw/sw co-design. In Proceedings of the IEEE Workshop on
VLSI Signal Processing, San Francisco, 1996.

