
MKit Simulator for Introduction of Computer Architecture

Seikoh Nishita
Department of Computer Science,

 Faculty of Engineering, Takushoku University
snishita@cs.takushoku-u.ac.jp

Abstract

For the introduction of computer architecture in
computer science, highly simplified specification of
CPU, and visualization of CPU operation are
important. This paper describes a CPU simulator we
have developed. It supports students’ learning of
introduction of computer architecture. It presents
internal status of CPU by processor block diagrams,
and provides buttons for manipulation in various
ways. And our simulator provides set of the diagram
and the buttons as the progress of students' learning.

1. Introduction

The introductory education on the computer
architecture involves several topics: about the
relationship between assembly and machine language,
the connection of data-path and data-path elements as
the static construction of a processor, the operation
for instructions as dynamic structure, and the control
by control unit and control signals. These topics
focus different aspects of the processor. For example,
instruction set is focused on the topic about the
relationship of languages. On the other hand,
processor block is focused on the topics of static and
dynamic structure of CPU. And Control unit and
control signals are focused on the topic about control.

This paper describes a CPU simulator, "MKit
simulator" that we have developed. MKit simulator
has several interfaces for students to check and
manipulate MKit processor. These interfaces are
draw panels in the simulator window, and input
methods like buttons. The draw panel shows inner
state of the processor, and the input methods are used
to manipulate the processor and the simulator. These
interfaces emphasize respectively various aspect of
the processor. We correspond these interfaces with
the topics that have same aspect of the processor.
Our simulator provides students a part of the
interfaces for every assignment for the corresponding
topic. Since there are a number of topics students
learn during an exercise, our simulator switches
interfaces to use for every assignment.

The next section gives the specification of CPU
for our simulator. Section 3 then describes simulator

designing. Section 4 describes assignments we have
designed for an exercise class with our simulator.
Section 5 then describes implementation of the
simulator. Section 6 discusses the relation of our
simulator and other simulators that have been
proposed for introductory education of computer
architecture.

2. Specification of MKit

Before we discuss the designing of MKit
processor, we describe our background of computer
architecture education in our department. We have
one course on computer science, and there are three
classes closely concerned with computer architecture.
The first is a class on introduction of computer
science, where first year students learn basic concept
of computer architecture with a simple CPU, MKit
[4]. The second is a basic exercise on computer
science, where our simulator is used. And the third is
a class on computer architecture, where students
learn advanced. The goal of the basic exercise class
is students’ making certain of the basic concept of
computer architecture that they have learnt at the first
year class.

We adopt MKit as the processor for our simulator.
In deciding the processor we take care to keep the
design as simple as possible, and to link the topic of
first year class and the exercise class closely. When
students are going to have the basic exercise class,
they have learnt computer architecture with MKit
processor. Therefore students are familiar with MKit,
and they don't take relatively long time learn the
specification of MKit than new specifications. As the
result they can concentrate their thought to essential
of computer architecture and assignments in the
exercise.

MKit CPU is a 16-bit word accumulator machine.
It has only the direct addressing as the addressing
mode to access memory. The memory access is 16-
bit word addressable. Making the machine word
addressable only simplifies the operation of CPU.
Moreover care was taken to keep the correspondence
between assembly language instructions and the
machine instruction as one-to-one relationship. As
the result, the address width is reduced to 12 bits, and

Figure 1. Instruction encoding formats

Sort Nmenonic Semantics
Memory LD n ACC <- Mem[n]
access ST n Mem[n] <- ACC
Arithmeti
c ADD n

ACC <-
ACC+Mem[n]

n SUB n Mem[n]
SFR ACC <- ACC>>1
SFL ACC <- ACC<<1

Jump and JMP n PC <- n
Branch JPZ n PC <- n (if ACC=0)

JPN n PC <- n (if ACC<0)
JPO n PC <- n (overflow)
JPL n PC value is kept,

then PC<-n
RET restored

Control HLT halt

Table 2. Instruction Set

Figure 3. Processor Block Diagram

the operation code occupies 4 bits of a word. This
configuration simplifies the hexadecimal number
representation in the machine language. MKit only
supports two instruction formats as shown in Figure
1.

The instruction set of MKit consists of arithmetic
calculations, jump/branch operations and memory
access (load and store) operations (as shown in Table
2). It has instructions for a subroutine call “JL” and a
return operation “RET”. These instructions make the
processor complicated, but they are straightforwardly
integrated into the instruction set and the operation of
the processor. Moreover they encourage students'
learning of the concept on subroutine call operation
without stacks.

The data-paths of the processor are not based on
bus structure. The data-paths connect the data-path
elements directly. And the instructions take multiple
clock cycles to execute. Data are roughly flown
clockwise along with data-path in a processor block
diagram shown in Figure 3. One difference from
other processors for introduction of computer
architecture is that the processor has a return address
register, RAR. RAR is used for the subroutine call
and return operation. Since RAR is not stack, this
micro-architecture does not support multiple
subroutine call. But the micro-architecture shows an
implementation for subroutine call, and it can be
simply extended by replacing a register with a stack
for RAR.

3. Simulator Designing

The basic concept of computer architecture for
introductory education consists of several topics. On
this paper, we divide the basic concept into following
3 topics.

z Instruction set architecture, and translation

of assembly language instructions to
machine language instructions

z Data-path connection with data-path
elements (static construction of the processor
except control unit), and the operation of the
processor: instruction fetch and execution
(dynamic construction)

z Control unit and control signals. Static and
dynamic construction of the processor.

We also assume that assignments are given along
with these topics.

The processor is placed as various objects on
these topics respectively. For example, on the topic
about instruction set architecture, the processor is
regarded as a machine that executes instructions. For
the topic about data-path connection, the processor is
regarded as a structure represented by the processor
block diagram. On the topic about control unit, the
processor is regarded as a structure represented by

the diagram with the control unit and lines for
control signals.

Moreover these topics have their adequate
assignments, which need functions to manipulate the
processor. For example, functions for execution all
instruction and execution one instruction are helpful
to make certain of the meanings of instructions.
Functions for step-by-step execution is useful to
learn the operation of the processor.

Interfaces of CPU simulator emphasize the
aspects of the processor, and they give the functions

to manipulate. The interfaces are divided in
interfaces to express inner status of the processor,
and interfaces to manipulate the processor. These
interfaces are often implemented as drawing panels
or push buttons in a same window.

Our idea for designing a simulator is based on
multiple uses of the expression interfaces and
manipulation interface, and it is based on a concept
of correspondence between the interfaces and the
topics. Since the processor is regarded various object
as the topics, we adopt the expression interfaces in
order to represent the aspects of the processor. We
also select the manipulation interfaces in order to
design assignments.

On this paper, we design following manipulation
interfaces from M1 to M5.

M1 is for execution all instructions in memory

unit. It is implemented with one button, which
activates virtual processor to run a program one by
one along with clocks. This process stops till the
processor decodes the halt instruction. This interface
is suitable, when the processor is regarded as a
machine to execute instructions.

M2 is for execution one instruction in memory
unit. It is same as M1 except the fact that it activates
virtual processor to run only single instruction.

M3 is for execution one-step of the process. It is
same as M1 except the fact that it activates virtual
processor to run only one step (one clock). Since one
step of the execution may not be represented in
semantics of the instructions, this interface is not
suitable for students to check instruction architecture.
But it is suitable for checking the inner operation of
the processor, because it helps students to analyze
the operation in detail.

M4 is for assertion of control signals directly. It is
implemented with buttons, which assert all control
signals in the processor. This interface is suitable for
the topic about control unit and signals. It helps
students learning of control signals and deriving their
sequence of the fetch and execution operation.

M5 is for making time chart of control signals for
instruction fetch and execution operation of all
instructions, in order to specify the control unit. The
branch instructions have two time charts for the
condition of the branch. This interface is also
suitable to the topic about the control unit and signals.
Since we assume that students don’t learn the subject
of the logic circuit designing, there is no interface for
designing control unit with logic circuit. Instead of
logic circuit, we adopt time charts. Though we need
to show how to interpret and write time charts, it
doesn't take longer time for explanation about time
chart than about logic circuit designing. Moreover
we take advantage of supporting education by
specifying the control unit. That is, combination of
the interface M5 and M2 facilitates students to learn
that the control unit generates the sequence of control

signals automatically and these signals activate the
operation of the processor.

We also use auxiliary interfaces to reset the
processor, to suspend the execution and to adjust the
speed of the execution.

In order to present the inner state of the processor,
we make visible/invisible attributes for sorts in the
processor block, i.e. control unit, path of control
signals, data-path and data-path elements. By these
attributes, objects are shown/hidden on the processor
block diagram. Following list shows the attributes of
the every sort in the processor.

� Data-path: “data-path” and “data-flow”

attributes. The former is for static
representation of data-paths, and the latter is
for dynamic representation of flowing data.

� Data-path elements: “elements”, “value”,
and “flag” attributes. The “value” attribute is
used to show data kept at registers.

� Control unit and control signal: “control”
attributes. The “control” attributes is used to
show the both of the control unit and the
lines of control signals.

We design the expression interfaces from E1 to

E5 by specifying all attributes of the sorts in the
processor block. The interfaces E1, E2 and E3 are
shown at Figure 4, 5 and 6 respectively.

E1: “data-path-flow”, “elements”, “value” and

“flag” of primary data-path elements are
visible.

E2: all attributes except "control" are visible.
E3: all attributes are visible.
E4: all attributes except "control" are visible.
E5: all attributes except "control" and "value"

As addition of these interfaces, we also use a
message box for explanation of the operation. In
order to design the expression interface we define the
word "primary data-path elements" for elements
referred in the semantics of the instruction set
architecture. The primary data-path elements of MKit
are the program counter, the instruction register, the
accumulator, and the memory unit.

All attributes specify simply their visibility, that is,
if an attribute of a sort is visible, objects of the sort
are always drawn in same position of the simulator
window. This specification of the expression
interface makes it simple to represent the inner status
of the processor and makes it easy for students to
grasp the operation.

4. Interface and Assignment Design

We introduced interfaces to express status and
manipulate CPU simulator in previous section. In
practically use of the simulator, the expression

Figure 4. Interface E1

Figure 5. Interface E2

Figure 6. Interface E3

interfaces and the manipulation interfaces are
combined along with assignments for the topics of
computer architecture. We discuss with the
assignments and combinations of interfaces we have
designed. The assignments are assumed to given in
the following order.

4.1 An assignment about the instruction set
architecture

On this assignment, students translate assembly
language instructions to machine language
instructions. Then students make certain of the
semantics of the instructions they have learnt. During
the assignment, students write instructions into
memory unit of our simulator, and execute
instructions by MKit virtually.

We choose the interface E1, M1 and M2 for the
assignment. Since the interface E1 draws only
flowing data and primary data-path elements, E1
facilitate students to concentrate the semantics of
instructions during the assignment. And because E1
does not draw whole processor block diagram, it is
also suitable for students who have not learnt the
processor block as micro architecture yet.

The interface M1 and M2 is used to execute
instructions. These interfaces make students to
confirm the semantics and a part of the processor
operation, by checking flowing data on the simulator
window. We note that the there is not the interface
M3, which is used for executing step by step along
with the clock. Since there are steps that don’t bring
any change of the primary data-path elements, the
step-by-step execution is not suitable for the
interface E1.

4.2 An assignment about the processor block

On this assignment, students confirm the static
structure of the processor by the processor block
diagram. Then students execute instructions in the
memory unit, and make certain of the processor
operation on the processor block diagram. This
assignment supports students to confirm that there
are registers and data-path among the primary data-
path elements in order to propagate data.

We choose the interface E2, M1, M2 and M3 for
the assignment. The interface E2 draws the processor
block diagram except the control unit. E2 makes
students concentrate to learn the processor block.
Students can also execute instructions and check the
operation of the processor by the interface M1. When
students want to check the detail of the process, they
can use M2 and M3 too.

4.3 An assignment about the control unit

We design three assignments for the topic on the
control unit: an assignment about the static

construction of control unit, two assignments about
the operation of the control. These three assignments
are described from this section to the section 4.5.

On this assignment, students make certain of the
control unit and the lines of control signals. The goal

Figure 7. Interface E5 with M4

Figure 10. The Interface to Make Time

Chart

of the assignment is that students confirm the
existence and roles of the control unit and control
signals.

We choose the interface E3 for the assignment.
The interface E3 shows all sorts of the processor
including the control unit and the lines of control
signals. The minutest diagram of processor block
makes students to learn and remember that the
process of CPU arises from the control unit and
signals.

Since there is no interface for manipulation, all
students can do is to confirm the static construction
of the processor block diagram. The next assignment
makes demands of students for more active learning.

4.4 An assignment to control CPU by
asserting control signals directly

On this assignment, students try to derive the
sequence of control signals for fetch and execution
of all instructions. This assignment helps students
make certain of the instruction fetch, decode, and
execution in the CPU process, through this
assignment.

We adopt the interface E4 (or E5) and M4. In
order to assign student to derive the sequence of
control signals, we make students assert the signals
via buttons provided by M4. Figure 7 shows the
interface E5 with M4. The buttons of control signals
(“load”, “+1”, “write” and so on) enables students to
assert signals. In order to execute instructions, they
derive the correct sequence of control signals on the
basis of their knowledge they have learnt the first 2
assignments.

The interface E4 draws the processor block
diagram except the control unit and the lines for
signals. We indicate the lack of the control unit, and
students have to perform the role of the control unit.

The use of the interface E5 makes this assignment
more difficult, because E5 does not show values kept
by registers. Therefore students check only OPcode
and flags, and then they assert control signals with
the use of E5. The interface E5 helps students to
learn the control unit has only these values as their
input.

The interface M4 provides buttons for all control
signals. The buttons are drawn of the processor block
diagram at the draw panel. Drawing the buttons on
the diagram makes manipulation of the buttons
intuitive.

4.5 An assignment to control CPU with time
chart

On this assignment, students make time charts for
fetch and execution of all instructions. Then they
execute instructions in the memory unit with the time
charts they specified. The goal of this assignment is
that students summarize the sequences of control

signals, and they confirm the role of control unit that
works automatically.

The virtual processor in the previous assignment
was incomplete in the sense of the control unit
absence. On this assignment, students make the
processor complete by the time charts for the control
unit.

We choose the interface E3 and M5. The interface
E3 is used in order for students to check the values of
control signals, and to make it easy to try and error
for specifying time charts. The interface M5 shows
time charts of all control signals for fetch and
execution of all instructions. And it accepts mouse
clicks to modify signals(Figure 10).

5. Simulator Implementation

We have implemented MKit simulator with Java
1.4. Our implementation is based on object-oriented
concept, where the parts of the processor (data-path,
data-path elements, control units, control signals) are
treated as objects. Each object has its attribute for the
expression interface. And each object has methods to
implement the manipulation interfaces.

Objects have their own positions on the simulator
window respectively. If the current interface is
changed, objects are drawn/hidden at the positions
according to the attributes. As an advantage of this
behavior of object, it makes students' grasp of CPU
status easier, because a part of the single processor
block diagram is always drawn, and no object
changes it's position among the interfaces.

In order to design other exercises and assignments,
we can change the order of the interfaces and the
attributes of the interfaces. But in order to change the
interfaces, we need to modify Java programs on
current status of our implementation. There is other
root for refinement of the current implementation.
That is, our source package will be divided into three
modules, i.e. the virtual processor, interfaces for
expression and interfaces for manipulation. This
refinement will make the simulator more flexible and
highly extendable for modification of the interfaces
and the virtual processor.

6. Related Works

In order to support computer architecture
education, several CPU simulators and simple
specifications of CPU have been proposed [1,2,3].
These simple specifications are designed deliberately
for first or second-year students to learn essential of
computer architecture, and to put advanced usage for
operating system or compiler in their perspective.

Following is a list of policies for designing
processor.

1) The specification is designed simple enough

for first or second year students to learn
essential of CPU operation.

2) The specification is designed in order to put
advanced application for operating system
or compiler in the perspective.

3) The specification that students have already
learnt is adopted

In studies on CPU simulator, the items 1,2 are

treated important factors. But our policy to decide the
specification of processor is based on the item 1,3.
This fact gives rise to a difference between ours and
other specifications. That is, our specification is
designed as a simple accumulator machine, while the
specifications are based on register machines with
load-store architecture. Since our idea is the

correspondence between the interfaces of simulator
and assignments, we can essentially apply the same
idea to other CPU simulators for the introductory
education of computer science.

The interfaces we designed are also used in CPU
simulators. For example, the expression interface, E3
is same as the simulator for The Simple CPU [1].
The manipulation interface, M4 is same as one of
interfaces of RTLsim [3]. One of differences
between these simulators and our simulator is that
these simulators use their own interfaces, while our
simulator have a number of interfaces and use some
of them along with assignments.

7. Conclusions

This paper describes a CPU simulator for
introductory education of computer architecture. Our
approach to design the simulator is based on the
correspondence between the interfaces of our
simulator and assignments of an exercise class on
computer architecture. The simulator selects and
provides a part of the interfaces for students along
with an assignment. The simulator has single virtual
CPU to simulate, and single processor block diagram
to express the status of CPU. This framework helps
teachers to design various assignments and exercises
with CPU simulator on uniformed framework, and it
also reduce students' extra learning overhead for
CPU specification and use of the simulator.

We are applying the simulator to an exercise class
at our Department of Takushoku University. We are
going to evaluate the simulator with the practical use
in the exercise class.

References

[1] J.R. Arias and D.F. Garcia, “Introducing computer
architecture education in the first course of computer
science career,” IEEE Computer Society Technical
Committee on Computer Architecture Newsletter, July
1999, pp. 37-39.

[2] H.B. Diab and I. Demashkieh, “A computer-aided
teaching package for microprocessor systems education,”
IEEE Transaction on Education, vol.34, no.2, 1991.

[3] M. Pearson, D. Armstrong and T. McGregor, “Using
Custom Hardware and Simulation to Support Computer
Systems Teaching,” Proceedings of Workshop on
Computer Architecture Education 2002, pp.19-26, 2002.

[4] K. Murakami and T. Ishikawa, "Introduction to Logic
Circuit for Computer Systems" (Printed in Japanese),
Kyoritsu Syuppan, pp.123-159, 1996.

	1. Introduction
	2. Specification of MKit
	3. Simulator Designing
	4. Interface and Assignment Design
	4.1 An assignment about the instruction set architecture
	4.2 An assignment about the processor block
	4.3 An assignment about the control unit
	4.4 An assignment to control CPU by asserting control signals directly
	4.5 An assignment to control CPU with time chart

	5. Simulator Implementation
	6. Related Works
	7. Conclusions
	References

