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Abstract 

The purpose of this article is to provide an 
introduction to the SuperSim simulator for ILP 
processors as a teaching tool for computer 
architecture related courses. It presents the various 
aspects of the simulator, including the user interface, 
the instruction set, the configuration possibilities and 
applications. The main focus is on the educational 
usage of the simulator, through the experience gained 
in its actual application. 

1. Introduction 
Superscalar processors are one of the two major 

directions of ILP development. They issue multiple 
instructions per cycle, which results in complex 
decoding stage. This can lengthen the clock cycle or 
lead to multiple decoding cycles. Usually superscalar 
processors employ some kind of predecoding of 
instructions while they are fetched from memory to 
instruction cache. Pre-decode bits are attached to 
every instruction usually indicating the instruction 
class and the type of required resources. 

Another aspect of multiple instruction issue is 
that can lead to higher performance, but at the same 
time it amplifies the restrictive effects of control and 
data dependencies on the processor performance. In 
order to reduce these effects, superscalar processors 
employ advanced techniques like register renaming, 
shelving and speculative branch processing. 

Developing powerful microprocessors requires 
research in many different areas; such are electronics, 
algorithms, optimization, etc. Many new techniques 
are required for this process. To prove their 
efficiency, in a manner that allows grater freedom of 
research, simulation tools are very important.  

The usage of simulators in the computer 
architecture courses has been proven as the best 
approach towards students’ better understanding of 
the main architectural concepts. This is especially true 
for the visual simulators, since many internal features 
can be best understood through dataflow 
visualization. 

2. Description of the SuperSim Simulator V 2.0 
The basic considerations for designing the 

SuperSim Simulator were taken from the design space 
concept given by Sima et al [12], using similar 
experience of [2]. The previous versions of the 
simulator are covered in [7]. 

The main features of the SuperSim Simulator are: 
- Running user code, written in its own 

pseudo assembler 
- Syntax checking of the user code with 

error indication 
- Extensive configuration 
- Simulating a big range of processors, 

varying from simple RISC to advanced 
PostRISC   

- Step by step execution 
- Visual representation of each stage of the 

pipeline 
- Fast, non visual mode for better 

performance 
- Vast logging capabilities for performance 

analysis 
- Detailed statistics 

3. User Interface 
The simulator has a very friendly user interface. It 

consists of several separate windows, including the 
code editor (Fig.1), runtime, configuration, statistics 
and other windows. 

 
Figure 1: The code entry window 

The code editor window enables the user to write 
its own custom code, using the pseudo assembler.  
The code can be saved into a file or loaded from one. 
Options available on this window include syntax 
checking with indication of possible errors and 
standard file management. Code can have inline 



comments, separated with ‘//’ from the instructions. 
Especially important is the configuration option, 
which defines the simulated execution environment. 

4. Configuration 
The configuration window consists of several 

major parts, each represented with a tab, as shown in 
fig. 2. The configuration enables choosing the number 
and the type of the execution units. The maximum 
number of execution units is 6, and the minimum is 1. 
Supported units are  

- 1 multi cycle unit, for execution of multi 
cycle integer operations, like division or 
multiplication 

- Up to 3 single cycle integer units, for 
execution of simple integer arithmetic 

- 1 load/store unit for address calculation of 
the memory transfer instructions and 

- 1 branch unit for calculation of the branch 
target addresses. 

 
Figure 2: The options window 

Only the multi cycle unit is mandatory, while the 
others can be added or removed. If a special unit is 
not used, for example the load/store unit, the multi 
cycle unit performs the operations. 

The issue rate can also be configured on this tab, 
varying from 1 up to the total number of units used. 

The second tab of the configuration window, 
shown in fig. 3, covers the use of shelving. When 
shelving is used, the user can select between central 
or dedicated reservation stations. For each station 
used, the number of entries can also be configured.  

The next tab, fig. 4, is used for configuring the 
register renaming options of the simulator. If 
renaming is used, the number of rename buffers can 
be selected. Additionally, the access method for the 
renamed registers can be chosen from indexed or 
associative.  

 
Figure 3: Shelving options 

 
Figure 4: Register renaming options 

The "Out of order" tab, fig. 5, enables the using of 
the out of order issue and dispatch. On the same tab, 
the user can adjust the number of entries in the 
Reorder Buffer (ROB). 

The final configuration tab covers the branch 
processing used in the simulation, as shown in fig. 6. 
It can be blocking or speculative. When using 
speculative branch prediction, three modes are 
available: fixed, static and dynamic. The dynamic 
branch processing can be configured to use BTAC, 
BHT or both. It can also use global 2-bit history, for 
better prediction. 

Other options available are turning on and off the 
visual simulation, which can increase performance 
and tuning on and off the logging option. When 
visualization is disabled, the number of clock cycles 
simulated per second is 7-10 times bigger. 



 
Figure 5: Out-of-order options 

 
Figure 6: Branch processing options 

The selected configuration can be saved into a 
file for later reuse, or loaded from one. 

5. Runtime 
The runtime environment greatly depends on the 

selected configuration. When full configuration is 
used, it looks like in fig. 7. The top part consists of 
some command buttons, among which are: “Close” 
for closing the runtime window, “Run” for running 
the simulation continuously, “Step” for executing 
cycle by cycle, “Pause” for pausing the simulation 
when ran in continuous mode. 

Depending on the configurations some or all of 
the buttons in the upper right part will be enabled: 
“Show ROB” displays the ROB, fig. 8, “Show RF” 
displays the registry and rename registry file, fig. 9, 
“Show BT” displays the branch prediction tables 
window, fig 10, “Show DC” displays the data cache, 
fig. 11. 

 
Figure 7: The runtime window 

The rest of the window is divided into separate 
parts for each stage of the pipeline. Mandatory stages 
are Fetch, Issue, Execute and Write-back, while the 
other two, Dispatch and Complete are shown only if 
shelving and out-of-order execution are used, 
respectively. For each stage, a container represents the 
appropriate tables and/or buffers that hold the current 
instructions. In the upper left part, two separate 
containers represent the pending load and store 
queues.  

The ROB window, shown in fig. 8 is used for 
monitoring the work of the reorder buffer. It has an 
entry for each instruction that has been issued and has 
not completed yet. Since the ROB is designed as a 
circular buffer, at also shows the head and the tail 
pointer in the buffer. Instructions are represented in 
different colors, depending on the stage of the 
pipeline they are in.  

 
Figure 8: The ROB window 

The registry file window, fig. 9, shows the state of 
both the architectural and the rename registers. On the 
left of the window, architectural registers are shown. 
For each rename register, there are three parameters 
shown: the number of the architectural register that is 
mapped to this rename register, the value (if 
calculated yet) and the latest bit.  



 
Figure 9: The Register file window 

The branch tables’ window, fig. 10, is used for 
monitoring the state of the branch prediction tables. 
Depending on the configuration, one or two tables are 
shown. They are the BHT and/or the BTAC.  

 
Figure 10: The Branch tables' window 

The data cache window shows a map of the data 
memory, with each entry representing a 4-byte word, 
as shown in fig.11. 

 
Figure 11: The Data cache window 

The statistics window, shown in fig. 12, gives a 
detailed statistics of the simulated code and 
configuration. The figures include the total number of 
executed instruction of each type, branch statistics 
and prediction accuracy measures, the flow of the 
instruction through each stage and both memory and 
register data dependencies. Some advanced measures 
are also included, like the average number of cycles 
required for flushing the processor and average 
number of register wasted when a miss-prediction 
occurred. 

 
Figure 12: The Statistics window 

6. Internal design 
The instruction set of the simulator represents a 

subset of the standard modern instruction sets 
[6,9,11], and contains the instructions shown in table 
1. 

The simulator simulates a processor performing 
32-bit integer operations with block diagram 
presented in fig.13. The floating-point part is not 
considered in this project. Most of the current 
PostRISC features [6, 9, 11] can be simulated using 
the SuperSim, including out-of-order issue, register 
renaming, shelving, branch prediction etc.  

Supported memory addressing modes are 
displacement and indexed based [6]. While the same 
mnemonic is used for both modes, instruction 
processing is different depending on the mode. The 
memory is divided into instruction cache and 1024 
locations of 32-bit words data cache. The memory is 
aligned on a word (4 bytes) boundary and all memory 
access instructions refer to a word address. 

The maximum number of execution units is six 
(refer to fig. 2). Instructions that take multiple clock 
cycles to execute, i.e. the 'mul' instruction, are 
executed in the multi-cycle, which is obligatory. 
Optionally there can be up to three single-cycle 
execution units for instructions like 'add', or 'sub' that 



take one clock cycle to execute, one load/store unit for 
handling memory access, and one branch unit 
dedicated for branch processing. When there is no 
available corresponding execution unit, the 
instructions are executed in the multi-cycle unit, 
which provides the functionality of all execution 
units. The number of execution units determines the 
dispatch rate so there are no restrictions about the 
instructions being dispatched. Issue rate can be set up 
to the dispatch rate [12]. 

 
Figure 13: Block diagram of the simulator 

The use of RS is optional with the possibilities 
shown in Fig.3. When selected, there is a choice 
between central or dedicated RS. Dedicated RS are 
placed in front of every execution unit, so the issue 
stage directs every instruction to the corresponding 
RS. In the case of central RS there must be additional 

logic to determine the execution unit where the 
instruction is dispatched. Additional requirement in 
the case of central RS is the number of output and 
input ports, which have to be larger unlike the case of 
dedicated RS.  

Register renaming is implemented by separate 
register rename file (also known as rename buffer) 
[1,3,5,12,13,14,15,16]. The access to the rename 
buffer can be associative or indexed. When using 
associative access, there may be multiple instances of 
renames of one architectural register with separate 
notion of the last rename. In contrast only one rename 
per architectural register may exist with indexed 
access. 

Out of order execution refers to whether 
instructions are issued out of order or dispatched out 
of order. When shelving is enabled instruction issuing 
is in order, while instruction dispatch is out of order. 
This design option is realized since the issue stage 
does not check for dependencies so there cannot be 
pipeline blockages due to dependency. If shelving is 
disabled, the only possibility is out of order 
instruction issue. Fig.5 shows the possible options 
about out of order execution [15,16]. 

Branch processing options are shown in Fig.6. If 
branch processing is speculative, predictions about 
branch instructions can be: fixed "always not taken", 
static displacement based, or dynamic with optional 
use of BTAC, BHT or 2 bit global history register. In 
the latest case BTAC is used only for recent taken 
branches and the use of either BTAC or BHT is 
obligatory if dynamic prediction is selected [17]. 
Additionally, when BHT is used, global BHT can be 
activated and the initial state can be set.  

Table 1: Instruction set 

Instruction Semantics Comment 
ADD R1, R2, R3 Regs[1] = Regs[2] + Regs[3]  
SUB R1, R2, R3 Regs[1] = Regs[2] - Regs[3]  
AND R1, R2, R3 Regs[1] = Regs[2] & Regs[3]  
OR R1, R2, R3 Regs[1] = Regs[2] | Regs[3]  
NOT R1, R2, RX Regs[1] = ! Regs[2] The third operand can be  
SHL R1, R2, R3 Regs[1] = Regs[2] SHL Regs[3] either register,  
SHR R1, R2, R3 Regs[1] = Regs[2] SHR Regs[3] or a constant 
MOD R1, R2, R3 Regs[1] = Regs[2] Modulo Regs[3]  
DIV R1, R2, R3 Regs[1] = Regs[2] / Regs[3]  
MUL R1, R2, R3 Regs[1] = Regs[2] * Regs[3]  
LOAD R1, R2, 200 Regs[1] = Mem[Regs[2] + 200] Reads a word from memory  
STORE R1, R2, 150 Mem[Regs[2] + 150] = Regs[1] Writes a word in memory 
BEQ R1, R2, 200 if (Regs[1]=Regs[2]) IP = IP+200  
BNE R1, R2, R3 if (Regs[1]!=Regs[2]) IP = IP+Regs[3] The third operand can be 
BGT R1, R2, 200 if (Regs[1]>Regs[2]) IP = IP+200 either register,  
BLT R1, R2, R3 if (Regs[1]<Regs[2]) IP = IP+Regs[3] or a constant 
BGE R1, R2, 13 if (Regs[1]>=Regs[2]) IP = IP+13  
BLE R1, R2, R3 if (Regs[1]<=Regs[2]) IP = IP+Regs[3]  



7. Implementation 
The SuperSim simulator is developed using 

Borland Delphi and targets 32-bit Windows 
platforms. It has full object oriented design, with each 
phase in the pipeline represented by its own object. 
Each object has a public interface for realization of 
communications between the stages in the pipeline. 
The object architecture makes upgrading easy and 
intuitive.  

The performance in the sense of simulated clock 
cycles per second varies depending on whether the 
visualization is on or off. When off, it simulates 
around 100 clock cycles per second, measured on PIII 
working on 650MHz. If visualization is on, this 
number is 7-10 times smaller.  

8. Teaching ILP using the simulator 
The SuperSim simulator can be equally well used 

in research and in education. Its visual interface helps 
students to understand the functionality of a RISC or 
PostRISC, get familiar with the basic concepts of ILP 
and practice their assembly language programming 
skills.  

The simulator executables, with sample 
configurations and programs are available to the 
students through the computer architecture courses 
web sites. After the initial introduction of the basic 
simulator elements and performing some simple 
examples, each student is assigned a project. The 
project consists of writing a small assembly program 
(searching, sorting, prime number search, SCD, 
matrix operations, linked list operation, conversions 
etc.) and performing some analysis of the superscalar 
techniques on the program execution. The analysis 
concerned the performance impact of the key ILP 
factors like the number of execution units, number of 
register available for renaming, type of the reservation 
stations, ROB entries, loop unrolling and branch 
prediction techniques. The deliverables were the 
program itself and a paper explaining the results of 
the analysis.  

The results of this method of teaching ILP were 
more than satisfactory. The students’ interest for the 
course was bigger and the achieved results were better 
then before the introduction of the simulator [10]. 
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