

Visual simulator for ILP dynamic OOO processor

Anastas Misev, Marjan Gusev
Institute of Informatics, PMF, Sts. Cyril and Methodius University

Arhimedova 5, PO Box 162, 1000 Skopje, Macedonia
anastas@ii.edu.mk, marjan@ii.edu.mk

Abstract

The purpose of this article is to provide an
introduction to the SuperSim simulator for ILP
processors as a teaching tool for computer
architecture related courses. It presents the various
aspects of the simulator, including the user interface,
the instruction set, the configuration possibilities and
applications. The main focus is on the educational
usage of the simulator, through the experience gained
in its actual application.

1. Introduction
Superscalar processors are one of the two major

directions of ILP development. They issue multiple
instructions per cycle, which results in complex
decoding stage. This can lengthen the clock cycle or
lead to multiple decoding cycles. Usually superscalar
processors employ some kind of predecoding of
instructions while they are fetched from memory to
instruction cache. Pre-decode bits are attached to
every instruction usually indicating the instruction
class and the type of required resources.

Another aspect of multiple instruction issue is
that can lead to higher performance, but at the same
time it amplifies the restrictive effects of control and
data dependencies on the processor performance. In
order to reduce these effects, superscalar processors
employ advanced techniques like register renaming,
shelving and speculative branch processing.

Developing powerful microprocessors requires
research in many different areas; such are electronics,
algorithms, optimization, etc. Many new techniques
are required for this process. To prove their
efficiency, in a manner that allows grater freedom of
research, simulation tools are very important.

The usage of simulators in the computer
architecture courses has been proven as the best
approach towards students’ better understanding of
the main architectural concepts. This is especially true
for the visual simulators, since many internal features
can be best understood through dataflow
visualization.

2. Description of the SuperSim Simulator V 2.0
The basic considerations for designing the

SuperSim Simulator were taken from the design space
concept given by Sima et al [12], using similar
experience of [2]. The previous versions of the
simulator are covered in [7].

The main features of the SuperSim Simulator are:
- Running user code, written in its own

pseudo assembler
- Syntax checking of the user code with

error indication
- Extensive configuration
- Simulating a big range of processors,

varying from simple RISC to advanced
PostRISC

- Step by step execution
- Visual representation of each stage of the

pipeline
- Fast, non visual mode for better

performance
- Vast logging capabilities for performance

analysis
- Detailed statistics

3. User Interface
The simulator has a very friendly user interface. It

consists of several separate windows, including the
code editor (Fig.1), runtime, configuration, statistics
and other windows.

Figure 1: The code entry window

The code editor window enables the user to write
its own custom code, using the pseudo assembler.
The code can be saved into a file or loaded from one.
Options available on this window include syntax
checking with indication of possible errors and
standard file management. Code can have inline

comments, separated with ‘//’ from the instructions.
Especially important is the configuration option,
which defines the simulated execution environment.

4. Configuration
The configuration window consists of several

major parts, each represented with a tab, as shown in
fig. 2. The configuration enables choosing the number
and the type of the execution units. The maximum
number of execution units is 6, and the minimum is 1.
Supported units are

- 1 multi cycle unit, for execution of multi
cycle integer operations, like division or
multiplication

- Up to 3 single cycle integer units, for
execution of simple integer arithmetic

- 1 load/store unit for address calculation of
the memory transfer instructions and

- 1 branch unit for calculation of the branch
target addresses.

Figure 2: The options window

Only the multi cycle unit is mandatory, while the
others can be added or removed. If a special unit is
not used, for example the load/store unit, the multi
cycle unit performs the operations.

The issue rate can also be configured on this tab,
varying from 1 up to the total number of units used.

The second tab of the configuration window,
shown in fig. 3, covers the use of shelving. When
shelving is used, the user can select between central
or dedicated reservation stations. For each station
used, the number of entries can also be configured.

The next tab, fig. 4, is used for configuring the
register renaming options of the simulator. If
renaming is used, the number of rename buffers can
be selected. Additionally, the access method for the
renamed registers can be chosen from indexed or
associative.

Figure 3: Shelving options

Figure 4: Register renaming options

The "Out of order" tab, fig. 5, enables the using of
the out of order issue and dispatch. On the same tab,
the user can adjust the number of entries in the
Reorder Buffer (ROB).

The final configuration tab covers the branch
processing used in the simulation, as shown in fig. 6.
It can be blocking or speculative. When using
speculative branch prediction, three modes are
available: fixed, static and dynamic. The dynamic
branch processing can be configured to use BTAC,
BHT or both. It can also use global 2-bit history, for
better prediction.

Other options available are turning on and off the
visual simulation, which can increase performance
and tuning on and off the logging option. When
visualization is disabled, the number of clock cycles
simulated per second is 7-10 times bigger.

Figure 5: Out-of-order options

Figure 6: Branch processing options

The selected configuration can be saved into a
file for later reuse, or loaded from one.

5. Runtime
The runtime environment greatly depends on the

selected configuration. When full configuration is
used, it looks like in fig. 7. The top part consists of
some command buttons, among which are: “Close”
for closing the runtime window, “Run” for running
the simulation continuously, “Step” for executing
cycle by cycle, “Pause” for pausing the simulation
when ran in continuous mode.

Depending on the configurations some or all of
the buttons in the upper right part will be enabled:
“Show ROB” displays the ROB, fig. 8, “Show RF”
displays the registry and rename registry file, fig. 9,
“Show BT” displays the branch prediction tables
window, fig 10, “Show DC” displays the data cache,
fig. 11.

Figure 7: The runtime window

The rest of the window is divided into separate
parts for each stage of the pipeline. Mandatory stages
are Fetch, Issue, Execute and Write-back, while the
other two, Dispatch and Complete are shown only if
shelving and out-of-order execution are used,
respectively. For each stage, a container represents the
appropriate tables and/or buffers that hold the current
instructions. In the upper left part, two separate
containers represent the pending load and store
queues.

The ROB window, shown in fig. 8 is used for
monitoring the work of the reorder buffer. It has an
entry for each instruction that has been issued and has
not completed yet. Since the ROB is designed as a
circular buffer, at also shows the head and the tail
pointer in the buffer. Instructions are represented in
different colors, depending on the stage of the
pipeline they are in.

Figure 8: The ROB window

The registry file window, fig. 9, shows the state of
both the architectural and the rename registers. On the
left of the window, architectural registers are shown.
For each rename register, there are three parameters
shown: the number of the architectural register that is
mapped to this rename register, the value (if
calculated yet) and the latest bit.

Figure 9: The Register file window

The branch tables’ window, fig. 10, is used for
monitoring the state of the branch prediction tables.
Depending on the configuration, one or two tables are
shown. They are the BHT and/or the BTAC.

Figure 10: The Branch tables' window

The data cache window shows a map of the data
memory, with each entry representing a 4-byte word,
as shown in fig.11.

Figure 11: The Data cache window

The statistics window, shown in fig. 12, gives a
detailed statistics of the simulated code and
configuration. The figures include the total number of
executed instruction of each type, branch statistics
and prediction accuracy measures, the flow of the
instruction through each stage and both memory and
register data dependencies. Some advanced measures
are also included, like the average number of cycles
required for flushing the processor and average
number of register wasted when a miss-prediction
occurred.

Figure 12: The Statistics window

6. Internal design
The instruction set of the simulator represents a

subset of the standard modern instruction sets
[6,9,11], and contains the instructions shown in table
1.

The simulator simulates a processor performing
32-bit integer operations with block diagram
presented in fig.13. The floating-point part is not
considered in this project. Most of the current
PostRISC features [6, 9, 11] can be simulated using
the SuperSim, including out-of-order issue, register
renaming, shelving, branch prediction etc.

Supported memory addressing modes are
displacement and indexed based [6]. While the same
mnemonic is used for both modes, instruction
processing is different depending on the mode. The
memory is divided into instruction cache and 1024
locations of 32-bit words data cache. The memory is
aligned on a word (4 bytes) boundary and all memory
access instructions refer to a word address.

The maximum number of execution units is six
(refer to fig. 2). Instructions that take multiple clock
cycles to execute, i.e. the 'mul' instruction, are
executed in the multi-cycle, which is obligatory.
Optionally there can be up to three single-cycle
execution units for instructions like 'add', or 'sub' that

take one clock cycle to execute, one load/store unit for
handling memory access, and one branch unit
dedicated for branch processing. When there is no
available corresponding execution unit, the
instructions are executed in the multi-cycle unit,
which provides the functionality of all execution
units. The number of execution units determines the
dispatch rate so there are no restrictions about the
instructions being dispatched. Issue rate can be set up
to the dispatch rate [12].

Figure 13: Block diagram of the simulator

The use of RS is optional with the possibilities
shown in Fig.3. When selected, there is a choice
between central or dedicated RS. Dedicated RS are
placed in front of every execution unit, so the issue
stage directs every instruction to the corresponding
RS. In the case of central RS there must be additional

logic to determine the execution unit where the
instruction is dispatched. Additional requirement in
the case of central RS is the number of output and
input ports, which have to be larger unlike the case of
dedicated RS.

Register renaming is implemented by separate
register rename file (also known as rename buffer)
[1,3,5,12,13,14,15,16]. The access to the rename
buffer can be associative or indexed. When using
associative access, there may be multiple instances of
renames of one architectural register with separate
notion of the last rename. In contrast only one rename
per architectural register may exist with indexed
access.

Out of order execution refers to whether
instructions are issued out of order or dispatched out
of order. When shelving is enabled instruction issuing
is in order, while instruction dispatch is out of order.
This design option is realized since the issue stage
does not check for dependencies so there cannot be
pipeline blockages due to dependency. If shelving is
disabled, the only possibility is out of order
instruction issue. Fig.5 shows the possible options
about out of order execution [15,16].

Branch processing options are shown in Fig.6. If
branch processing is speculative, predictions about
branch instructions can be: fixed "always not taken",
static displacement based, or dynamic with optional
use of BTAC, BHT or 2 bit global history register. In
the latest case BTAC is used only for recent taken
branches and the use of either BTAC or BHT is
obligatory if dynamic prediction is selected [17].
Additionally, when BHT is used, global BHT can be
activated and the initial state can be set.

Table 1: Instruction set

Instruction Semantics Comment
ADD R1, R2, R3 Regs[1] = Regs[2] + Regs[3]
SUB R1, R2, R3 Regs[1] = Regs[2] - Regs[3]
AND R1, R2, R3 Regs[1] = Regs[2] & Regs[3]
OR R1, R2, R3 Regs[1] = Regs[2] | Regs[3]
NOT R1, R2, RX Regs[1] = ! Regs[2] The third operand can be
SHL R1, R2, R3 Regs[1] = Regs[2] SHL Regs[3] either register,
SHR R1, R2, R3 Regs[1] = Regs[2] SHR Regs[3] or a constant
MOD R1, R2, R3 Regs[1] = Regs[2] Modulo Regs[3]
DIV R1, R2, R3 Regs[1] = Regs[2] / Regs[3]
MUL R1, R2, R3 Regs[1] = Regs[2] * Regs[3]
LOAD R1, R2, 200 Regs[1] = Mem[Regs[2] + 200] Reads a word from memory
STORE R1, R2, 150 Mem[Regs[2] + 150] = Regs[1] Writes a word in memory
BEQ R1, R2, 200 if (Regs[1]=Regs[2]) IP = IP+200
BNE R1, R2, R3 if (Regs[1]!=Regs[2]) IP = IP+Regs[3] The third operand can be
BGT R1, R2, 200 if (Regs[1]>Regs[2]) IP = IP+200 either register,
BLT R1, R2, R3 if (Regs[1]<Regs[2]) IP = IP+Regs[3] or a constant
BGE R1, R2, 13 if (Regs[1]>=Regs[2]) IP = IP+13
BLE R1, R2, R3 if (Regs[1]<=Regs[2]) IP = IP+Regs[3]

7. Implementation
The SuperSim simulator is developed using

Borland Delphi and targets 32-bit Windows
platforms. It has full object oriented design, with each
phase in the pipeline represented by its own object.
Each object has a public interface for realization of
communications between the stages in the pipeline.
The object architecture makes upgrading easy and
intuitive.

The performance in the sense of simulated clock
cycles per second varies depending on whether the
visualization is on or off. When off, it simulates
around 100 clock cycles per second, measured on PIII
working on 650MHz. If visualization is on, this
number is 7-10 times smaller.

8. Teaching ILP using the simulator
The SuperSim simulator can be equally well used

in research and in education. Its visual interface helps
students to understand the functionality of a RISC or
PostRISC, get familiar with the basic concepts of ILP
and practice their assembly language programming
skills.

The simulator executables, with sample
configurations and programs are available to the
students through the computer architecture courses
web sites. After the initial introduction of the basic
simulator elements and performing some simple
examples, each student is assigned a project. The
project consists of writing a small assembly program
(searching, sorting, prime number search, SCD,
matrix operations, linked list operation, conversions
etc.) and performing some analysis of the superscalar
techniques on the program execution. The analysis
concerned the performance impact of the key ILP
factors like the number of execution units, number of
register available for renaming, type of the reservation
stations, ROB entries, loop unrolling and branch
prediction techniques. The deliverables were the
program itself and a paper explaining the results of
the analysis.

The results of this method of teaching ILP were
more than satisfactory. The students’ interest for the
course was bigger and the achieved results were better
then before the introduction of the simulator [10].

9. References

[1] Austin,T., Sohi,G.S., (1992), Dynamic Dependency
Analysis of Ordinary Programs, Proc.19th Int.Conf. on
Computer Architecture, ISCA-19.

[2] Burger, D., Austin, T., (1997), The SimpleScalar Tool
Set, Version 2, Technical report of the University of
Wisconsin-Madison, Computer Science Department.

[3] Conte T.M. (1996), Superscalar and VLIW processors,
in Parallel and Distributed Computing Handbook, ed. by
A.Y.Zomaya, McGraw Hill.

[4] Farcas, K. et all, (1995) Register File Design
Considerations in Dynamically Scheduled Processor, WRL
Technical report 95/10, Paolo Alto, California.

[5] Gonzalez, J. and Gonzalez, A., (1995) Identifying
Contributing Factors to ILP, Univesitat Politecnica de
Catalunya, Barcelona, Spain.

[6] Gusev M. (1998), Contemporary Computer Systems,
Medis, Skopje, Macedonia.

[7] Gusev, M., Misev, A. and Popovski, G. (1998)
Simulation of Superscalar Processor, proc. of ITI’98, Pula,
Croatia.

[8] Gusev,M, Misev.A and Popovski.G (1999), Memory
Address Dependencies, ITI-99 pp.191-196.

[9] Hennessy J.L., Patterson D.A. (1998), Computer
Organization and Design: The Hardware Software
Interface, sec. edition, Morgan Kaufmann Publishers, San
Francisco, California.

[10] Misev, A., Gusev, M., (2004), Simulators for ILP
courses, proc. of TEMPUS CD JEP 16160 workshops,
Nish, Serbia and Montenegro.

[11] Patterson, D and Hennessy, J. (1996) Computer
Architecture A Quantitative Approach, second edition,
MKP, San Francisco, California.

[12] Sima D. at al. (1997), Advanced Computer
Architectures: A Design Space Approach, Addison Wesley
Longman, Harlow, England.

[13] Smith, J. and Pleszkun, A. (1988) Implementing
Precise Interrupts in Pipelined Processors, IEEE
Transactions on computers, vol. 37, no. 5, p.562-573.

[14] Tyson,G., Austin,T. (1997), Improving the Accuracy
and Performance of Memory Communication Through
Renaming, Proc.30th Ann. Int. Symp. on Microarchitecture,
MICRO-30.

[15] Wall, D. (1993) Limits of Instruction-Level
Parallelism, WRL Research report 93/6, Paolo Alto,
California.

[16] Wall, D. (1994) Speculative Execution and Instruction-
Level Parallelism, WRL Technical Note 94/42, Paolo Alto,
California.

[17] Yeh, T.Y., Patt, Y. N., (1992) Alternative
Implementations of two-level Adaptive Branch Prediction,
Proceedings of 19th Int. Symposium on Computer
Architecture (ISCA) pp.124-134.

