
The Case for Broader Computer Architecture Education

William J. Dally
Computer Systems Laboratory

Stanford University

Keynote address

Most introductory computer architecture courses
– at both the graduate and undergraduate level – are
primarily courses on CPU architecture. They tend to
cover instruction set architecture, processor
microarchitecture, and perhaps caches. While this is
all useful content, our students would be better served
by an introductory course that paints a more complete
picture of computer architecture and one that better
places computer architecture in context with the
related fields of digital design and compilers.

Most computers today are not the desktop,
laptop, or server boxes that we have historically
associated with computing, but rather are embedded
computing devices that control the engines in our
cars, perform the modem functions in our cell
phones, process the images in our cameras, TVs, and
printers, or process packets traversing networks. The
computing in these devices is typically performed by
a combination of CPUs and special purpose
hardware. The hard problems solved by architects in
these systems do not involve the CPU, but rather the
system-level organization of the device – the division
of the problem over computing resources and the
interconnect, memory organization, and I/O
organization of the system. The CPU(s) is (are)
typically not a major contributor to either cost (a
RISC CPU with I and D caches is less than 1mm2

today – and most of that is cache) or performance
(most of the heavy lifting is done by special-purpose
devices).

Even for PCs and servers, where CPUs do have a
large impact on cost and performance, the CPU is not
where the architect spends the bulk of their time.
System-level interconnect, memory bandwidth, and
I/O bandwidth tend to dominate.

To better reflect the challenges faced by actual
architects, our introductory courses should broaden
their coverage of architecture by treating system level
issues and considering the architecture of embedded
computing devices – not just traditional “computers.”
This will better serve both the students who plan to
specialize in architecture and those for whom the
introductory course will be their only exposure. For
the specialists, a system-oriented course will expose
them to the type of architecture they are more likely
to be practicing. Very few people architect CPUs.
Many people architect systems using CPUs – and
other computing devices. For the non-specialists a
system-oriented course will give them a better
overview of computer architecture as a field than a
narrow treatment of CPUs.

To make room for the systems content in an
introductory course, much of the detailed treatment of
CPUs must be dropped from such a course. Such
material rightly belongs in an advanced course on
CPU architecture – much as detailed treatment of
interconnection networks is deferred for an advanced
course.

Many of the problems faced by architects cannot
be solved entirely within the domain of architecture.
Digital design and compiler technology are critical to
solving many architectural problems. Yet many
architects are not proficient in these areas.

Choosing between alternative organizations
typically requires estimating the delay, power, and
area of memories, interconnect, and logic.
Performing such estimates is remarkably easy.
However, many computer architects do not have this
skill. Instead they rely on a separate “design group”
to give them estimates, or use “canned” programs
that perform estimates for a particular structure (e.g.
Cacti for caches). Neither of these solutions really
works because the architect does not develop an
intuition about the alternatives that comes from
understanding how they work at the next level down
– and hence cannot use this intuition to arrive at the
“right” alternative – which is almost never one of the
initial alternatives. For example, I am constantly
astounded by the large number of practicing
architects that do not have a good feel for the
speed/power/area tradeoffs of memories and hence
believe that DRAMs are inherently slower than
SRAMs. Also, even though power is a critical issue,
few architects know the energy required by a
particular operation (add, read an 8K RAM, lookup in
a 32-entry CAM, clock a word into a pipeline
register, transfer a word 10mm across a chip). This
makes it nearly impossible for them to accurately
estimate the power of proposed architectures.

A detailed understanding of digital design takes
years of experience; however, simple models of area,
power, and delay can be taught in a week or two.
The use of such models drastically changes the nature
of microarchitecture exploration. No longer is the
task to develop the system that increases performance
at any expense (and without regard for impact on
clock rate) but the task becomes one of achieving
specified performance – including the impact on
clock rate - while staying within area and power
constraints. Such simple models of delay, area, and
power should ideally be included in an introductory
course.

Many problems faced by an architect are better
solved at compile time than run time – or even by JIT
compilers that are invoked at run-time. Statically
scheduling a sequence of instructions is far more
efficient (and results in a better schedule – if all the
information is available) than scheduling them
dynamically. Similarly, specializing a piece of code
given the data type or value of a variable using partial
evaluation is far more efficient than “prediction” of
various types. In a system with many computing
“elements” (some CPUs, others specialized), a
compiler plays a key role in “mapping” the problem
to the elements. The best solution to most
architecture problems is usually a combination of
compile-time software and run-time hardware.

Many (not all) architects, unfortunately, view the
compiler as a given. They see the architecture
problem as one of running existing binaries, or
compilers as someone else’s problem. This may be
appropriate for a CPU architect tasked with
developing the next generation x86, where they really
do have to run old binaries. However, it is not an

attitude that we should cultivate in our students.
Such an attitude is extremely limiting, ruling out
entire classes of solutions to problems.

By including a small amount of back-end
compiler technology in an introductory architecture
course – preferably with an exercise that illustrates
the advantages of solving a problem with a
combination of hardware and software – we enable
these students to view compiler technology as
another tool in their arsenal and open up a range of
solutions not accessible to those who view a compiler
as a black box.

Our architecture students would benefit greatly
from a broader introduction to computer architecture
– one that focuses on system (rather than CPU)
architecture and considers a broad class of computing
systems (not just traditional “computers”). At the
same time, we need to enable our students by giving
them a broad range of tools to apply to architecture
problems. Two key tools are back-end compiler
technology and simple models of delay, area, and
power.

