
Bridging Undergraduate Learning and Research in
Software and Hardware

Liang Cheng1 and Dale Parson2

1Laboratory Of Networking Group (LONGLAB, http://long.cse.lehigh.edu)
Department of Computer Science and Engineering, Lehigh University

19 Memorial Drive West, Bethlehem, PA 18015, USA
cheng@cse.lehigh.edu

2Agere Systems, Inc.
1110 American Parkway NE
Allentown, PA 18109, USA

Abstract
Embedded processing, where computers are used to
monitor and control dedicated hardware, is a growing
presence within mainstream computer science and
engineering. Network processing, where embedded
processors monitor and control communication
networks, is a premier example of embedded
processing. This paper presents contents of a
Network Systems Design course used to introduce
undergraduate students to understanding software-
hardware co-design concepts and acquiring practical
experience in embedded processing. The achieved
goals of the course include: (i) carrying out lab-based
introduction to embedded processing in its
application area of network processing, and (ii)
strengthening ties between academic study of
network processing and industrial practice in the
field, given the fact that most advances in network
processor architectures to date have been made in
industry. Responses from students approved our
intention of the “hands-on” lab-based introduction
using a modular network processing laboratory and
verified the effectiveness of integrating academic
study with industrial experience.

1 Introduction
Embedded processing, where computers are used to
monitor and control dedicated hardware, is a growing
presence within mainstream computer science and
engineering [1-3]. Network processing, where
embedded processors monitor and control
communication networks, is a premier example of
embedded processing.

There is a growing need for undergraduate students
to understand software-hardware co-design concepts
and to acquire practical experience in embedded
processing [4]. Network processing and network
processor architecture provide an ideal context to
teach software-hardware co-design at the advanced
undergraduate level in computer science and

engineering. In fact, network processor architecture
is undergoing rapid evolution, making it a dynamic
area for observation and contribution. The network
systems in which network processors are deployed
are also growing and evolving. These systems
include substantial hardware and software
components.

This paper describes an advanced undergraduate
course that was designed and developed about
network processing, integrated with a modular
network processing laboratory, to bridge
undergraduate learning and research in both software
and hardware. Over the last several years there have
been a number of graduate-level courses developed
on network processors (e.g., [5]). We have adapted
the graduate-level courses on network processors
into an undergraduate-level course on network
processing and processors. The course materials,
including course notes and laboratory exercises have
been developed and are freely available on the
Internet to academic institutions teaching similar
software-hardware co-design courses. A researcher
from industry has co-taught the course, which adds
valuable industrial experience in these fields to the
course.

The modular network processing laboratory has been
designed and utilized to teach undergraduate students
in a “hands-on” manner the operation of a network
processor as well as elements of network devices.
There exist a number of papers that are useful
references for designing lab sessions of this course.
For example, [6-8] have discussed education of
networking concepts via hands-on experiments or
practical experience. We have observed that their
course design can be improved by offering safety-net
characteristics and industrial experience components.
Safety-net means that students who fail to complete a
particular assignment are still able to move forward
to the next assignments and eventually get the
incomplete part done. Experience with such a
software-hardware combined environment will

benefit students in the scientific, mathematical, and
engineering disciplines.

2 Course Information
2.1 Components and schedule

The semester long Network Systems Design course
consisted of four components: Introduction,
Traditional Network Systems, Network Processor
Technology, and Example Network Processor. They
were divided into two categories: lectures and lab
sessions. The course schedule is shown in Table I.
The grade weights were assigned as follows:
homework: 20%; midterm: 20%; lab projects: 30%;
and final exam: 30%. There was no prerequisite on
introductory computer network course and thus the
first three weeks were used to introduce basic
concepts of computer networks in a nutshell.

Table I. Lecture and Lab Schedule

Component Lecture Lab

Introduction
(6 hours)

Course introduction,
network architecture,
layering & protocols, OSI
and Internet architecture;
Encapsulation, hardware
building blocks, encoding,
framing; Error detection,
Ethernet (802.3), FDDI,
switching and forwarding,
circuit switching; Packet
switching, IP, service
model, socket, routing and
forwarding; UDP and TCP.

Traffic
monitoring
and
throughput
measurement

Traditional
Network
Systems (12
hours)

Computer architecture;
Packet processing
algorithms and functions;
Protocol software, socket;
Hardware architecture for
packet processing; Classifi-
cation and forwarding;
Switching fabrics.

Basic router
configuration;

Firewall,
ethereal,
switch vs hub

Network
Processor
Technology
(6 hours)

Network processor
introduction; Complexity of
network processor design;
Network processor
architectures; Scaling a
network processor; Design
tradeoffs and consequences.

SystemC
models and
simulation

Example
Network
Processor
(10 hours)

Overview of Agere network
processor and FPL
classification language;
System architecture and
modeling; Stateful network
processor applications;
Policing, buffer
management and traffic
shaping; Agere site visit;
Network processing trends.

Network
processor
bridge;

Fragment-
ation and
Encapsulation

Stateful FPL
application

2.2 Achieved Goals

The course offered in Fall 2003 consisted of both
software and hardware components. The students
were exposed to a variety of important software-
hardware co-design concepts. They learned to
program algorithms for network processing, use tools
to design network processors, and construct network
devices of complex network processing systems in a
well-structured, hierarchical way.

We have created a project-based introduction to
embedded processing in its application area of
network processing, where there is increasing
demand for skills and for which we anticipate
substantial advances in technology. Students have
gained hands-on experience in both the general area
of embedded processing and in the specific area of
network processing.

In addition, we have successfully strengthened ties
between academic study of network processing and
industrial practice in the field, given the fact that
most advances in network processor architectures to
date have been made in industry. Agere researchers
have participated in the course development in terms
of co-teaching lectures, developing laboratory
sessions, conducting Agere site visit, and supervising
internship.

Moreover, the development of the advanced
undergraduate course in network processing has
leveraged existing educational resources, including:
(i) Classic texts and laboratory exercises in
network processing before the advent of network
processors, particularly Internet-oriented materials;
and (ii) review feedback to Network Systems
Design Using Network Processors (Agere Version of
[9]), a new text by Professor Douglas Comer of
Purdue University.

3 Network Processing Laboratory
3.1 Overview

The purpose of the network processing laboratory
projects or assignments is for students to develop a
thorough understanding of network processing
concepts, architectures, algorithms and techniques by
implementing them. “Learning through doing” forces
the students to digest the information presented in
classes to the point where they can instruct the
computer how to apply it. Active learning such as this
has a higher chance of having a lasting effect on
students than if the students passively listen to
lectures without reinforcement.

The architecture of the laboratory
projects/assignments breaks the task of implementing

network devices into smaller, more manageable
chunks. They incrementally build on top of each
other to incrementally create a complete hardware-
software solution to a sophisticated network
processing system.

A safety net was provided for students who fail to
complete a particular assignment. We also offered the
benefit in the laboratory that students have an
opportunity to work with many different partners
throughout the semester.

The overall approach of the laboratory sequence is to
start with high-level, application-oriented networking
concepts with which students are already familiar,
such as Internet communications and the World Wide
Web, and work our way down networking protocol
layers in the examination of underlying protocols and
their processing in software and dedicated hardware.
Once we have explored underlying mechanisms, labs
reverse their direction, examining how network
processor architectures are evolving to handle higher-
level protocol layers at full speed. Thus the
laboratory sequence consists of an analysis stage
leading to underlying mechanisms, followed by a
synthesis stage that reveals the forces behind current
trends in network processing evolution.
3.2 Lab Projects

Below is a list of the six incremental lab projects
associated with the laboratory practice sessions.

(1) Traffic monitoring and throughput measurement
(step 1 of analysis):

Initial exercises use ethereal/tcpdump and similar
network traffic monitors to capture and observe live
packets created by real applications such as web
browsers and email. Concepts include generation and
observation of structured traffic, a central activity in
professional network processing. Students use traffic
monitors and generators learned in this step in all
subsequent steps.

(2) Basic router configuration and raw socket (step 2
of analysis):

The router configuration lab helps students to
understand more of network protocols by
configuring Cisco routers to support various network
topologies of the local area network and architecture
such as VLAN. Also a homework-oriented
assignment of raw socket concentrates on
conventional network programming interfaces used
by protocols and applications.

(3) Firewall, ethereal, switch vs. hub (step 3 of
analysis):

Projects place network interface cards (NICs) on
conventional computers into promiscuous mode and
control packet receipt and transmission directly. This
lab session includes three parts: configuring firewalls
using iptables in Linux; using ethereal to
capture network packets and observe the packets in
various layers; and comparing the difference between
a switch and a hub.

(4) SPA network processor simulator (step 1 of
synthesis):

At this stage we begin reworking the mechanisms
used in the previous stages into a form supported by
dedicated network processing instruction sets and
multiprocessor topologies. Exercises begin with an
examination of fast path (a.k.a. wire speed or hard
real-time) processing as contrasted with slow path
(a.k.a. control path or non-real-time) processing,
using both high-level functional simulation
environments and actual network processor
development environments, including tools from
Agere Systems, Inc.

(5) SystemC models and simulation (step 2 of
synthesis):

This stage uses high-level, functional simulation to
explore hardware building blocks such as pattern
matchers that are part of network processors.
Students complete design of a hardware block and
simulate its interactions with other network processor
components. In a complete system design, a system
designer can simulate execution of network
processing code such as routing on a simulated
processor written in SystemC. Students exercise this
two-tiered simulation of hardware and software
called co-simulation.

(6) Stateful FPL application (step 3 of synthesis):

Exercises focus on a representative sample of
programs illustrating how network processors are
currently used. Examples include bridges, routers,
network address translators, and firewalls. For
example, using Agere FPL (Functional Programming
Language) to deploy a hash table to implement a
learning Ethernet bridge.

4 Student Response
In a survey question asking students’ comments
about the course, 40% of the students mentioned that
they liked the hands-on labs, and 10% of these
students stated that the later labs tied everything
together. In addition, 40% students found the subject
matter to be relevant to today’s network field. They
felt that the material was interesting and presented
well, and they learned a lot of new material. Other

students appreciated that the professors were well-
qualified and treated the students with respect.

Twenty percent of the students felt that the course
could be split over two semesters, with the first
semester introducing the basics of network system
design and the second semester introducing more
advanced topics in greater detail. Other suggestions
by individual students included having more labs like
the first two, and providing more real work and
fewer simulations.

5 Conclusions and Future Work
This paper presents contents of the Network Systems
Design course used to introduce undergraduate
students to understanding software-hardware co-
design concepts and acquiring practical experience in
embedded processing. The goals achieved include:
(i) carrying out lab-based introduction to embedded
processing in its application area of network
processing, and (ii) strengthening ties between
academic study of network processing and industrial
practice in the field.

The next time this class is taught, a prerequisite of an
introductory undergraduate course on computer
networks should be imposed and the number of
lectures and labs on the introduction of networking
concepts would probably be increased. In addition,
the student presentations on “what I learned” would
be reserved for the second half of the semester.

More Agere’s software will be adapted to our
undergraduate course. Currently there is a
production-quality network processor simulator
(System Performance Analyzer – SPA) that Agere
has donated for use in the course. There are also two
prototype software tools that teaching assistants
could enhance for use in the course. One is a network
processor emulator (SAUNA) that translates network
processor code into C code that can run on a PC
containing two network interface cards. This
emulator will allow students to design and test
network processor algorithms on inexpensive PC
hardware; code runs at PC speeds rather than at
faster network processor speeds, but algorithms work
identically. Having the emulator in addition to actual
network processor hardware supports more lab
stations at low expense, and it scales readily to
inexpensive reuse at other colleges and universities.
The other prototype software tool is an open source
embedded system debugger from Agere (RTEEM)
that a teaching assistant will enhance for debugging
and algorithm visualization of network processing
programs running on the emulator.

Acknowledgment
This project has been partly financed by a grant from
the Commonwealth of Pennsylvania, Department of
Community and Economic Development, through
the Pennsylvania Infrastructure Technology Alliance
(PITA), and it has also been supported by National
Science Foundation DUE CCLI Award #0310745
and donations from Agere Systems, Inc.

References

[1] W. Bux, W.E. Denzel, T. Engbersen, A.
Herkersdorf, and R.P. Luijten, “Technologies and
building blocks for fast packet forwarding,” IEEE
Communications Magazine, Vol. 39, No. 1, Jan.
2001, pp. 70–77.

[2] T. Wolf and J.S. Turner, “Design issues for
high-performance active routers,” IEEE Journal on
Selected Areas in Communications, Vol. 19, No. 3,
March 2001, pp. 404–409.

[3] Y. Coady, S. O. Joon, and M.J. Feeley, “Using
embedded network processors to implement global
memory management in a workstation cluster,”
Proceedings of the Eighth International Symposium
on High Performance Distributed Computing, 1999,
pp. 319–328.

[4] P. Paulin, F. Karim and P. Bromley, “Network
processors: a perspective on market requirements,
processor architectures and embedded S/W tools,”
Proceedings of the DATE 2001 on Design,
Automation and Test in Europe, 2001, pp. 420–429.

[5] Network processor homepage at Purdue
University, http://www.cs.purdue.edu/np/.

[6] M. McDonald, J. Rickman, G. McDonald, P.
Heeler, and D. Hawley, “Practical experiences for
undergraduate computer networking students,”
Journal of Computing in Small Colleges, Volume 16,
Issue 3, March 2001.

[7] K. M. Sivalingam and V. Rajaravivarma,
“Education of wireless and ATM networking
concepts using hands-on laboratory experience,”
ACM SIGCSE Bulletin, Proceedings of the Thirtieth
SIGCSE Technical Symposium on Computer Science
Education, Volume 31, Issue 1, March 1999.

[8] P. Steenkiste, “Networks: a network project
course based on network processors,” Proceedings of
the 34th Technical Symposium on Computer Science
Education, February 2003.

[9] D. Comer, Network Systems Design Using
Network Processor, Prentice Hall, Upper Saddle
River, New Jersey, USA, 2003.

