
Use of HDLs in Teaching of Computer Hardware Courses

Zvonko Vranesic and Stephen Brown
University of Toronto

{zvonko@eecg.toronto.edu}

Abstract
A modern treatment of an introductory course on the design of
logic circuits should include an early introduction of a hard-
ware description language (HDL). This can done without sac-
rificing the emphasis on fundamental concepts of logic circuit
design. An example of how this may be achieved is given.

1 Introduction

This presentation focuses on the use of hardware de-
scription languages and design automation tools in the
teaching of courses on logic circuits and computer ar-
chitecture. It is based on the experience gained at the
University of Toronto, which involved courses in Com-
puter Engineering, Electrical Engineering, and Com-
puter Science programs.

While there has been considerable debate about the
optimal way of structuring the courses that teach the
concepts of computer hardware, a traditional sequence
based on an introductory course in the design of logic
circuits and a subsequent course in computer organi-
zation (architecture) is still a very attractive option. It
is even better if these courses are followed by a more
advanced course in computer architecture. This is the
structure at the University of Toronto. Each course is
accompanied by a laboratory in which students develop
a real understanding of the key concepts and the various
ways in which they may be implemented in practice.
For the purposes of this discussion, we will assume just
the basic two-course sequence.

2 Logic Circuits

A course in logic circuits can be taught effectively as
soon as the students have acquired an understanding
of some high-level programming language and have
learned the fundamentals of good programming prac-
tices. The course should emphasize the important con-
cepts which include the notions of implementability,
cost, optimization, timing, stability, and performance.
The amount of material that can be covered depends on
the length of the course, the ability of the students, and
the quality of the supporting facilities comprising labo-
ratories and CAD tools.

While everybody agrees that the students must learn
about logic functions and their implementation, arith-
metic circuits, multiplexers, decoders, flip-flops, coun-
ters, finite-state machines, and other standard circuits,
there is less agreement about the means used to expose
students to this material. In particular, when and how
should the students discover CAD tools, and what lab-
oratory exercises provide the best learning experience?

Today it is highly advisable to introduce a hardware
description language (HDL) as soon as possible. With-
out an HDL it is impossible to exploit properly the
capabilities of CAD tools and FPGA-based laboratory
equipment. A prudent choice of HDL is either Verilog
or VHDL. It should be noted that Verilog is winning the
battle in the industrial environment of North America,
so it is likely that it will gain greater favor with aca-
demics in the near future.

Our experience shows that the HDL can be intro-
duced surprisingly early. Moreover, the instructor need
not spend an inordinate amount of time teaching the in-
tricacies of the language. Students are keen to learn
and use the HDL because of its obvious practical value,
hence they are willing to learn on their own many de-
tails that are illustrated in examples given in the text-
book. During lectures, the instructor has to focus on
explaining the important differences between the HDL
and computer programming languages that students are
familiar with. For example, explaining the key differ-
ences between Verilog and C can lead to fascinating
lectures. Since the HDL will be used in laboratory ex-
ercises, which requires a certain amount of homework
preparation, the material that should be taught in the
classroom may be covered in as little as three to four
lectures. This approach is particularly viable if the text-
book integrates efficiently the discussion of logic circuit
concepts and their possible HDL descriptions.

3 Introducing HDL - A Practical
Approach

A good understanding of computer hardware must be
based on a good understanding of underlying logic
circuits. An HDL, particularly when used at the
behavioral level, can mask many important aspects of
logic circuits. Therefore, it is important to find a good
balance between teaching the students the essence of

FA

xn 1–

cn cn 1–

yn 1–

sn 1–

FA

x1

c2

y1

s1

FA
c1

x0 y0

s0

c0

MSB position LSB position

Figure 1: An n-bit ripple-carry adder.

circuits and the efficiency of design using the HDL and
CAD tools. It is particularly important that using the
HDL does not obscure the existence of fundamental
logic blocks such as gates and flip-flops. To illustrate
this notion, we will consider an example based on a
ripple-carry adder, using Verilog as the HDL [1].

Figure 1 shows the general structure of an n-bit
ripple-carry adder, comprising a cascade of full-adder
circuits. Knowing that the full-adder is defined by the
logic expressions

s = x ⊕ y ⊕ Cin

Cout = x · y + x · Cin + y · Cin

it is easy to visualize the functionality of the cascaded
circuit, as well as the propagation delay due to the
rippling of the carry. Using these expressions, the
full-adder can be defined in Verilog as shown in Figure
2.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x ∧ y ∧ Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 2: Verilog code for the full-adder.

Now, we can specify a ripple-carry adder structurally
as indicated in Figure 3. To keep the example simple,
this specification defines the inputs X and Y , as well
as the sum S, as four-bit vectors. The internal carries
are defined as a three-bit vector C. The structure of the
resulting circuit is the same as in Figure 1.

This would be an awkward way of describing a larger
n-bit adder, so we can use a generic specification in-
stead. The ripple-carry adder in Figure 1 can be de-
scribed using the expressions

sk = xk ⊕ yk ⊕ ck

ck+1 = xkyk + xkck + ykck

module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);

endmodule

Figure 3: A four-bit adder.

for k = 0, 1, . . . , n − 1. A Verilog specification of the
adder based on these expressions is given in Figure 4. It
is apparent that this approach also implements the cas-
caded adder structure. Next, the students should learn
that Verilog includes higher-level constructs for specifi-
cation of commonly used circuits. One such construct
uses the arithmetic assignment statement, which allows
the adder to be specified as shown in Figure 5. We can
add to this circuit the capability to produce the carry-out
and arithmetic overflow signals as presented in Figure 6.
The expressions for these two signals are

carryout = xn−1yn−1 + xn−1sn−1 + yn−1sn−1

overflow = carryout ⊕ xn−1 ⊕ yn−1 ⊕ sn−1

They can be derived as a useful exercise.
A more elegant way of specifying the same circuit is

given in Figure 7. It uses an (n + 1)-bit vector named
Sum. The extra bit, Sum[n], becomes the carry-out from
bit position n − 1 in the adder. To make the addends
n + 1 bits long, the vectors X and Y have a zero con-
catenated on the left side. This conveniently introduces
the Verilog concatenate operator. It also ensures that the
students see X and Y as bits in a circuit rather than just
numbers.

Having introduced the idea of concatenation in Ver-
ilog, our circuit can be defined more compactly as
shown in Figure 8. Finally, at this point the students
can see that even the full-adder circuit can be defined
behaviorally as depicted in Figure 9.

The progressive sequence of showing the students
different ways in which Verilog code can specify an
n-bit adder teaches a number of important aspects of
Verilog. It shows the difference between structural and
behavioral approaches in defining circuits. It illustrates
how a for loop generates a cascade by replicating a
subcircuit n times. It indicates that powerful state-
ments, such as the arithmetic assignment statement, ex-
ist which lead to simple and easily understandable code.
It also shows how clever ideas, exploiting the notion of
concatenation in our example, can be used to good ef-
fect.

It is important to understand that a behavioral spec-
ification will not necessarily lead to a circuit structured
in the form that the designer may envisage, perhaps as
learned from a textbook. When the Verilog compiler of
a given CAD tool encounters a construct used to define
a commonly used circuit, it will attempt to use a pre-
defined module from a library of parameterized mod-
ules provided with the CAD tool. Moreover, if the de-
signed circuit is to be implemented in a technology such
as an FPGA, then the final implementation will be in
the form of logic elements used in a particular FPGA
device. Thus, the implementation may not involve the
basic gates that one saw in the lectures!

4 Computer Organization

A good laboratory is essential for conveying the essence
of the various structures found in computer systems.
The students should learn what a computer looks like
through the eyes of a programmer interested primarily
in using the machine and a designer intent on develop-
ing the hardware needed to build systems. At the Uni-
versity of Toronto we use the Ultragizmo board, which
is a custom board containing a Motorola 68000-based
microcontroller device, an FPGA device and a variety
of interfaces that allow the board to be connected to
our main laboratory system which includes a full net-
working capability. We also use Altera’s UP-1 boards,
which include programmable logic devices, to provide
additional capability.

Typical experiments include investigation of simple
I/O using parallel and serial ports, interrupts, adding
SRAM chips, DMA controllers, design of arithmetic
circuits, A/D and D/A interfaces, and various applica-
tions such as processing of sound and controlling simple
Lego-implemented robots. At the end of our courses,
we tend to have a three-week project for which students
may implement anything that the instructor deems inter-
esting. The project may entail even designing a simple
processor, or building an interesting system based on an
existing soft-core processor that may be instantiated in
the FPGA.

The FPGA device makes it possible to quickly im-
plement relatively complex circuits needed in specific
experiments. Of course, these circuits have to be spec-
ified in the HDL. This raises an interesting question
about the necessary competence of students in terms

of the HDL use. More specifically, is the knowledge
gained in the introductory logic course sufficient to deal
successfully with more ambitious designs needed in this
laboratory.

Instructors habitually complain that the students do
not know as much as they should. Specifically, given a
rather limited exposure to the HDL in the logic course,
they cannot immediately tackle more demanding tasks
in the computer organization laboratory. Indeed, this
may be true, particularly in the case of weaker students.
However, with just a single refresher tutorial on DOs
and DON’Ts of the HDL the students can be brought to
a level where they can handle the requirements of the
laboratory. As with most subjects, an early exposure
to the HDL, followed by a short review and subsequent
intensive use in the follow-on course, will leave the stu-
dents with reasonable competence and a great deal of
self-satisfaction.

The described approach has been successful in our
practice. It has led to the development of three books
[1-3]. The feedback from our students has been very
positive.

5 References

1. S. Brown and Z. Vranesic, Fundamentals of Digi-
tal Logic with Verilog Design, McGraw-Hill, 2002.

2. S. Brown and Z. Vranesic, Fundamentals of Digi-
tal Logic with VHDL Design, McGraw-Hill, 2000.

3. V.C. Hamacher, Z. Vranesic and S. Zaky, Com-
puter Organization, ed. 5, McGraw-Hill, 2002.

module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout;
reg [n−1:0] S;
reg carryout;
reg [n:0] C;
integer k;

always @(X or Y or carryin)
begin

C[0] = carryin;
for (k = 0; k < n; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k]);

end
carryout = C[n];

end

endmodule

Figure 4: A generic specification of a ripple-carry adder.

module addern (carryin, X, Y, S);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
reg [n−1:0] S;

always @(X or Y or carryin)
S = X + Y + carryin;

endmodule

Figure 5: Specification of an n-bit adder using arithmetic assignment.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout, overflow;
reg [n−1:0] S;
reg carryout, overflow;

always @(X or Y or carryin)
begin

S = X + Y + carryin;
carryout = (X[n−1] & Y[n−1]) | (X[n−1] & ∼S[n−1]) | (Y[n−1] & ∼S[n−1]);
overflow = carryout ∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

Figure 6: An n-bit adder with carry-out and overflow signals.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout, overflow;
reg [n−1:0] S;
reg carryout, overflow;
reg [n:0] Sum;

always @(X or Y or carryin)
begin

Sum = {1’b0, X} + {1’b0, Y} + carryin;
S = Sum[n−1:0];
carryout = Sum[n];
overflow = carryout ∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

Figure 7: A different specification of n-bit adder.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout, overflow;
reg [n−1:0] S;
reg carryout, overflow;

always @(X or Y or carryin)
begin

{carryout, S} = X + Y + carryin;
overflow = carryout ∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

Figure 8: Simplified complete specification of an n-bit adder.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;
reg s, Cout;

always @(x or y or Cin)
{Cout, s} = x + y + Cin;

endmodule

Figure 9: Behavioral specification of a full-adder.

