
Combining Learning Strategies and Tools
in a First Course in Computer Architecture

Patricia J. Teller, Manuel Nieto, and Steve Roach

The University of Texas at El Paso
Department of Computer Science

{pteller, manueln, sroach@cs.utep.edu}

Abstract When instructors learn about participatory
learning strategies such as cooperative, active, problem-
based, or team-based learning, often the reaction is
something along the lines of “sounds great but it would
not work in my class—with such an approach I could
not cover the required volume of material.” We are
pleased to report, via this paper, that this is not
necessarily the case. With some retraining on the part of
the instructor, as well as the students, a significant
initial investment on the part of the instructor, the
incorporation of tools that support the learning process,
and a CQI (continuous quality improvement) process in
place, it does work.

1.0 Introduction

Undergraduate computer architecture courses have a
large volume of material that students must learn. In
addition, we want our students to develop written and
oral communications skills, hone deductive reasoning
and critical analysis skills, and be prepared to work in
teams. To achieve these goals, it is necessary to employ
a variety of learning strategies and tools, such as
cooperative, active, problem-based, and team-based
learning [2, 4, 1, 5, 9]. Although these strategies
provide rich opportunities for a diverse student body to
master the required course material and skills, they can
be classroom-time intensive. This leads to challenges
for both the instructor and the students. In general, the
students must take on a more active role inside and
outside the classroom and the instructor must carefully
design the course, keeping in mind that the learning
process is student-centric rather than instructor-centric.

Four significant challenges face an instructor when
delivering a course using student-centric, team-based
approaches.

1. When participatory learning strategies are

employed, the quantity of material that can be
covered during a class session is limited. Certainly,
it is less than that which can be covered by a
traditional lecture.

2. It is difficult to accurately assess individual
mastery when assessing work products that are
team generated.

3. Each student is different. It is necessary to adjust
the course dynamically to meet the needs of the
students in a particular class.

4. Some students need to be encouraged to utilize and
develop critical thinking and analysis skills
required in a student-centric course.

This paper focuses on ways to meet these challenges.
After briefly outlining how cooperative, active,
problem-based, and team-based learning are used in a
first course in computer architecture, it concentrates on
two specific approaches that we found to be particularly
effective, Readiness Assessment Tests (RATs) [5, 9]
and problem-based discovery learning. The remainder
of the paper is organized as follows. Section 2 briefly
describes the course in terms of content and our general
philosophy towards delivery. Section 3 describes the
structure of the course, RATs, and the laboratory
exercises. RATs are used to motivate students to
prepare for course activities. The laboratories use
problem-based discovery learning techniques and are
supported by both software and hardware tools. Section
4 reports on the results of both informal and formal
assessments of the course and the learning strategies
and tools employed. And, finally, in Section 5, we
conclude with our view of our accomplishments and
our plans for the future.

2.0 Course Philosophy and Content

The subject course, which is taken after a course in
digital systems, provides students with an introduction
to computer architecture and prepares them for a
second, more advanced course in computer architecture,
which uses the Patterson and Hennessy textbook
entitled “Computer Organization and Design: The
Hardware/Software Interface” [10]. The introduction to
architecture and the prerequisite digital systems courses
are intended to make the material in the first three
chapters of the Patterson and Hennessy text accessible
to the student without further assistance.

The mantra of the instructors, in this course as well as
in their other courses, is attributed to Albert Einstein:
“Make things as simple as possible, but not simpler.”
During this course, students peel away the layers of
abstraction starting with high-level concepts and
ultimately visualizing the execution of a program and
controlling a robot via an assembler language program.
Along the way, the instructor guides the students to
discovery, feeding student curiosity as students deduce
answers to questions.

Students enrolled in the subject course learn the general
method by which a computer executes a program. They
gain an understanding of basic computer architecture
and work with assembler language and machine code.
Related concepts covered in the course include the
mapping of high-level programming constructs to low-
level constructs, assembly and disassembly of
instructions (instruction formats, addressing modes,
effective address calculation), interpretation of Boolean
algebra descriptions of instruction functionality, stored
program concept (including, introduction to linking and
loading), subroutine linkage, introduction to text, data,
and stack segments, fetch/decode/execute process,
machine state, evaluation of execution time (in cycles
and time), and identification of exceptional behavior
such as overflow. Additionally, students are introduced
to I/O interfacing, interrupt handling, and robot control.
They are reintroduced to basic concepts in software
engineering including program design, implementation,
modularization, testing, debugging, and documentation.
The 68HC11 is used as a model processor architecture.
Supporting materials include a textbook [6], a Motorola
68HC11 processor manual [7], and the software and
hardware described in Sections 3.3.1 and 3.3.2.

The 68HC11 provides access to a 64KB address space
(RAM) to store text, data, and stack, and four 16-bit
and three 8-bit general-purpose registers. Memory-
mapped I/O is used to access I/O ports, e.g., the analog-
to-digital and serial communication ports. The ISA
provides immediate, extended, direct, indexed, inherent,
and relative addressing modes.

3.0 Course Structure

The course is scheduled for three hours of lecture and
three hours of laboratory time per week. In-class
sessions utilize a combination of learning techniques
including cooperative, active, problem-based, and team-
based learning [2, 4, 1, 5, 9]. After an introductory
lecture (no longer than 10-12 minutes), students
(formed into base groups, or sometimes groups formed
in one of a variety of ways) are given a related task to
accomplish, cooperatively, in a specified amount of
time. While accomplishing the task, each group
member adopts a different role, e.g., timekeeper,
recorder, facilitator (ensuring participation by all group
members), and questioner (ensuring that each group
member understands and agrees with the group
outcome). When the time expires, the instructor
randomly selects a person from one group to describe
her/his group’s outcome. To add variety to class
meetings, active learning [4], used on a one-on-one
basis, also is employed.

Some of the virtues of cooperative learning (which is
used in conjunction with problem-based and team-
based learning) include honing of technical and
communication skills via discussion and teaching,

enhancement of critical analysis skills via
discussion/debate, development of team skills, and
growth of confidence (in particular, for students who
feel more comfortable articulating the group’s answer,
rather than their own answer). Despite its benefits,
when using cooperative learning, a facilitator must
guide students’ behavior (e.g., point out inappropriate
behavior such as domination) and incorporate
individual accountability so that all group members are
held responsible for their own progress in the course.

In general, each major unit of the course is organized as
a sequence similar to the following:

1. reading assignment (outside class)
2. RAT (in class, described next in Section 3.2)
3. lecture (in class, maximum 10-12 minutes)
4. in-class active/cooperative//problem-based/team-

based learning using simple problems (described
briefly above)

5. out-of-class problem solving using simple
problems (cooperative and individual)

6. in-class active/cooperative//problem-based/team-
based learning using more complex problems
(described briefly above)

7. out-of-class problem solving using more complex
problems (cooperative and individual)

8. simulator or robot lab (in lab, described in Section
3.3)

9. lecture (in class, maximum 10-12 minutes)
10. in-class active/cooperative/problem-based/team-

based learning
11. assessment (for example, a quiz, which builds in

individual accountability)

Depending on the targeted course material, steps 3
(optional), 4 and 5, and steps 6 and 7 may need to be
repeated several times. Lectures or problem-solving
sessions may need to be added to address hurdles
encountered during RATs, problem-solving sessions,
labs, quizzes, and exams; similarly steps 9 and 10 are
used for this purpose. Individual accountability is built
in to the course via weekly quizzes and three
examinations, which are taken individually, and a final
project, which is described in Section 3.3. Out-of-class
problems can be worked on in groups or individually;
one strategy is to alternate between the two.

The basis for a final grade depends on the instructor.
An example of one used in the course is RATs 15%,
quizzes 10%, exams 40% (a minimum average of 65 is
required to pass the course), labs 10% (a minimum
average of 60 is required to pass the course), homework
0% (optional; answer sheets are provided but
homework is not graded), programming assignments
15%, and final project 10%.

3.1 Student Responsibility and Discovery Learning

Two major hurdles to increased student involvement in
class are the difficulty in covering the required material
in the limited time available and the need for students to
utilize and develop critical thinking and analysis skills.
To address the first issue, students must come to class
prepared. In a traditional lecture setting, students
achieve in-depth understanding of the subject matter
outside of the classroom. Lectures introduce topics, and
homework reinforces them—whether applying the
concepts or preparing for a quiz or exam. Using the
approach described in this paper, we attempt to reverse
the in-class and out-of-class roles: the students
introduce themselves to the topics by reading and
working simple problems outside of class; in-depth
understanding comes from applying their knowledge to
more complex problems in and outside the classroom
and in the lab, thus, utilizing and developing critical
thinking and analysis skills. In class, the instructor
observes students and becomes aware of difficulties
that they encounter—this allows for intervention when
necessary. The 12-minute lecture motivates the
subsequent problem solving that will take place
subsequently, explains a concept at a deeper level than
would be possible without student preparation, and/or
addresses issues that have proven (by observation in
class or lab, or by performance on out-of-class problem
solving, quizzes, or exams) to be difficult. Our

techniques for motivating students to prepare for class
activities are described in Section 3.2, while our
strategies for encouraging critical thinking are
exemplified in Section 3.3.

3.2 Motivating Outside Preparation

Given the best effort of an instructor with respect to
designing an effective, participatory class session, it is
doomed to failure without adequate student preparation.
A technique that addresses this problem is RATs,

Readiness Assessment Tests [5, 9]. Using team-based
learning [5, 9], a major instructional unit is addressed
using the activity sequence depicted in Figure 1, which
includes RATs as part of the readiness assessment
process and is very similar to the sequence adopted in
the subject course. A RAT is a quiz, taken immediately
after a reading assignment; it tests whether or not a
student did (with a reasonable amount of depth) the
assigned reading. The assigned reading, in turn,
prepares students for a class session that is meant to
enhance the learning accomplished via the reading. The
questions are true/false and/or multiple-choice. A
sample question might be “Overflow cannot occur
when the numbers are not of the same sign. True or
False?” An inappropriate question is one that requires
the understanding of a key concept, for example, a
multiple-choice question regarding how overflow is
detected. Save these types of questions for quizzes!

First, a RAT is taken individually; students record their
answers prior to handing in the RAT. Immediately
thereafter, the same RAT is taken as a team. All RATs
are taken by the same "base" team. Base teams are
assigned for the duration of the course. (Here the term
“team” is used, rather than “group”, because the intent
is that the conditions created during the life of the
course will turn the base “group” into a “team”.) After
the first RAT, the student body comes to consensus on
how much the individual and team RATs are to be

weighed w.r.t. each student’s grade. For example, the
individual RAT score might be worth 40% of a
student’s score, while the team RAT is worth 60%. Of
course, the instructor can set a threshold. Scantron tests
make this whole process easier. If a team does not agree
with the grading of a question, they are permitted to
submit a written appeal [5, 9], which the instructor
evaluates. If the instructor agrees with the appeal, then
only that team receives an adjusted score—this rewards
critical analysis and effective communication. Of

Figure 1. Team learning instructional activity sequence.

Team Learning Instructional Activity Sequence
(Repeated for each major instructional unit i.e., 4-7 units per course)

 Initial Exposure Practice Applying Course Concepts "Final" Assessment

 In Class – Primarily Group Work

Study of
Basic

Concepts

Readiness
Assessment

Process

Work on
Simple

Problem(s

Group Work
on Simple
Problem(s)

Work on
Complex

Problem(s)

Group Work
on Complex
Problem(s)

Review

Graded
Problem
Solving

Outside Class – Primarily Individual Work

course, if the instructor’s answer is incorrect, all teams’
RATs are regarded.

We have observed that RATs are effective in several
ways. RAT scores were generally high; for example, in
spring 2002, 62% of students averaged 80% or higher
on the combined RATs. The combined RAT grades are
averaged from the grades obtained in the individual and
team RATs. This and the fact that discussions during
team RATs, which are animated and passionate,
indicate that the vast majority of students do, indeed,
read the assigned material. Students seem to cover a
sufficient amount of material on their own and are
better prepared for collaborative, active, problem-based,
and team-based learning. The taking of a RAT as a
team incorporates many of the virtues of collaborative
learning.

3.3 Supporting Discovery Learning

The laboratory sessions, which are based on those
described in [11, 12], focus on problem-based
discovery learning. This approach supports the learning
process in several ways. It is used to introduce, explore,
and strengthen understanding of new concepts.
Simulator- and robot-based laboratory assignments
(labs) guide learning via different levels of abstraction.
The well-defined, proctored, cooperative learning labs
meet twice a week. They are experimental labs, similar
to labs in physics or chemistry, that are designed to lead
students down a path of discovery, affording them
opportunities to teach themselves and others via the
scientific method. Students work in pairs using, for
example, brain storming to decide on an approach to
use to discover an answer or to understand the results of
an experiment.

The goal of each lab is stated explicitly, and the lab is
written in such a way that students are required to
experiment, critically analyze experimental results, and
use deductive reasoning to arrive at correct answers.
Working in pairs, and sometimes in larger groups,
reinforces their confidence in their understanding of
jointly constructed hypotheses, experimental designs,
and predictions, their analysis of experimental results,
and their understanding of the concepts that underlie the
lab. Of course, this also helps improve their
communication and team skills as well.

This course uses two types of tools in labs: a simulator
and robots. Simulator labs focus on basic machine
organization and assembler language using the Visual
6811 simulator [8]. Robot labs focus on memory-
mapped I/O, serial communication, interrupt handling,
and I/O interfacing. A lab sheet, which describes the
goals of the lab and what is expected of the students, is
presented to students prior to a lab; the deliverable of
each lab is either a completed lab sheet (that includes
answers to questions, as described below) or a

demonstration of a working program. Students unable
to complete the lab during the allotted time must finish
it on their own time; this is a typical situation for robot
labs, which anticipate complex problem solving being
done outside of the labs. Simulator and robot labs, and
the tools they employ, are described in the following
sections.

3.3.1 Simulator Labs and Visual 6811

Simulator labs are carried out in pairs by writing and
executing assembler language programs, examining
assembler listings, symbol tables, and cross-reference
tables, and simulating the execution of an assembler
language program using the Visual 6811 simulator, a
simulator for the Motorola HC6811 microprocessor.
Each simulator lab brings together different pairs of
students. This permits students to get to know other
students in the class and provides challenges with
respect to communication and team skills.

A simulation permits the examination of register and
memory contents including the text, data, and stack
segments. The simulator also displays the execution
time in cycles. Via simulator labs, students can analyze,
among other things:

§ representation of instructions (in machine code),
§ initialized and uninitialized data,
§ instruction length and instruction format

differences attributable to addressing modes,
§ effects of instruction execution,
§ effective address formation,
§ program control flow,
§ behavior of subroutine calls and return instructions,

and their effect on the runtime stack,
§ composition of activation records,
§ differences between call-by-value and call-by-

reference semantics,
§ contents of interrupts vectors, and
§ algorithmic complexity in terms of execution time.

Visual 6811 is composed of two independent
subsystems that work together to provide the
functionality to debug a program and to simulate the
execution environment of a program written in the
68HC11 assembler language. The two subsystems are a
simulation engine, which is composed of a library of
functions, and a GUI, which controls the simulation of
the program.

The simulation engine can simulate the complete
68HC11 ISA. (Note, however, that some underlying
subsystems such as the asynchronous serial
communication interface and interrupts are not yet
implemented.) Simulation is at the instruction level, as
opposed to the cycle level. The library provides access
via the GUI to fetch and modify simulated components
such as registers and memory.

The GUI controls the execution of a simulation,
displays changes to the execution environment of a
program as it executes, and provides debugging
functionality. The GUI subsystem is platform
independent; Visual 6811 can run on any system
running the Windows, Unix, or Linux operating
systems and that supports the Java Runtime
Environment (JRE). Figure 2 shows an image of Visual
6811 while simulating a program. The image shows a
breakpoint that is set (instruction highlighted in red)
and the next instruction to be simulated (instruction
highlighted in cyan). After a program is assembled, the
GUI displays the assembler listing as shown in the left
side (circle 1) of Figure 2. The assembler listing is
composed of the program’s assembler instructions and
the corresponding machine code.

By selecting a tab (circle 2 of Figure 2), the cross-
reference table can be displayed. The lower left part
(circle 3) of Figure 2 shows the run-time error display.
An error is generated, for instance, if a bad opcode is
fetched. The upper right section (circle 4) of the
simulator window displays the names of registers and
their contents, both in hexadecimal and binary. As a
program is simulated, register contents are updated in
response to the (simulated) execution of instructions.
The right part of the simulator interface shows two

windows (circles 5 and 6) for displaying the contents of
memory. The memory is laid out to show 16-byte
memory blocks. Each block is displayed by showing
the starting address of the block, the hexadecimal value
of the memory, and the ASCII representation. Students
may view two areas of memory, one in each of the
memory windows. This allows students to view the data
and stack segments simultaneously. Instead of
displaying the stack in its usual abstract notation (a
stack of values with the most recent value stored at the
top and the oldest value stored at the bottom), the stack
is displayed in the same format as memory to solidify
the notion that the stack is just another area of memory.

Visual 6811 provides the following features to debug
and control the simulation of a program:

§ assemble a program: Assemble the selected

program and display the assembler listing. After
this step, the program can be simulated.

§ reassemble last assembled program: Reassemble
the last file that was assembled (successfully or
not).

Figure 2. Visual 6811 while simulating a program.

1

2

3

4

5

6

§ modify memory contents: Modify the contents of
memory by entering a new value to store at a
specified memory address.

§ modify register contents: Modify the contents of
any of the simulated general-purpose registers.
This and the previous option make it easy to
modify the execution environment of a program
while it is simulated and quickly see the execution
behavior that results from these changes.

§ step through the execution of a program: Simulate
a program one instruction at a time, permitting the
observation of changes in the execution
environment as a result of instruction execution.

§ run a program to completion: Execute a program
to completion, as opposed to one instruction at a
time. This is most useful when breakpoints are set.

§ toggle breakpoints: Set or clear breakpoints in a
program. This is useful when debugging large
programs and when analyzing specific code
sections.

§ stop a simulation: Interrupt a simulation that is
running to completion. This is useful, for instance,
if a program has entered in an infinite loop, so the
only way to get out of the loop is by stopping the
simulation.

§ reset execution of a program. Restart a simulation
by loading into memory the machine code of the
last program assembled.

3.3.2 Robot Labs

After acquiring some competence at programming the
68HC11, students are challenged to program small
robots that are controlled by 68HC11s. The TJPro
robots [3], depicted in Figure 3, have infrared (IR)
emitters and detectors, and bumper sensors, expanding
the possibilities for programming the different
interfaces, such as the analog to digital interfaces.
Robot labs require students to download programs, via
the serial communication interface, to a 68HC11
microprocessor. These programs interface with the
68HC11’s I/O ports and permit students to analyze the
behavior of, among other things:

§ memory-mapped I/O,
§ the serial communication interface,
§ motors connected to the I/O ports,
§ digital and analog sensors,
§ programmable timers and counters, and
§ interrupts.

The robot labs allow students, paired into fixed teams
of two (which are formed based on students’ input re:
their top six choices), to leap from abstract concepts
and simulations to a more hands-on experience. In
addition, they permit students to become involved in
fun and challenging projects. For instance, the first
robot lab has students use the serial communication
interface to display the contents of the robot’s memory

(the 68HC11) on the monitor of the host PC. Pressing a
key on the host’s keyboard, which instructs the 68HC11
to read from or write to a memory byte or word, drives
the related program.

Final projects have been very successful in challenging
students to incorporate in a program all the knowledge
they have acquired throughout the semester. The first
final project had students program robots to navigate a
maze. To make this more challenging, not only did the
robots have to find their way out of the maze, they had
to remember the path that they followed so that when
the robots were next placed at the beginning of the
maze, they navigated the maze without bumping into
walls. Another challenging final project was to program
two robots equipped with IR detectors: a wimp and a
follower. The follower’s goal was to detect the wimp
and tap it. The wimp’s goal was to avoid being detected
by the follower and exit the arena before getting tapped
by the follower.

Figure 3. TJPro robot.

Individual accountability is achieved by defining
projects that (1) are comprised of multiple interfacing
functional components, which when complete meet the
project specifications, and (2) have multiple subgoals
that can be achieved by a subset of complete functional
components. In this way, if one team member does not
do her/his part, the other team member does not get
penalized in so far as the project grade is concerned.
Individual accountability also can be enforced by
having individual students present the results of the
team effort.

Besides all the benefits attributable to collaborative,
problem-based discovery learning, the robot labs
require students to operate at a higher level, especially
with respect to debugging. Considering debugging
techniques as a continuum ranging from random
(uneducated, uninformed), to brute force (uneducated,
informed), to guessing (educated, uniformed), and
finally to experimental (educated, informed), the
complexity and difficulty of robot-based labs make the
first three forms of debugging ineffective. This leaves
the students with only one viable alternative: an
experimental, analytical approach. As a result, the
student must

§ be clever about creating a hypothesis,
§ be resourceful in testing hypotheses,
§ discuss hypotheses in terms of observed behavior,

not the underlying computer architecture, and
§ discuss solutions in terms of the underlying

computer architecture.

Just what we want!

4.0 Assessment

The strategies and tools used in this course have been
assessed both informally and formally. The informal
assessment concentrates more on the learning strategies
employed in the course, while the formal assessment
focuses on Visual 6811, the simulator used in the
course. In addition, student evaluations from fall 2001
and spring 2002 indicate that the course was well
received.

A 14-question informal assessment tool was used the
second time the course was taught in this way (in spring
2002) to assess the effectiveness of the learning
strategies and the simulator and robot labs employed in
the course; the course has been taught this way twice a
year since fall 2001. In general, the students (27 in
number) were most positive about discovery learning
via the simulator and robots. Opinions were divided
with respect to working in groups during class and labs.
On the positive side was the opportunity to share ideas,
opinions, and reach some conclusions; on the negative
side was the frustration experienced as a result of
unprepared group members, who might affect their
grades. Weekly quizzes were strongly favored—
students stated that quizzes help them study for quizzes
and exams (especially when they include questions that
focus on the same concepts), and keep concepts they
learn fresh in their minds. On the other hand, some
students thought quizzes increased stress. The majority
of students thought it was a good idea to use the robots
in the course. Programming the robots helped to
reinforce the concepts they learned and to see
(physically) the power of the 68HC11 architecture in
action. Some interesting student comments follow.

With respect to the simulator:

§ “[The simulator] helped me achieve knowledge

about the material covered in the class.”
§ “[It] helped me to understand what was

happening.”
§ “We could test and see what happened for

ourselves.”
§ “[It] helped me learn how to assemble and

disassemble.”
§ “[It] helped me with programming.”

With respect to the robots:

§ [The introduction of the robots] was a good idea.”
§ “[They] enforced the concepts learned in class.”
§ “[They] gave me confidence that I can do

something that seems impossible at first.”
§ “[They] were fun!”
§ “[They] made it possible to see the power of the

68HC11 in action.”

Recently a formal assessment, which focuses on Visual
6811, was conducted. The assessment is based on the
response of 25 students, who either just took the course
this semester (spring 2003) or who took it in the past
two years. The assessment indicates the following:

§ The simulator was straightforward to use and had a

very low learning curve (23 students, i.e., 23/25).
§ Being able to view the assembler source and the

virtual representation of memory was helpful in
understanding how memory changes as a program
is executed (19/25).

§ The simulator was particularly helpful for
understanding stack manipulations and the
differences among the various addressing modes
(22/25).

§ The simulator facilitated debugging by permitting
the user to step through program execution and,
while doing so, observe how memory and registers
changed (18/25).

§ Given the choice of using the simulator or not,
students said they would have chosen to use the
simulator since it helped them to debug and
understand the execution of a program (21/25).

In fall 2001/spring 2002, of 24/19 responses to a
student evaluation, out of a 1-5 rating, where 5 is
excellent:

§ The varied use of questions, discussions, lectures,

and/or group work in the class was rated 4.8/4.9
(average rating).

§ The relevance of course materials to state course
objectives was 4.4/4.8.

§ The relevance of class assignments was 4.5/4.7.
§ The estimation of how much learned in the course

was 4.4/4.6.
§ The effectiveness of the course in challenging the

student intellectually was 4.7/4.7.
§ The overall rating of the course was 4.5/ 4.7.

5.0 Conclusions and Future Work

More powerful assessment is needed in order to
quantify the success of the learning strategies and tools
used in the course. But if student evaluations, student
comments, and instructor observations are considered,
the course indeed has been effective. In our opinion, the
most powerful of the learning strategies employed in

the course are the RATs and the cooperative, problem-
based discovery labs (both simulator and robot). In
addition, it cannot be denied that collaborative, active,
problem-based, and team-based learning, i.e., learning
that actively involves students, is far superior to lecture.

The next step in the development of the course is to
extend the capabilities of Visual 6811 to simulate both
the functionality of the serial communications interface
and interrupt handling. In the very long run and with
sufficient interest, a textbook that incorporates both the
technical information conveyed via this course and the
strategies and tools used as the vehicles of conveyance
is envisioned.

6.0 References

[1] Davis, B. Tools for Teaching, San Francisco:
Jossey-Bass, 1993.

[2] Johnson, D. W., R. T. Johnson, and E. J. Holubec,
Cooperation in the Classroom, Edina, MN: Interaction
Book Company, 1992.

[3] http://www.mekatronix.com/

[4] Meyers, C., and T. B. Jones, Promoting Active
Learning, San Francisco, Jossey-Bass Publishers, 1993.

[5] Michaelsen, L. K., and R. H. Black, “Building
Learning Teams: The Key to Harnessing the Power of
Small Groups in Higher Education,” in Collaborative
Learning: A Sourcebook for Higher Education, Vol. 2,
S. Kadel and J. Keehner (Eds.), State College PA:
National Center for Teaching, Learning, and
Assessment, pp. 65-81, 1994.

[6] Miller, G. H., Microcomputer Engineering, Upper
Saddle River, NJ: Prentice Hall, 1999.

[7] Motorola M68HC11 Reference Manual, 2001.

[8] Nieto, Manuel, Visual 6811: A GUI for Simulation
of the Motorola 68HC11 Microprocessor Architecture,
Master’s thesis, University of Texas at El Paso,
Department of Computer Science, 2003.

[9] www.ou.edu/idp/teamlearning/

[10] Patterson. D. A., and J. L. Hennessy, Computer
Organization and Design: The Hardware /Software
Interface, San Francisco, CA: Morgan Kaufman
Publishers, 1997.

[11] Teller, P., “Experimental, Cooperative Labs in a
First Course in Computer Architecture,” Proceedings of
the 1997 Frontiers in Education Conference (FIE ’97),
Pittsburgh, PA, CD-ROM, November 1997.

[12] Teller, P., and T. Dunning, "Mobil Robots Teach
Machine Programming and Organization," Proceedings
of Supercomputing `95, San Diego, CA, CD-ROM,
December 1995.

