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Abstract When instructors learn about participatory 
learning strategies such as cooperative, active, problem-
based, or team-based learning, often the reaction is 
something along the lines of “sounds great but it would 
not work in my class—with such an approach I could 
not cover the required volume of material.” We are 
pleased to report, via this paper, that this is not 
necessarily the case. With some retraining on the part of 
the instructor, as well as the students, a significant 
initial investment on the part of the instructor, the 
incorporation of tools that support the learning process, 
and a CQI (continuous quality improvement) process in 
place, it does work.  
 
1.0 Introduction 
 
Undergraduate computer architecture courses have a 
large volume of material that students must learn. In 
addition, we want our students to develop written and 
oral communications skills, hone deductive reasoning 
and critical analysis skills, and be prepared to work in 
teams. To achieve these goals, it is necessary to employ 
a variety of learning strategies and tools, such as 
cooperative, active, problem-based, and team-based 
learning [2, 4, 1, 5, 9]. Although these strategies 
provide rich opportunities for a diverse student body to 
master the required course material and skills, they can 
be classroom-time intensive. This leads to challenges 
for both the instructor and the students. In general, the 
students must take on a more active role inside and 
outside the classroom and the instructor must carefully 
design the course, keeping in mind that the learning 
process is student-centric rather than instructor-centric.  
 
Four significant challenges face an instructor when 
delivering a course using student-centric, team-based 
approaches.  
 
1. When participatory learning strategies are 

employed, the quantity of material that can be 
covered during a class session is limited. Certainly, 
it is less than that which can be covered by a 
traditional lecture.   

2. It is difficult to accurately assess individual 
mastery when assessing work products that are 
team generated. 

3. Each student is different. It is necessary to adjust 
the course dynamically to meet the needs of the 
students in a particular class. 

4. Some students need to be encouraged to utilize and 
develop critical thinking and analysis skills 
required in a student-centric course. 

 
This paper focuses on ways to meet these challenges. 
After briefly outlining how cooperative, active, 
problem-based, and team-based learning are used in a 
first course in computer architecture, it concentrates on 
two specific approaches that we found to be particularly 
effective, Readiness Assessment Tests (RATs) [5, 9] 
and problem-based discovery learning. The remainder 
of the paper is organized as follows. Section 2 briefly 
describes the course in terms of content and our general 
philosophy towards delivery. Section 3 describes the 
structure of the course, RATs, and the laboratory 
exercises. RATs are used to motivate students to 
prepare for course activities. The laboratories use 
problem-based discovery learning techniques and are 
supported by both software and hardware tools. Section 
4 reports on the results of both informal and formal 
assessments of the course and the learning strategies 
and tools employed. And, finally, in Section 5, we 
conclude with our view of our accomplishments and 
our plans for the future. 
 
2.0 Course Philosophy and Content  
 
The subject course, which is taken after a course in 
digital systems, provides students with an introduction 
to computer architecture and prepares them for a 
second, more advanced course in computer architecture, 
which uses the Patterson and Hennessy textbook 
entitled “Computer Organization and Design: The 
Hardware/Software Interface” [10]. The introduction to 
architecture and the prerequisite digital systems courses 
are intended to make the material in the first three 
chapters of the Patterson and Hennessy text accessible 
to the student without further assistance. 
 
The mantra of the instructors, in this course as well as 
in their other courses, is attributed to Albert Einstein: 
“Make things as simple as possible, but not simpler.” 
During this course, students peel away the layers of 
abstraction starting with high-level concepts and 
ultimately visualizing the execution of a program and 
controlling a robot via an assembler language program. 
Along the way, the instructor guides the students to 
discovery, feeding student curiosity as students deduce 
answers to questions.  



Students enrolled in the subject course learn the general 
method by which a computer executes a program. They 
gain an understanding of basic computer architecture 
and work with assembler language and machine code. 
Related concepts covered in the course include the 
mapping of high-level programming constructs to low-
level constructs, assembly and disassembly of 
instructions (instruction formats, addressing modes, 
effective address calculation), interpretation of Boolean 
algebra descriptions of instruction functionality, stored 
program concept (including, introduction to linking and 
loading), subroutine linkage, introduction to text, data, 
and stack segments, fetch/decode/execute process, 
machine state, evaluation of execution time (in cycles 
and time), and identification of exceptional behavior 
such as overflow. Additionally, students are introduced 
to I/O interfacing, interrupt handling, and robot control. 
They are reintroduced to basic concepts in software 
engineering including program design, implementation, 
modularization, testing, debugging, and documentation. 
The 68HC11 is used as a model processor architecture. 
Supporting materials include a textbook [6], a Motorola 
68HC11 processor manual [7], and the software and 
hardware described in Sections 3.3.1 and 3.3.2. 
 
The 68HC11 provides access to a 64KB address space 
(RAM) to store text, data, and stack, and four 16-bit 
and three 8-bit general-purpose registers. Memory-
mapped I/O is used to access I/O ports, e.g., the analog-
to-digital and serial communication ports. The ISA 
provides immediate, extended, direct, indexed, inherent, 
and relative addressing modes. 
 
3.0 Course Structure 
 
The course is scheduled for three hours of lecture and 
three hours of laboratory time per week. In-class 
sessions utilize a combination of learning techniques 
including cooperative, active, problem-based, and team-
based learning [2, 4, 1, 5, 9]. After an introductory 
lecture (no longer than 10-12 minutes), students 
(formed into base groups, or sometimes groups formed 
in one of a variety of ways) are given a related task to 
accomplish, cooperatively, in a specified amount of 
time. While accomplishing the task, each group 
member adopts a different role, e.g., timekeeper, 
recorder, facilitator (ensuring participation by all group 
members), and questioner (ensuring that each group 
member understands and agrees with the group 
outcome). When the time expires, the instructor 
randomly selects a person from one group to describe 
her/his group’s outcome. To add variety to class 
meetings, active learning [4], used on a one-on-one 
basis, also is employed.  
 
Some of the virtues of cooperative learning (which is 
used in conjunction with problem-based and team-
based learning) include honing of technical and 
communication skills via discussion and teaching, 

enhancement of critical analysis skills via 
discussion/debate, development of team skills, and 
growth of confidence (in particular, for students who 
feel more comfortable articulating the group’s answer, 
rather than their own answer). Despite its benefits, 
when using cooperative learning, a facilitator must 
guide students’ behavior (e.g., point out inappropriate 
behavior such as domination) and incorporate 
individual accountability so that all group members are 
held responsible for their own progress in the course.  
  
In general, each major unit of the course is organized as 
a sequence similar to the following:  
 
1. reading assignment (outside class) 
2. RAT (in class, described next in Section 3.2) 
3. lecture (in class, maximum 10-12 minutes) 
4. in-class active/cooperative//problem-based/team-

based learning using simple problems (described 
briefly above) 

5. out-of-class problem solving using simple 
problems (cooperative and individual)  

6. in-class active/cooperative//problem-based/team-
based learning using more complex problems 
(described briefly above) 

7. out-of-class problem solving using more complex 
problems (cooperative and individual) 

8. simulator or robot lab (in lab, described in Section 
3.3) 

9. lecture (in class, maximum 10-12 minutes) 
10. in-class active/cooperative/problem-based/team-

based learning  
11. assessment (for example, a quiz, which builds in 

individual accountability) 
 
Depending on the targeted course material, steps 3 
(optional), 4 and 5, and steps 6 and 7 may need to be 
repeated several times. Lectures or problem-solving 
sessions may need to be added to address hurdles 
encountered during RATs, problem-solving sessions, 
labs, quizzes, and exams; similarly steps 9 and 10 are 
used for this purpose. Individual accountability is built 
in to the course via weekly quizzes and three 
examinations, which are taken individually, and a final 
project, which is described in Section 3.3. Out-of-class 
problems can be worked on in groups or individually; 
one strategy is to alternate between the two. 
 
The basis for a final grade depends on the instructor. 
An example of one used in the course is RATs 15%, 
quizzes 10%, exams 40% (a minimum average of 65 is 
required to pass the course), labs 10% (a minimum 
average of 60 is required to pass the course), homework 
0% (optional; answer sheets are provided but 
homework is not graded), programming assignments 
15%, and final project 10%.  
 
 



3.1 Student Responsibility and Discovery Learning 
 
Two major hurdles to increased student involvement in 
class are the difficulty in covering the required material 
in the limited time available and the need for students to 
utilize and develop critical thinking and analysis skills. 
To address the first issue, students must come to class 
prepared. In a traditional lecture setting, students 
achieve in-depth understanding of the subject matter 
outside of the classroom. Lectures introduce topics, and 
homework reinforces them—whether applying the 
concepts or preparing for a quiz or exam. Using the 
approach described in this paper, we attempt to reverse 
the in-class and out-of-class roles: the students 
introduce themselves to the topics by reading and 
working simple problems outside of class; in-depth 
understanding comes from applying their knowledge to 
more complex problems in and outside the classroom 
and in the lab, thus, utilizing and developing critical 
thinking and analysis skills. In class, the instructor 
observes students and becomes aware of difficulties 
that they encounter—this allows for intervention when 
necessary. The 12-minute lecture motivates the 
subsequent problem solving that will take place 
subsequently, explains a concept at a deeper level than 
would be possible without student preparation, and/or 
addresses issues that have proven (by observation in 
class or lab, or by performance on out-of-class problem 
solving, quizzes, or exams) to be difficult. Our 

techniques for motivating students to prepare for class 
activities are described in Section 3.2, while our 
strategies for encouraging critical thinking are 
exemplified in Section 3.3. 
 
3.2 Motivating Outside Preparation 
 
Given the best effort of an instructor with respect to 
designing an effective, participatory class session, it is 
doomed to failure without adequate student preparation. 
A technique that addresses this problem is RATs, 

Readiness Assessment Tests [5, 9]. Using team-based 
learning [5, 9], a major instructional unit is addressed 
using the activity sequence depicted in Figure 1, which 
includes RATs as part of the readiness assessment 
process and is very similar to the sequence adopted in 
the subject course. A RAT is a quiz, taken immediately 
after a reading assignment; it tests whether or not a 
student did (with a reasonable amount of depth) the 
assigned reading. The assigned reading, in turn, 
prepares students for a class session that is meant to 
enhance the learning accomplished via the reading. The 
questions are true/false and/or multiple-choice. A 
sample question might be “Overflow cannot occur 
when the numbers are not of the same sign. True or 
False?” An inappropriate question is one that requires 
the understanding of a key concept, for example, a 
multiple-choice question regarding how overflow is 
detected. Save these types of questions for quizzes! 
 
First, a RAT is taken individually; students record their 
answers prior to handing in the RAT. Immediately 
thereafter, the same RAT is taken as a team. All RATs 
are taken by the same "base" team. Base teams are 
assigned for the duration of the course. (Here the term 
“team” is used, rather than “group”, because the intent 
is that the conditions created during the life of the 
course will turn the base “group” into a “team”.) After 
the first RAT, the student body comes to consensus on 
how much the individual and team RATs are to be 

weighed w.r.t. each student’s grade. For example, the 
individual RAT score might be worth 40% of a 
student’s score, while the team RAT is worth 60%. Of 
course, the instructor can set a threshold. Scantron tests 
make this whole process easier. If a team does not agree 
with the grading of a question, they are permitted to 
submit a written appeal [5, 9], which the instructor 
evaluates. If the instructor agrees with the appeal, then 
only that team receives an adjusted score—this rewards 
critical analysis and effective communication. Of 

Figure 1. Team learning instructional activity sequence. 
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course, if the instructor’s answer is incorrect, all teams’ 
RATs are regarded. 
 
We have observed that RATs are effective in several 
ways. RAT scores were generally high; for example, in 
spring 2002, 62% of students averaged 80% or higher 
on the combined RATs. The combined RAT grades are 
averaged from the grades obtained in the individual and 
team RATs. This and the fact that discussions during 
team RATs, which are animated and passionate, 
indicate that the vast majority of students do, indeed, 
read the assigned material. Students seem to cover a 
sufficient amount of material on their own and are 
better prepared for collaborative, active, problem-based, 
and team-based learning. The taking of a RAT as a 
team incorporates many of the virtues of collaborative 
learning.  
 
3.3 Supporting Discovery Learning 
 
The laboratory sessions, which are based on those 
described in [11, 12], focus on problem-based 
discovery learning. This approach supports the learning 
process in several ways. It is used to introduce, explore, 
and strengthen understanding of new concepts. 
Simulator- and robot-based laboratory assignments 
(labs) guide learning via different levels of abstraction. 
The well-defined, proctored, cooperative learning labs 
meet twice a week. They are experimental labs, similar 
to labs in physics or chemistry, that are designed to lead 
students down a path of discovery, affording them 
opportunities to teach themselves and others via the 
scientific method. Students work in pairs using, for 
example, brain storming to decide on an approach to 
use to discover an answer or to understand the results of 
an experiment.  
 
The goal of each lab is stated explicitly, and the lab is 
written in such a way that students are required to 
experiment, critically analyze experimental results, and 
use deductive reasoning to arrive at correct answers. 
Working in pairs, and sometimes in larger groups, 
reinforces their confidence in their understanding of 
jointly constructed hypotheses, experimental designs, 
and predictions, their analysis of experimental results, 
and their understanding of the concepts that underlie the 
lab. Of course, this also helps improve their 
communication and team skills as well. 
 
This course uses two types of tools in labs: a simulator 
and robots. Simulator labs focus on basic machine 
organization and assembler language using the Visual 
6811 simulator [8]. Robot labs focus on memory-
mapped I/O, serial communication, interrupt handling, 
and I/O interfacing. A lab sheet, which describes the 
goals of the lab and what is expected of the students, is 
presented to students prior to a lab; the deliverable of 
each lab is either a completed lab sheet (that includes 
answers to questions, as described below) or a 

demonstration of a working program. Students unable 
to complete the lab during the allotted time must finish 
it on their own time; this is a typical situation for robot 
labs, which anticipate complex problem solving being 
done outside of the labs. Simulator and robot labs, and 
the tools they employ, are described in the following 
sections.  
 
3.3.1 Simulator Labs and Visual 6811 
 
Simulator labs are carried out in pairs by writing and 
executing assembler language programs, examining 
assembler listings, symbol tables, and cross-reference 
tables, and simulating the execution of an assembler 
language program using the Visual 6811 simulator, a 
simulator for the Motorola HC6811 microprocessor. 
Each simulator lab brings together different pairs of 
students. This permits students to get to know other 
students in the class and provides challenges with 
respect to communication and team skills. 
 
A simulation permits the examination of register and 
memory contents including the text, data, and stack 
segments. The simulator also displays the execution 
time in cycles. Via simulator labs, students can analyze, 
among other things: 
 
§ representation of instructions (in machine code), 
§ initialized and uninitialized data, 
§ instruction length and instruction format 

differences attributable to addressing modes, 
§ effects of instruction execution, 
§ effective address formation, 
§ program control flow, 
§ behavior of subroutine calls and return instructions, 

and their effect on the runtime stack, 
§ composition of activation records, 
§ differences between call-by-value and call-by-

reference semantics,  
§ contents of interrupts vectors, and 
§ algorithmic complexity in terms of execution time. 
  
Visual 6811 is composed of two independent 
subsystems that work together to provide the 
functionality to debug a program and to simulate the 
execution environment of a program written in the 
68HC11 assembler language. The two subsystems are a 
simulation engine, which is composed of a library of 
functions, and a GUI, which controls the simulation of 
the program.  
 
The simulation engine can simulate the complete 
68HC11 ISA. (Note, however, that some underlying 
subsystems such as the asynchronous serial 
communication interface and interrupts are not yet 
implemented.) Simulation is at the instruction level, as 
opposed to the cycle level. The library provides access 
via the GUI to fetch and modify simulated components 
such as registers and memory.  



The GUI controls the execution of a simulation, 
displays changes to the execution environment of a 
program as it executes, and provides debugging 
functionality. The GUI subsystem is platform 
independent; Visual 6811 can run on any system 
running the Windows, Unix, or Linux operating 
systems and that supports the Java Runtime 
Environment (JRE). Figure 2 shows an image of Visual 
6811 while simulating a program. The image shows a 
breakpoint that is set (instruction highlighted in red) 
and the next instruction to be simulated (instruction 
highlighted in cyan). After a program is assembled, the 
GUI displays the assembler listing as shown in the left 
side (circle 1) of Figure 2. The assembler listing is 
composed of the program’s assembler instructions and 
the corresponding machine code.  

By selecting a tab (circle 2 of Figure 2), the cross-
reference table can be displayed. The lower left part 
(circle 3) of Figure 2 shows the run-time error display. 
An error is generated, for instance, if a bad opcode is 
fetched. The upper right section (circle 4) of the 
simulator window displays the names of registers and 
their contents, both in hexadecimal and binary. As a 
program is simulated, register contents are updated in 
response to the (simulated) execution of instructions. 
The right part of the simulator interface shows two 

windows (circles 5 and 6) for displaying the contents of 
memory. The memory is laid out to show 16-byte 
memory blocks. Each block is displayed by showing 
the starting address of the block, the hexadecimal value 
of the memory, and the ASCII representation. Students 
may view two areas of memory, one in each of the 
memory windows. This allows students to view the data 
and stack segments simultaneously. Instead of 
displaying the stack in its usual abstract notation (a 
stack of values with the most recent value stored at the 
top and the oldest value stored at the bottom), the stack 
is displayed in the same format as memory to solidify 
the notion that the stack is just another area of memory. 
 
 
 

Visual 6811 provides the following features to debug 
and control the simulation of a program: 
 
§ assemble a program: Assemble the selected 

program and display the assembler listing. After 
this step, the program can be simulated. 

§ reassemble last assembled program: Reassemble 
the last file that was assembled (successfully or 
not). 

Figure 2. Visual 6811 while simulating a program. 
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§ modify memory contents: Modify the contents of 
memory by entering a new value to store at a 
specified memory address. 

§ modify register contents: Modify the contents of 
any of the simulated general-purpose registers. 
This and the previous option make it easy to 
modify the execution environment of a program 
while it is simulated and quickly see the execution 
behavior that results from these changes. 

§ step through the execution of a program: Simulate 
a program one instruction at a time, permitting the 
observation of changes in the execution 
environment as a result of instruction execution. 

§ run a program to completion: Execute a program 
to completion, as opposed to one instruction at a 
time. This is most useful when breakpoints are set. 

§ toggle breakpoints: Set or clear breakpoints in a 
program. This is useful when debugging large 
programs and when analyzing specific code 
sections. 

§ stop a simulation: Interrupt a simulation that is 
running to completion. This is useful, for instance, 
if a program has entered in an infinite loop, so the 
only way to get out of the loop is by stopping the 
simulation. 

§ reset execution of a program. Restart a simulation 
by loading into memory the machine code of the 
last program assembled. 

 
3.3.2 Robot Labs 
 
After acquiring some competence at programming the 
68HC11, students are challenged to program small 
robots that are controlled by 68HC11s. The TJPro 
robots [3], depicted in Figure 3, have infrared (IR) 
emitters and detectors, and bumper sensors, expanding 
the possibilities for programming the different 
interfaces, such as the analog to digital interfaces. 
Robot labs require students to download programs, via 
the serial communication interface, to a 68HC11 
microprocessor. These programs interface with the 
68HC11’s I/O ports and permit students to analyze the 
behavior of, among other things: 
 
§ memory-mapped I/O, 
§ the serial communication interface, 
§ motors connected to the I/O ports, 
§ digital and analog sensors, 
§ programmable timers and counters, and 
§ interrupts. 
 
The robot labs allow students, paired into fixed teams 
of two (which are formed based on students’ input re: 
their top six choices), to leap from abstract concepts 
and simulations to a more hands-on experience. In 
addition, they permit students to become involved in 
fun and challenging projects. For instance, the first 
robot lab has students use the serial communication 
interface to display the contents of the robot’s memory 

(the 68HC11) on the monitor of the host PC. Pressing a 
key on the host’s keyboard, which instructs the 68HC11 
to read from or write to a memory byte or word, drives 
the related program. 
 
Final projects have been very successful in challenging 
students to incorporate in a program all the knowledge 
they have acquired throughout the semester. The first 
final project had students program robots to navigate a 
maze. To make this more challenging, not only did the 
robots have to find their way out of the maze, they had 
to remember the path that they followed so that when 
the robots were next placed at the beginning of the 
maze, they navigated the maze without bumping into 
walls. Another challenging final project was to program 
two robots equipped with IR detectors: a wimp and a 
follower. The follower’s goal was to detect the wimp 
and tap it. The wimp’s goal was to avoid being detected 
by the follower and exit the arena before getting tapped 
by the follower. 
 

 
 

Figure 3. TJPro robot. 
 
Individual accountability is achieved by defining 
projects that (1) are comprised of multiple interfacing 
functional components, which when complete meet the 
project specifications, and (2) have multiple subgoals 
that can be achieved by a subset of complete functional 
components. In this way, if one team member does not 
do her/his part, the other team member does not get 
penalized in so far as the project grade is concerned. 
Individual accountability also can be enforced by 
having individual students present the results of the 
team effort. 
 
Besides all the benefits attributable to collaborative, 
problem-based discovery learning, the robot labs 
require students to operate at a higher level, especially 
with respect to debugging. Considering debugging 
techniques as a continuum ranging from random 
(uneducated, uninformed), to brute force (uneducated, 
informed), to guessing (educated, uniformed), and 
finally to experimental (educated, informed), the 
complexity and difficulty of robot-based labs make the 
first three forms of debugging ineffective. This leaves 
the students with only one viable alternative: an 
experimental, analytical approach. As a result, the 
student must 



§ be clever about creating a hypothesis, 
§ be resourceful in testing hypotheses, 
§ discuss hypotheses in terms of observed behavior, 

not the underlying computer architecture, and  
§ discuss solutions in terms of the underlying 

computer architecture. 
 
Just what we want! 
 
4.0 Assessment 
 
The strategies and tools used in this course have been 
assessed both informally and formally. The informal 
assessment concentrates more on the learning strategies 
employed in the course, while the formal assessment 
focuses on Visual 6811, the simulator used in the 
course. In addition, student evaluations from fall 2001 
and spring 2002 indicate that the course was well 
received.  
 
A 14-question informal assessment tool was used the 
second time the course was taught in this way (in spring 
2002) to assess the effectiveness of the learning 
strategies and the simulator and robot labs employed in 
the course; the course has been taught this way twice a 
year since fall 2001. In general, the students (27 in 
number) were most positive about discovery learning 
via the simulator and robots. Opinions were divided 
with respect to working in groups during class and labs. 
On the positive side was the opportunity to share ideas, 
opinions, and reach some conclusions; on the negative 
side was the frustration experienced as a result of 
unprepared group members, who might affect their 
grades. Weekly quizzes were strongly favored—
students stated that quizzes help them study for quizzes 
and exams (especially when they include questions that 
focus on the same concepts), and keep concepts they 
learn fresh in their minds. On the other hand, some 
students thought quizzes increased stress. The majority 
of students thought it was a good idea to use the robots 
in the course. Programming the robots helped to 
reinforce the concepts they learned and to see 
(physically) the power of the 68HC11 architecture in 
action. Some interesting student comments follow. 
 
With respect to the simulator: 
 
§ “[The simulator] helped me achieve knowledge 

about the material covered in the class.” 
§ “[It] helped me to understand what was 

happening.” 
§ “We could test and see what happened for 

ourselves.” 
§ “[It] helped me learn how to assemble and 

disassemble.” 
§ “[It] helped me with programming.” 
 
 
 

With respect to the robots:  
 
§  [The introduction of the robots] was a good idea.” 
§ “[They] enforced the concepts learned in class.” 
§ “[They] gave me confidence that I can do 

something that seems impossible at first.” 
§ “[They] were fun!” 
§ “[They] made it possible to see the power of the 

68HC11 in action.” 
 
Recently a formal assessment, which focuses on Visual 
6811, was conducted.  The assessment is based on the 
response of 25 students, who either just took the course 
this semester (spring 2003) or who took it in the past 
two years. The assessment indicates the following: 
 
§ The simulator was straightforward to use and had a 

very low learning curve (23 students, i.e., 23/25).  
§ Being able to view the assembler source and the 

virtual representation of memory was helpful in 
understanding how memory changes as a program 
is executed (19/25).  

§ The simulator was particularly helpful for 
understanding stack manipulations and the 
differences among the various addressing modes 
(22/25). 

§ The simulator facilitated debugging by permitting 
the user to step through program execution and, 
while doing so, observe how memory and registers 
changed (18/25).  

§ Given the choice of using the simulator or not, 
students said they would have chosen to use the 
simulator since it helped them to debug and 
understand the execution of a program (21/25). 

 
In fall 2001/spring 2002, of 24/19 responses to a 
student evaluation, out of a 1-5 rating, where 5 is 
excellent:  
 
§ The varied use of questions, discussions, lectures, 

and/or group work in the class was rated 4.8/4.9 
(average rating). 

§ The relevance of course materials to state course 
objectives was 4.4/4.8. 

§ The relevance of class assignments was 4.5/4.7. 
§ The estimation of how much learned in the course 

was 4.4/4.6. 
§ The effectiveness of the course in challenging the 

student intellectually was 4.7/4.7. 
§ The overall rating of the course was 4.5/ 4.7. 
 
5.0 Conclusions and Future Work 
 
More powerful assessment is needed in order to 
quantify the success of the learning strategies and tools 
used in the course. But if student evaluations, student 
comments, and instructor observations are considered, 
the course indeed has been effective. In our opinion, the 
most powerful of the learning strategies employed in 



the course are the RATs and the cooperative, problem-
based discovery labs (both simulator and robot). In 
addition, it cannot be denied that collaborative, active, 
problem-based, and team-based learning, i.e., learning 
that actively involves students, is far superior to lecture. 
 
The next step in the development of the course is to 
extend the capabilities of Visual 6811 to simulate both 
the functionality of the serial communications interface 
and interrupt handling. In the very long run and with 
sufficient interest, a textbook that incorporates both the 
technical information conveyed via this course and the 
strategies and tools used as the vehicles of conveyance 
is envisioned. 
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