Teaching and Teaching Computer Architecture: Two Very different topics (Some Opinions about each)

> Yale N. Patt teacher, The University of Texas at Austin

> > WCAE San Diego, June 8, 2003

Visions (Re: Education)

* Distance Learning Produces Better Education, Not Cheaper Education

- * We Pay Teachers Enough That Those Who Would Opt For This Career Don't Opt For Medical School Instead
- * We Teach High School English Teachers Enough English That Students At The University Can Write Two Consecutive Coherent Sentences
- * We Get Past This Insane Preoccupation With Political Correctness, So We Can Get On With The Business Of Teaching and Learning.
- * We Stop Canonizing The Use Of High Tech In Education. Bad Pedagogy Is NOT Good Pedagogy if Draped in Technology.
- * We Stop Rewarding Memorization Ability, So Maybe Students Will Learn To Think, . . . And Perhaps Understand

My Ten Commandments of Good Teaching

- * Know the Material
- * Want to teach
- Genuinely respect your students and show it
- * Set the bar high; students will measure up
- * Emphasize understanding; de-emphasize memorization
- * Take responsibility for what is covered
- * Don't even try to cover the material
- * Encourage interruptions; don't be afraid to digress
- * Don't forget those three little words
- * Reserved for future use

What is Important?

- * Top-down design, Bottom-up learning for understanding
- * Abstraction is vital, but...
- * Not bottom-up, but "motivated" bottom-up
- * Engineering is about DESIGN, first understand the components
- * From Concrete to Abstract (Dijkstra notwithstanding)
- * Cut through protective layers
- * Memorizing is not understanding
- * Students do better working in groups

"Motivated" Bottom-Up

Solving Problems with Computers

1. Overview

11. Overview of HLL Programming

- 16. Linked lists

 - 15. Pointers
 14. Recursion
 13. Functions

 - 12. Variables, Operators, Control

6. Programming/Debugging

- 10. Data Structures (Stack)
 - 9. Subroutines, Traps
 8. Physical I/O

 - 7. Assembly Language, Assembler

2. Bits, Datatypes, Arithmetic, Logic

- *LC-2 Von-Neumann Model Transistor, Gate, Memory, Finite State Control*

Electronic Circuits and Below

High Tech

Some Uses

- * Email
- * Web site
- * Power Point
- * Document Reader
- * Animations
- * Plato, vintage 2003
- * Clever attendance mechanism
- * Other bookkeeping
- * Text+Voice (WOW Factor, see Shriver's CDROM)[3]

Some Caveats

- * Baseline Power Point
- * Cost
- * Extemporaneous Effect
- * Visual/voice disconnect
- * Attendance vs. Participation

Some Fundamentals of Computer Architecture

- * The transformation hierarchy
- * Three parts of a Microarchitecture
- * The DSI
- * IPC vs. cycle time
- * Partitioning

Problem

Algorithm

Program

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Electrons

Microarchitecture (*The Requirement*)

Some Concerns

- * Focus on Measurements
- * Use of Simulations
- * Real ISA vs. Concocted ISA

The Microprocessor Ten Years From Now (perhaps)

- * the new data path
- * internal fault tolerance
- * asynch and synch co-existing
- * different cycle times for different functions
- * SSMT (aka helper threads)
- * Block-structured ISA
- * uarch support for CAD
- * greater use of microcode
- * greater impact of the compiler
- *compiler/uarch communication

Problem

Electrons