
Multimedia components for the visualization of dynamic behavior
in computer architectures

Peter Marwedel, Birgit Sirocic
Dept. of Computer Science,

University of Dortmund,
44221 Dortmund, Germany
peter.marwedel@udo.edu

Abstract

Understanding modern processors requires a good
knowledge of the dynamic behavior of processors. Tra-
ditional media like books use text for describing the
dynamic behavior of processors. Visualization of this
behavior, however, is impossible, due to the static na-
ture of books. In this paper, we describe multime-
dia components for visualizing the dynamic behavior of
hardware structures, called RaVi (abbreviation for the
German equivalent of “computer architecture visualiza-
tion”). Available RaVi components1 include models of
a microcoded MIPS architecture, of a MIPS pipeline,
of scoreboarding, Tomasulo’s algorithm and the MESI
multiprocessor cache protocol.

1 Introduction

The presented project aims at facilitating understanding
the dynamics of modern processor architectures, thereby
overcoming an important limitation of books. Videos
tapes and video distribution techniques have made it
possible to show non-interactive media elements to stu-
dents. However, video tapes have to be accepted by
teachers and users on an “as-is” basis. It is not possi-
ble to use instruction streams other than those employed
for the production of the video. Also, it is not possi-
ble to modify hardware structures in order to see the ef-
fect of hardware changes on the dynamic behavior. In
short, videos are very inflexible and cannot provide in-
teractiveness (except the simple type of interactiveness
possible with DVDs).

Providing this interactiveness, however, is difficult,

1We gratefully acknowledge the funding of the RaVi-project
(which is a subproject of the SIMBA-project) by the German ministry
of research and development (BMBF).

since it requires the simulation of hardware structures.
This can be a challenging task which cannot be solved
within the time-frame available for preparing a course.
Why not just use available hardware simulators? These
simulators are frequently designed for optimum simu-
lation speed and complex design projects. Ease of use,
excellent visualization and portability have normally not
been top goals for simulator design. Also, powerful sim-
ulators are typically proprietary and come at high costs,
preventing their widespread deployment to classrooms
and into the hands of students.

Therefore, we tried to design RaVi models for the
simulation-based visualization of the dynamic behavior
of hardware architectures. In contrast to available mod-
els, emphasis is on visualization.

This paper is structured as follows: a short description
of related work is provided in section 2. Section 3 de-
scribes the multimedia units developed so far. Section 4
discusses some design consideration regarding the avail-
ability and access-ability to various groups of students.
Section 5 contains some of the results. The final section
comprises a conclusion.

2 Related work

Simulators provide information about the dynamic be-
havior of computing systems. Plenty of simulators are
available either commercially or in the form of public
domain tools. They have been used for decades already.
However, these simulators have hardly been designed
for class room use. For such use, the limited resolu-
tion of screens must be taken into account. These days,
it is also required that the simulators can be given into
the hands of students. Expensive commercial simula-
tors cannot be used for this reason. Also, feature-rich
simulators requiring special training are not appropri-
ate for this type of application. The target group for



this material includes first year students. It would be
impossible to teach these students how to use a hard-
ware description language: teaching the syntax of com-
plex languages and to use tools such as Modelsim [6]
would take too much time in a course which also has to
cover a number of other important computer engineering
subjects. The effort of generating models, for example
in VHDL, should not be underestimated. Hence, most
of the available simulators do not provide the required
functionality. Notable exceptions include the JCachesim
[1]. JCachesim is a simulator for cache architectures.
However, JCachesim focusses on generating quantita-
tive data (statistics etc.). In contrast, the work in this
paper focusses of giving insight into how computer sys-
tems work.

3 Available multimedia units

3.1 Microcoded version of MIPS

Architectural models capable of executing a reasonable
subset of some instruction set require a certain complex-
ity of the model. The program counter, main memory,
register file, ALU, control logic and a number of multi-
plexers all have to be included in the model. Otherwise,
it would be impossible to demonstrate how instructions
are executed. Many of these hardware components are
connected. According to our observation, it is typically
difficult for the students to understand how all the wires
in a computer architecture are used. Also, the function
of multiport memories seems to be a problem for stu-
dents grown-up with von-Neumann languages.

Courses on computer architecture typically follow the
sequence of Hennessy/Patterson’s book for undergradu-
ates [4]. Consequently, a microprogrammed version of
the MIPS-machine is the first hardware structure which
is introduced. It has to be introduced in such a way that
students are able to comprehend how it works. We have
therefore designed a multimedia unit highlighting the
paths which are used during a certain micro-step (see
fig. 1).

Just color-coding the values on the wires would lead to
an abundance in color-coding and it would be difficult
to find out, which of the lines are actually important.
Therefore, only those paths leading to non-redundant
inputs are marked. Lines printed in bold in fig. 1 cor-
respond to the paths used in the final state of the store
word instruction. The address input of memory Mem is
driven by the computed effective address, as stored in
temporary register T. The value stored is coming from
the register file Reg. General simulators would typically
not implement such a feature and would therefore create

unnecessary barriers for the students.

Experimentation with this architecture is possible. For
example, the contents of the register file Reg as well as
the contents of the main memory Mem can be changed.
A small dedicated assembler is provided such that as-
sembly language programs can be assembled and loaded
into the main memory.

Modifications of the wiring are possible, using the in-
tegrated schematic editor. A number of standard com-
ponents are provided. These include multiplexers, reg-
isters, memories and ALUs. Modifications using these
standard components can be done by the user without
any programming. Adding new components not yet
available in the library requires programming the behav-
ior of these components in Java, however. This possibil-
ity is rarely used, except by the designer of the multime-
dia units.

3.2 MIPS-Pipeline

The operation of the MIPS-pipeline is described in the
book by Hennessy and Patterson [4]. Several pages of
the book are used for showing the different states the
pipeline can be in. Nevertheless, this technique for ex-
plaining the operation of the pipeline has its limits: it is
difficult to imagine, which situations arise for other code
sequences. This is especially true for stall cycles. From
available descriptions, it is difficult to understand which
of the pipeline stages are stalled when.

Furthermore, it would be nice to use interactive elements
in education. For example, students can be motivated to
think about the behavior of the architectures by letting
them “play around” with it.

All this is possible with RaVi models of the pipeline.
There are essentially three models:

• The first model is a simple model without any by-
passing. It can be used to demonstrate the wrong
implementation of the instruction set.

• The second model includes bypassing, but does not
have a separate adder for branches. This model can
be used for demonstrating the advantage of bypass-
ing.

Also, this model implements two phase clocking.
Using appropriate color coding, it can be shown
that the register file is updated as a result of falling
clock edges.

The same model can be used to demonstrate the
problems with branches if no special comparator
for the instruction fetch stage and no special adder
for calculating branch target addresses are added.
Large branch delay penalties can be shown.



Figure 1. Microprogrammed version of the MIPS machine (segment of a screenshot)

Figure 2. Segment from screen-shot from pipeline unit

• The third model includes the special hardware cir-
cuits for reducing branch delay penalties (see fig.
2).

All instructions are color-coded so that it is easy to see
how instructions propagate down the pipeline. Imple-
mented models support all major opcodes as well as mi-



nor opcodes in the register-to-register class (major op-
code 0). A full implementation of all opcodes as well
as exception handling is not consistent with the goal of
keeping things simple so that students understand the
models. Accordingly, function registers (like EPC) are
not implemented. The same applies for special regis-
ters HI and LO. Irregular multiply instructions leaving
their results in these registers (e.g. mult) have been re-
placed by their more regular pseudo instruction counter-
parts supported by the MIPS assembler (e.g. mul). Oth-
erwise, too many hardware components would have to
be on the screen.

3.3 MESI-protocol for a single cache block

The MESI protocol is typically included in the educa-
tion of computer scientist in their third year. Accord-
ing to this protocol, single read requests for certain ad-
dresses cause the corresponding cache line to be in the
exclusive state. Subsequent reads by other processors
will cause the same cache line to be in the shared state.
Writes in one processor will set the state in other caches
to invalid. Due to its distributed nature, it is more diffi-
cult to understand than algorithms for mono-processors.
We have therefore developed two multimedia units help-
ing students to understand this protocol. The first unit
shows the behavior of just a single cache block, of which
copies may be available at four different machines (see
fig. 3). The three state finite state machine used by Hen-
nessy/Patterson [5] is replaced by the commonly used
4-state FSM.

Figure 3. RaVi visualization of the MESI
protocol for a single block

By generating read and write requests, the lecturer or
the student can explain the behavior of these finite state

machines. We found that students realized much faster
that, once the shared state is reached, there is no way
back to the exclusive state (in hardware, there is usually
no signal which would allow going back to state exclu-
sive except through state invalid).

3.4 MESI-protocol for the entire cache

After demonstrating the behavior of the four state MESI
FSM for a single block, we are typically explaining the
full MESI model for a number of cache blocks, also
including tag bits. Fig. 4 shows a screen-shot of that
model. Read and write requests can be generated in-
teractively. Addresses and data for all read and write
requests can be changed by using the context menue of
the processors (shown at the top).

We found that students were surprised about the behav-
ior of that model in case the same index bits but differ-
ent tag bits are used in accesses to the different caches.
Also, students did not expect the complexity of the op-
erations on the bus.

3.5 Scoreboarding

Scoreboarding is known as one of the early techniques
for increasing processor speeds. Due to the distributed
nature of the algorithm, we found that students had prob-
lems with understanding the algorithm exactly. In order
to change this situation, we have developed a multime-
dia unit for this algorithm as well. In order to let students
make experiments with the model, different instruction
streams can be used and the effect of the resulting paral-
lelism can be studied. Fig. 5 shows a screen-shot.

We found that the resolution of currently available pro-
jection equipment puts a tight constraint on the level of
detail that can be shown for this algorithm.

3.6 Tomasulo algorithm

The Tomasulo algorithm is a more advanced algorithm
for speeding up processor architectures. The Tomasulo
algorithm employs a more decentralized control, making
it even more difficult to understand the overall behav-
ior. The corresponding RaVi unit avoids this problem.
Again, the students can “play” around with different in-
struction streams and observe the behavior of the archi-
tecture. Functional components can be deleted by the
user (lecturer or student) and new components can be
added. No programming is required as long as standard
components are added.



Figure 4. Segment of a screen-shot from RaVi cache protocol unit (Memory omitted)

Figure 5. Screen-shot from RaVi scoreboard unit



4 Implementation aspects

4.1 Availability

The RaVi system is built on top of the HADES visual-
ization framework for computer structures [3]. HADES
is implemented in Java. The entire RaVi model follows
the object-oriented paradigm. Every RaVi component is
an instance of the corresponding hardware component
class.

Due to being implemented in Java, RaVi can be used
at a variety of platforms. We decided to make RaVi
freely available on the Internet in order to promote its
use. Initial versions of RaVi required a download of the
software. Current versions are available as an applet and
can be used without any software installation effort (pro-
vided Java is already installed). RaVi is available from
//ls12.cs.uni-dortmund.de/ravi.

4.2 Gender-specific aspects

One of the goals of RaVi is to motivate also female stu-
dents to study computer engineering. A number of con-
siderations (see e.g. Fisher et al. [2]) have been taken
into account during the design of RaVi:

• Before enterering the University, women typically
have less hands-on-experience with computers in
general and with computer engineering in particu-
lar, compared to most men. Therefore, a very care-
ful definition of all technical terms must be used in
the accompanying technical material.

• Educational material should avoid unjustified
stereotypic views of computer users. For example,
female computer users also include scientists and
not only secretaries (in contrast, for example, to the
cliparts provided by Microsoft).

4.3 Limitations

Simulation in the underlying HADES library is based
on a VHDL-like two-phase simulation of synchronous
architectures. Communication is based on explicit inter-
connections (which can be hidden on the screen). Simu-
lation is less suited for applications in which explicit in-
terconnections are difficult to use. Nevertheless, it was
possible to use this simulation approach for demonstrat-
ing search in binary trees. Visualization is focussing on
2D models. 3D models are beyond the scope of the cur-
rent approach.

5 Results

The RaVi project led to several results:

• We found that the generation of the multimedia
units required significantly more time than ex-
pected. Due to using HADES, first versions could
be designed rather quickly, requiring production ef-
forts of a few weeks at most. However, the use of
these units in the classroom led to requirements for
improving the units. Only almost perfect units can
be used in the classroom environments and given
into the hands of students. Fine tuning of the units
required as much work as their original design. A
total of about 2 person years have been spent on the
project so far.

• It is good scientific practice to try to measure by
how much the quality of teaching can be improved
by using the multimedia units. Following the ad-
vice by researchers from social sciences, we tried
to get quantitative information on the level of un-
derstanding achieved through the use of these units.
Even though we had two large groups of students
(about 200 each) which could be compared, no
quantitative conclusions could be drawn. A number
of other effects (date and time of the teaching, char-
acteristics of the students etc.) resulted in a wide
variation of the results and prevented any meaning-
ful conclusions. According to more recent advice
from an expert in the area [7], attempts to quan-
titatively measure the effect of multimedia-based
education are in fact bound to fail and a waste of
time. One cannot expect more than just qualitative
information on the improvements achieved. Ac-
cording to this qualitative information, the goals of
the project have been reached.

• Students really like the presented units and appre-
ciate their availability. They are typically highly
motivated trying out these units at home and ask
for download options. Also, colleagues typically
comment very positively on the availability of these
units. The most important argument is the added
value of the units. While online-versions of static
material provide only limited added value, if com-
pared to books, visualization of dynamic properties
adds a completely new quality.

• Visualization of the dynamic behavior has proven
being indeed one of the key technologies for im-
proving the teaching further and for exploiting
modern equipment.

• Simulation based on the HADES simulation frame-
work was found to be appropriate for various kinds



of digital circuits. While is was possible to use
HADES for visualizing algorithms like tree-search,
it is less appropriate of analog and time-continuous
simulations. Simulation speed is sufficient even in
applet-based versions of RaVi.

6 Conclusion

In the RaVi project, we have demonstrated how a defi-
ciency of classical media for teaching computer archi-
tecture can be removed. We have shown that the visual-
ization of computer architecture dynamics is appreciated
by the students and helps them to understand the sub-
jects. In general, RaVi units seem to improve the moti-
vation of students. Unfortunately, it seems to be impos-
sible to measure the effect of the new teaching aids on
the student’s success. In the future, we will be extended
to approach to other areas of computer engineering. For
example, we have started designing similar material to
complement a book on embedded system design, which
is currently being written at Dortmund.

References

[1] I. Branovic, R. Giargi, and A. Prete. Web-based training
on computer architecture: The case of jcachesim. Pro-
ceedings of the workshop on computer architecture edu-
cation, pages 56–60, 2002.

[2] A. Fisher and J. Mangolis. Unlocking the clubhouse.
SIGCSE bulletin, Vol. 34, no. 2, Women and Computing,
pages 79–83, 2002.

[3] N. Hendrich. A Java-based framework for simulation and
teaching. Proceedings of the 3rd European Workshop on
Microelectronics Education, pages 285–288, 2000.

[4] J. L. Hennessy and D. A. Patterson. Computer Organiza-
tion – The Hardware/Software Interface. Morgan Kauf-
mann Publishers Inc., 1995.

[5] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture – A Quantitative Approach. Morgan Kaufmann Pub-
lishers Inc., 1996.

[6] Model Technology. home page. //www.model.com, 2003.
[7] C. Moreau. Universite de Compiegne. Oral communica-

tion, 2003.


