

Abstract—This paper describes a processor design

project intended to illustrate the detail inner workings
of modern superscalar out-of-order processors. In the
project, the students implement a cycle-accurate RTL-
level model of an out-of-order core including rename,
issue, execute, completion and retirement
stages based on the MIPS R10000. The processor
core only supports four instruction types. First, the
basic integer subtract instruction is included to exercise
the mechanisms related to register-renamed out-of-
order execution. Second, two types of branch
instructions, resolving correctly and incorrectly
respectively, exercise speculative execution and branch
rewind capabilities. Lastly, an exception-triggering
instruction tests the support for precise exceptions. The
project is designed to be completed in six weeks by a
team of two to three students with solid background and
strong interest in computer architecture and digital
design. This project has been used twice in an
advanced graduate computer architecture course (CMU
18-744 Hardware Systems Engineering) and has
received favorable feedback from students and industry
recruiters. The project handout and required Verilog
source files can be downloaded from
http://www.ece.cmu.edu/~jhoe/superscalar.

I. INTRODUCTION

Implementing an n-stage in-order pipelined processor
is the staple design project in undergraduate
introductory computer architecture courses. Such a
hands-on project is very instructive in that the students
walk away with an in-depth understanding of not just the
abstract principle of pipelining but also the exact
mechanisms that make a real instruction pipeline work
well (e.g., stalling, squashing and forwarding). Modern
superscalar out-of-order microarchitecture, on the other
hand, is a central topic in most graduate-level computer
architecture courses. Unfortunately, due to the

complexity of the subject, the material is often presented
at a fairly high level; rarely are students required to
work out a coherent, complete datapath in a hands-on
fashion. It is our contention that most students are only
able to walk away with a “warm-and-fuzzy”
understanding of how an out-of-order core really
operates. In other words, many students may
comprehend the basic principle of microdataflow
instruction scheduling, but very few students would be
able to accurately describe the intricacies in the
instruction issue and data forwarding logic that permit
two instructions with read-after-write dependency to
execute in back-to-back cycles.1

In this paper, I described a project designed to impart
students with precise and accurate understanding of
modern superscalar out-of-order processor design. In
this project, the students implement a cycle-accurate
RTL-level model of an out-of-order core, i.e., rename,
issue, execute, completion and retirement stages. To
stay within a reasonable workload, students only need to
support the execution of four simple instruction types.
First, the integer subtract instruction is sufficient to
exercise all of the mechanisms involved in register-
renamed out-of-order execution. Second, two types of
branch instructions, resolving correctly and incorrectly
respectively, exercise speculative execution and branch
rewind capabilities. Lastly, an exception-triggering
instruction tests the support for precise exceptions. The
RTL model produced by the student must be both
simulatable and synthesizable. The students’ final RTL
implementations are evaluated both in terms of IPC
performance and hardware cost.

1 Data dependence between a pair of dependent single-

cycle ALU instructions is resolved in the same cycle when the
producer instruction is selected for issue. This way, the
dependent instruction itself is eligible for scheduling in the
next cycle while the producer instruction is still being
executed.

Superscalar Out-of-Order Demystified
in Four Instructions

James C. Hoe
Computer Architecture Laboratory

Carnegie Mellon University
Pittsburgh, PA 15213
jhoe@ece.cmu.edu

The project can be completed in six weeks by a team
of two to three graduate (or advanced undergraduate)
students who have solid background and strong interest
in computer architecture and digital design. This project
has been used twice in an advanced graduate computer
architecture course (CMU 18-744 Hardware Systems
Engineering, Spring 2002 and Spring 2003). CMU 18-
744 is a depth course in our ECE department’s graduate
computer architecture curriculum. This course has as
prerequisite our first-year graduate computer
architecture course (CMU 18-741 Advanced Computer
Architecture). The project is liked by the students who
have taken the class and has gotten positive comments
from industry recruiters who talked to the students.

Paper Outline: Following this introduction, the
remainder of the paper is organized as follows. Section
II gives an overview of the project specification. Section
III and IV provide details in the project setup and
execution, respectively. Section V explains the project’s
stated objectives and acceptance criteria. Section VI
suggests ways to extend or expand the project in the
future. Section VII concludes with a few remarks
regarding our experience in running this project.

II. PROJECT OVERVIEW

The project calls for the Verilog RTL implementation
of a superscalar speculative out-of-order core based on
the MIPS R10000 microarchitecture. Figure 1 gives a
high-level sketch of MIPS R10000’s out-of-order core.
The details of the microarchitecture are described
extensively in [5]. The MIPS R10000 microarchitecture
is selected for the project because similar
microarchitectural arrangements most notably the use
of a common physical register pool to serve as both
rename registers and architectural registers are
employed by most of the recent superscalar out-of-order
processors.

The scope of the project only covers the mechanisms
for renaming, microdataflow scheduling, data
forwarding, branch rewind and exception recovery.
Datapath elements relevant to this project are
highlighted in gray in Figure 1. Memory and floating-
point portions of the datapath are left out in the current
version of the project. For the purpose of testing and
simulation, a synthetic randomized instruction source
that mimics the instruction fetch stage provides test
stimulus to the out-of-order core.

The synthetic instruction source emits a randomized
instruction stream composed of 4 instruction types in the
MIPS ISA [3]. The out-of-order core only needs to
support the execution of the integer subtract instruction
(SUB rd, rs, rt). A sequence of SUB instructions with
randomized source and destination registers is sufficient
to exercise the hardware related to register renaming,
microdataflow scheduling, and data forwarding.

The synthetic instruction source also emits ADD,
BNE and BEQ instructions. The semantics of these
instructions, however, have been redefined for the
purpose of exercising the mechanisms for precise
exception and branch rewind.

• The execution of an ADD should always lead to
an exception. The ADD instruction itself cannot
be finished. The state of the out-of-order core
should rewind to just before the ADD instruction
prior to continuing with the corrected instruction
fetch stream.

• The execution of a BEQ should always confirm
its corresponding branch prediction, requiring no
change to the incoming instruction stream.

• The execution of a BNE should always reverse
its corresponding branch prediction. The state of
the out-of-order core should rewind to just after
the BNE prior to continuing with the corrected
instruction fetch stream.

core

isource

4xinst decode

map table

fetch

8x4 entries
Active List

(ROB)

16-entry
int. Q
(R.S.)

ALU1 ALU2

64-entry
Int GPR
7R3W

LD/ST

64-entry
FPR

5R3W

FPU1 FPU2

16-entry
FP. Q
(R.S.)

map table

(16R4W)

in-order
checker

…,sub;sub;sub;…

Fig. 2. The Simulation Environment

4xinst decode

map table

fetch

8x4 entries
Active List

(ROB)

16-entry
int. Q
(R.S.)

ALU1 ALU2

64-entry
Int GPR
7R3W

LD/ST

64-entry
FPR

5R3W

FPU1 FPU2

16-entry
FP. Q
(R.S.)

map table(16R4W)

Fig. 1. MIPS R10000 Block Diagram

The frequency of these special instructions can be
adjusted as necessary. The out-of-order core
implementation is not allowed to take advantage of the
special semantics of the ADD, BEQ and BNE
instructions except when the instructions are being
executed. In other words, until ADD, BEQ and BNE
reach the execution unit, they must be treated normally
as if they were expected to complete; similarly, the
speculatively fetched wrong-path instructions following
an ADD or BNE must also be treated normally
(although they must be later discarded) until the
exceptional condition is determined in the execution
unit.

III. PROJECT SETUP

The students are provided with two behavior-level
Verilog modules that constitute the testbench
environment for developing their core (Figure 2). The
first is a synthetic instruction source, and the second is a
checker module.

A. Instruction Source Module
 The isource module mimics a 4-wide instruction

fetch buffer. The interface to the isource module is
depicted in Figure 3. On each cycle, the isource
module presents a sequence of 0 to 4 randomly
generated instruction words on its four inst ports. The
corresponding bits in the 4-bit valid mask indicate the
validity of individual instruction words. If less than four
instructions are valid, the valid instructions are always
clustered together toward inst0. The output of the inst
and valid ports do not change until the accept input
port is asserted on a clock edge. (See example waveform
in Figure 4). In other words, the instruction fetch stream
can be stalled by deasserting accept. The instructions
that follow a BNE instruction are, by our redefinition,
wrong-path instructions and hence must be discarded
after the BNE instruction is later executed. After branch

rewind, the correct instruction stream is resumed by
asserting the restart input port for 1 clock edge. (See
example waveform in Figure 5.) The new instruction
stream begins immediately on the following cycle.
Instruction fetch is restarted in the same way following a
precise exception caused by an ADD instruction. The
isource module generates a sequencing ID for each
instruction in the stream. The sequence ID of the
exceptional instruction must accompany the assertion of
the restart signal to properly resolve the situation when
nested branch mispredictions are resolved out of
program order.

B. Checker Module
The checker module maintains a shadow copy of the

architecture register file. The checker module passively
monitors the activities on all input and output ports of
the isource module. The checker module computes the
correct in-order-state of the register file according to the
observed instruction stream. The checker module
executes the instructions in order. Instruction processing
is skipped following an ADD or BNE instruction until
the restart signal is asserted for the correct exceptional
instruction. The checker module provides a reference
state to verify the execution of the out-of-order core.
The checker module also collects and displays basic
performance and instruction stream statistics (e.g., IPC,
instruction mix, and the number of exceptions) during

ISOURCE

64
inst0
inst1
inst2
inst3

valid[3:0]
4

accept

restart

reset

clk

16
id0
id1
id2
id3

restartOn

Fig. 3. The isource Module Interface

accept

clk

valid

inst’s

1111 1100 1111 0000 1111

XXXX

Fig. 4. Stalling Fetch by Deasserting accept

clk

accept

inst’s

restart

X,X,X,X S,S,S,Be S,Be,Bn,S S,A,S,Bn S,S,S,Be S,S,A,S

sn’s X,X,X,X n0n1n2n3 n4n5n6n7 n8n9n10n11 n12n11n13n14 n15n16n17n18

restartOn n11 n6XX

Fig. 5. Restarting Fetch by Asserting restart

simulation.

IV. PROJECT EXECUTION

Four major milestones demarcate the different phases
of the project. These milestones both help pace the
students’ effort and also steer the students’ attention.

• Phase 1: Develop a one-instruction-wide out-of-
order core for just the SUB instruction. The core
only needs to handle one instruction per cycle in
each of the decode, dispatch, execute and
writeback stages. The emphasis in this step is to
develop the register renaming and dataflow
algorithms. This step is allotted 2.5 weeks,
which includes allowance for getting up to speed
on the MIPS R10000 microarchitecture.

• Phase 2: Extend the one-instruction-wide core to
support branch instructions (BNE and BEQ) and
branch rewinds.

• Phase 3: Extend the one-instruction-wide core to
also support precise exceptions. Step 2 and 3 are
together allotted 2 weeks.

• Phase 4: Extend the fully-capable core from one-
wide to superscalar operations in all stages. This
step is allotted 1.5 weeks.

An appropriately restricted isource module is provided
for in each phase to facilitate testing of the restricted
core in the first three phases.

The project can run alongside of a normal lecture
sequence. However, a part of each lecture should be
reserved to discuss and clarify project related issues. As
necessary, a number of the lectures can also be devoted
to covering the more subtle details of the MIPS R10000
design. Another option is to have the students take turn
presenting different aspects of the MIPS R10000 core,
as described in [5].

The RTL models produced for the project must not
only simulate correctly but also be synthesizable.
Synthesizabilty is a project acceptance criterion to
ensure the students do not include unrealistic hardware
structures in their processor models. The students can
only implement the core using the synthesizable subset
of Verilog Hardware Description Language [2]. In this
regard, students with RTL design experience have a
significant advantage. Therefore, it is important each
team includes at least one member who is familiar with
the RTL design flow.

Students are encouraged to follow a top-down design
flow where they begin with a very high-level, possibly
behavioral, model for the major datapath structures.
Next, they can refine the datapath structures piecewise

from behavioral Verilog down to synthesizable RTL
code. After each refinement step, the students can
immediately simulate against the testbench environment
to ensure the correctness of the most recent changes.

Although the core must be implemented using the
synthesizable subset of Verilog, students are encouraged
to incorporate behavioral-level Verilog code for
monitoring and debugging purposes. These out-of-band
behavioral debugging code can dynamically examine the
processor state cycle-by-cycle and compute elaborate
runtime invariant conditions. In our experience,
carefully designed runtime invariants are very powerful
debugging aids. These invariants help flag an erroneous
operation in a timely manner such that they allow much
better localization of the origin of that error.

V. PROJECT OBJECTIVES

A. General Implementation Guidelines
It is suggested that the students base their core on the

MIPS R10000. As a general guideline, their RTL
models should capture all details explicitly mentioned in
[5]. Nevertheless, the students also need to improvise in
several places where design decisions are not spelled out
explicitly. In addition to the general guideline above, the
following set of specific criteria must be met by the
students’ RTL models.

1) The execution of the out-of-order core must
correspond to the reference behavior of the
checker.

2) In the out-of-order core, pending instructions
must issue as soon and as fast as possible after
(true) data dependence and structural hazards
have been cleared.

3) Back-to-back dependent instructions must be
capable of issuing on consecutive cycles (in the
absence of structural hazards).

4) Branch rewind must be fast, i.e., taking O(1)
time, independent of the number of instructions
to rewind.2 A branch rewind must start and
complete as soon as possible, without waiting
for older instructions to retire.

5) Exception rewind can be slow, i.e., taking O(n)
time where n is the number of instructions to
rewind.

6) The core cannot make use of the special
semantics of ADD and BNE instructions until
they are in the functional unit.

2 This criterion forces the student to implement a

“branch rewind stack”.

Other aspects of this design project are essentially left to
the students’ whim.

B. Evaluations
The quality of the resulting RTL model is judged on

correctness, IPC performance and hardware cost. For
the early milestones, the acceptance criterion is simply
for the out-of-order core to simulate correctly against the
test environment (isource and checker) for an agreed
upon number of instructions. During simulation, the
checker keeps count and reports the progress. After a
sufficient number of instructions has elapsed, instruction
fetch from isource is stopped, and the out-of-order core
is switched into the “drain” mode. The students can
next verify that the out-of-order core’s committed
register file state agrees with the reference register file
state in the checker.

In Phase 4, the out-of-order core must also achieve a
minimum IPC performance. The IPC lower bound helps
diagnose performance bugs. For example, we had seen
a case where one team did not handle back-to-back
execution of dependent instruction. The consequence of
this oversight is obvious in their abysmal IPC relative to
the other teams. During Phase 4, the different teams in
the class are routinely informed of each other’s latest
IPC achievements. This effectively turned the last phase
of the project into a competition. The students were
self-driven to fine-tune things like the issue priority
logic and the branch rewind process to stay ahead of the
rest of the class.

Although the RTL models produced by the students
are synthesizable, we do not use the synthesis outcome
to evaluate hardware cost. Synthesized storage
structures (RAM, CAM, and FIFO) are much less
efficient that the custom blocks instantiated in real
processor implementations. As a compromise, we
compute an estimate manually using empirical values.
We assume each bit of storage (a bit cell) costs 1 unit
and the integer ALU costs 50,000 units. To compute the
final cost of a storage structure, the raw bit-cell cost
must be further multiplied by the number of normal read
or write ports and by two times the number of
associative lookup ports. (For logical structures that
require different types of references in its different
columns, the students would have to break the logical
structure into its physical components to get an accurate
estimate.) This very coarse grain model does not
account for random logic, registers or routing
congestions. Nevertheless, it does force the students to
be aware of the tremendous cost and tradeoffs of adding
additional ports and associative lookup.

VI. PROJECT EXTENSIONS

The project as described is designed to be completed
by groups of two to three students in a half semester
(~six weeks). The duration and scope of the project can
be extended by including other aspects of modern high-
performance processors, such as branch prediction,
aggressive load/store ordering and cache hierarchy.
Here, we briefly suggest some specific ideas.

1. Instead of MIPS R10000, one could also
retarget the project to be based on Alpha
21264 with clustered datapath. This
microarchitecture is as described in detail in
[3].

2. One could augment a baseline implementation
of MIPS R10000 with support for
Simultaneous Multithreading (SMT) [1]. The
project would serve to clarify the
implementation consequences of SMT support.

3. The project currently does not handle loads
and stores. The memory subsystem in modern
superscalar processors can easily be made into
a similar but stand-alone project.

4. Similarly the project can also be extended to
examine instruction fetch and prediction issues
in modern superscalar processors (e.g. wide
fetch using a trace cache).

The key is to carefully confine the scope of the
project so the students are exposed to all of the
important details but without unnecessary tedium.

VII. CONCLUSION

The intent of this project is for students to gain an in-
depth understanding of modern superscalar
microarchitecture through hands-on practice. In
addition, the project also gives the students a chance to
experience issues in project teaming and participate in a
full engineering cycle of specification, implementation,
validation and analysis. We believe this course is
invaluable training for students who are headed for
either industry or graduate research.

This project is challenging and time-consuming.
Although the students often gripe about its load and
difficulty, in our experience, the students really did
enjoy spending the time to work out the details,
especially for the moments when a fuzzy concept in their
head suddenly becomes crystal clear in their
implementation.

REFERENCES

[1] S. J. Eggers, J. S. Emer, H. M. Leby, J. L. Lo, R. L.
Stamm and D. M. Tullsen, “Simultaneous
multithreading: a platform for next-generation
processors,” IEEE Micro, vol 17 no 5, pp 12-19,
Sep/Oct 1997.

[2] HDL Compiler for Verilog Reference Manual,
Synopsys, Inc., 2000.

[3] G. Kane and J. Heinrich, MIPS RISC Architecture,
New Jersy:Prentice Hall, 1991.

[4] R. E. Kessler, “The Alpha 21264 microprocessor,”
IEEE Micro, vol 16, no. 2, pp 24-36, Mar/Apr
1999.

[5] K. C. Yeager, “The MIPS R10000 superscalar
microprocessor,” IEEE Micro, vol. 16, pp. 28-41,
Apr 1996.

