
 

 
Abstract—This paper describes a processor design 

project intended to illustrate the detail inner workings 
of modern superscalar out-of-order processors.  In the 
project, the students implement a cycle-accurate RTL-
level model of an out-of-order core including rename, 
issue, execute, completion and retirement 
stages based on the MIPS R10000. The processor 
core only supports four instruction types. First, the 
basic integer subtract instruction is included to exercise 
the mechanisms related to register-renamed out-of-
order execution.  Second, two types of branch 
instructions, resolving correctly and incorrectly 
respectively, exercise speculative execution and branch 
rewind capabilities.  Lastly, an exception-triggering 
instruction tests the support for precise exceptions. The 
project is designed to be completed in six weeks by a 
team of two to three students with solid background and 
strong interest in computer architecture and digital 
design.  This project has been used twice in an 
advanced graduate computer architecture course (CMU 
18-744 Hardware Systems Engineering) and has 
received favorable feedback from students and industry 
recruiters.  The project handout and required Verilog 
source files can be downloaded from 
http://www.ece.cmu.edu/~jhoe/superscalar. 

I. INTRODUCTION 

Implementing an n-stage in-order pipelined processor 
is the staple design project in undergraduate 
introductory computer architecture courses.  Such a 
hands-on project is very instructive in that the students 
walk away with an in-depth understanding of not just the 
abstract principle of pipelining but also the exact 
mechanisms that make a real instruction pipeline work 
well (e.g., stalling, squashing and forwarding).  Modern 
superscalar out-of-order microarchitecture, on the other 
hand, is a central topic in most graduate-level computer 
architecture courses. Unfortunately, due to the 

complexity of the subject, the material is often presented 
at a fairly high level; rarely are students required to 
work out a coherent, complete datapath in a hands-on 
fashion.  It is our contention that most students are only 
able to walk away with a “warm-and-fuzzy” 
understanding of how an out-of-order core really 
operates.  In other words, many students may 
comprehend the basic principle of microdataflow 
instruction scheduling, but very few students would be 
able to accurately describe the intricacies in the 
instruction issue and data forwarding logic that permit 
two instructions with read-after-write dependency to 
execute in back-to-back cycles.1 

In this paper, I described a project designed to impart 
students with precise and accurate understanding of 
modern superscalar out-of-order processor design.  In 
this project, the students implement a cycle-accurate 
RTL-level model of an out-of-order core, i.e., rename, 
issue, execute, completion and retirement stages.  To 
stay within a reasonable workload, students only need to 
support the execution of four simple instruction types.  
First, the integer subtract instruction is sufficient to 
exercise all of the mechanisms involved in register-
renamed out-of-order execution.  Second, two types of 
branch instructions, resolving correctly and incorrectly 
respectively, exercise speculative execution and branch 
rewind capabilities. Lastly, an exception-triggering 
instruction tests the support for precise exceptions.  The 
RTL model produced by the student must be both 
simulatable and synthesizable.  The students’ final RTL 
implementations are evaluated both in terms of IPC 
performance and hardware cost.   

 
1 Data dependence between a pair of dependent single-

cycle ALU instructions is resolved in the same cycle when the 
producer instruction is selected for issue. This way, the 
dependent instruction itself is eligible for scheduling in the 
next cycle while the producer instruction is still being 
executed. 
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The project can be completed in six weeks by a team 
of two to three graduate (or advanced undergraduate) 
students who have solid background and strong interest 
in computer architecture and digital design.  This project 
has been used twice in an advanced graduate computer 
architecture course (CMU 18-744 Hardware Systems 
Engineering, Spring 2002 and Spring 2003).  CMU 18-
744 is a depth course in our ECE department’s graduate 
computer architecture curriculum. This course has as 
prerequisite our first-year graduate computer 
architecture course (CMU 18-741 Advanced Computer 
Architecture).  The project is liked by the students who 
have taken the class and has gotten positive comments 
from industry recruiters who talked to the students. 

 
Paper Outline: Following this introduction, the 
remainder of the paper is organized as follows.  Section 
II gives an overview of the project specification. Section 
III and IV provide details in the project setup and 
execution, respectively.  Section V explains the project’s 
stated objectives and acceptance criteria.  Section VI 
suggests ways to extend or expand the project in the 
future. Section VII concludes with a few remarks 
regarding our experience in running this project. 

II. PROJECT OVERVIEW 

The project calls for the Verilog RTL implementation 
of a superscalar speculative out-of-order core based on 
the MIPS R10000 microarchitecture.  Figure 1 gives a 
high-level sketch of MIPS R10000’s out-of-order core. 
The details of the microarchitecture are described 
extensively in [5].  The MIPS R10000 microarchitecture 
is selected for the project because similar 
microarchitectural arrangements most notably the use 
of a common physical register pool to serve as both 
rename registers and architectural registers are 
employed by most of the recent superscalar out-of-order 
processors.   

The scope of the project only covers the mechanisms 
for renaming, microdataflow scheduling, data 
forwarding, branch rewind and exception recovery. 
Datapath elements relevant to this project are 
highlighted in gray in Figure 1.  Memory and floating-
point portions of the datapath are left out in the current 
version of the project. For the purpose of testing and 
simulation, a synthetic randomized instruction source 
that mimics the instruction fetch stage provides test 
stimulus to the out-of-order core.   

The synthetic instruction source emits a randomized 
instruction stream composed of 4 instruction types in the 
MIPS ISA [3].  The out-of-order core only needs to 
support the execution of the integer subtract instruction 
(SUB rd, rs, rt).  A sequence of SUB instructions with 
randomized source and destination registers is sufficient 
to exercise the hardware related to register renaming, 
microdataflow scheduling, and data forwarding.  

The synthetic instruction source also emits ADD, 
BNE and BEQ instructions.  The semantics of these 
instructions, however, have been redefined for the 
purpose of exercising the mechanisms for precise 
exception and branch rewind. 

 

• The execution of an ADD should always lead to 
an exception.  The ADD instruction itself cannot 
be finished. The state of the out-of-order core 
should rewind to just before the ADD instruction 
prior to continuing with the corrected instruction 
fetch stream. 

• The execution of a BEQ should always confirm 
its corresponding branch prediction, requiring no 
change to the incoming instruction stream.  

• The execution of a BNE should always reverse 
its corresponding branch prediction. The state of 
the out-of-order core should rewind to just after 
the BNE prior to continuing with the corrected 
instruction fetch stream. 
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Fig. 2.  The Simulation Environment 
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Fig. 1.  MIPS R10000 Block Diagram 
 



 

The frequency of these special instructions can be 
adjusted as necessary. The out-of-order core 
implementation is not allowed to take advantage of the 
special semantics of the ADD, BEQ and BNE 
instructions except when the instructions are being 
executed.  In other words, until ADD, BEQ and BNE 
reach the execution unit, they must be treated normally 
as if they were expected to complete; similarly, the 
speculatively fetched wrong-path instructions following 
an ADD or BNE must also be treated normally 
(although they must be later discarded) until the 
exceptional condition is determined in the execution 
unit.  

III.    PROJECT SETUP 

The students are provided with two behavior-level 
Verilog modules that constitute the testbench 
environment for developing their core (Figure 2). The 
first is a synthetic instruction source, and the second is a 
checker module. 

A. Instruction Source Module 
 The isource module mimics a 4-wide instruction 

fetch buffer. The interface to the isource module is 
depicted in Figure 3.  On each cycle, the isource 
module presents a sequence of 0 to 4 randomly 
generated instruction words on its four inst ports.  The 
corresponding bits in the 4-bit valid mask indicate the 
validity of individual instruction words. If less than four 
instructions are valid, the valid instructions are always 
clustered together toward inst0. The output of the inst 
and valid ports do not change until the accept input 
port is asserted on a clock edge. (See example waveform 
in Figure 4).  In other words, the instruction fetch stream 
can be stalled by deasserting accept. The instructions 
that follow a BNE instruction are, by our redefinition, 
wrong-path instructions and hence must be discarded 
after the BNE instruction is later executed.  After branch 

rewind, the correct instruction stream is resumed by 
asserting the restart input port for 1 clock edge. (See 
example waveform in Figure 5.) The new instruction 
stream begins immediately on the following cycle. 
Instruction fetch is restarted in the same way following a 
precise exception caused by an ADD instruction.  The 
isource module generates a sequencing ID for each 
instruction in the stream. The sequence ID of the 
exceptional instruction must accompany the assertion of 
the restart signal to properly resolve the situation when 
nested branch mispredictions are resolved out of 
program order. 

B. Checker Module 
The checker module maintains a shadow copy of the 

architecture register file. The checker module passively 
monitors the activities on all input and output ports of 
the isource module. The checker module computes the 
correct in-order-state of the register file according to the 
observed instruction stream.  The checker module 
executes the instructions in order. Instruction processing 
is skipped following an ADD or BNE instruction until 
the restart signal is asserted for the correct exceptional 
instruction. The checker module provides a reference 
state to verify the execution of the out-of-order core.  
The checker module also collects and displays basic 
performance and instruction stream statistics (e.g., IPC, 
instruction mix, and the number of exceptions) during 
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Fig. 3.  The isource Module Interface 
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Fig. 4.  Stalling Fetch by Deasserting accept 
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Fig. 5.  Restarting Fetch by Asserting restart 
 



 

simulation. 

IV.   PROJECT EXECUTION  

Four major milestones demarcate the different phases 
of the project.  These milestones both help pace the 
students’ effort and also steer the students’ attention. 

  

• Phase 1: Develop a one-instruction-wide out-of-
order core for just the SUB instruction.  The core 
only needs to handle one instruction per cycle in 
each of the decode, dispatch, execute and 
writeback stages.  The emphasis in this step is to 
develop the register renaming and dataflow 
algorithms.  This step is allotted 2.5 weeks, 
which includes allowance for getting up to speed 
on the MIPS R10000 microarchitecture. 

• Phase 2: Extend the one-instruction-wide core to 
support branch instructions (BNE and BEQ) and 
branch rewinds.   

• Phase 3: Extend the one-instruction-wide core to 
also support precise exceptions. Step 2 and 3 are 
together allotted 2 weeks.  

• Phase 4: Extend the fully-capable core from one-
wide to superscalar operations in all stages. This 
step is allotted 1.5 weeks.  

 

An appropriately restricted isource module is provided 
for in each phase to facilitate testing of the restricted 
core in the first three phases.  

The project can run alongside of a normal lecture 
sequence. However, a part of each lecture should be 
reserved to discuss and clarify project related issues. As 
necessary, a number of the lectures can also be devoted 
to covering the more subtle details of the MIPS R10000 
design.  Another option is to have the students take turn 
presenting different aspects of the MIPS R10000 core, 
as described in [5]. 

The RTL models produced for the project must not 
only simulate correctly but also be synthesizable.  
Synthesizabilty is a project acceptance criterion to 
ensure the students do not include unrealistic hardware 
structures in their processor models. The students can 
only implement the core using the synthesizable subset 
of Verilog Hardware Description Language [2].  In this 
regard, students with RTL design experience have a 
significant advantage.  Therefore, it is important each 
team includes at least one member who is familiar with 
the RTL design flow. 

Students are encouraged to follow a top-down design 
flow where they begin with a very high-level, possibly 
behavioral, model for the major datapath structures.  
Next, they can refine the datapath structures piecewise 

from behavioral Verilog down to synthesizable RTL 
code.  After each refinement step, the students can 
immediately simulate against the testbench environment 
to ensure the correctness of the most recent changes. 

Although the core must be implemented using the 
synthesizable subset of Verilog, students are encouraged 
to incorporate behavioral-level Verilog code for 
monitoring and debugging purposes.  These out-of-band 
behavioral debugging code can dynamically examine the 
processor state cycle-by-cycle and compute elaborate 
runtime invariant conditions.  In our experience, 
carefully designed runtime invariants are very powerful 
debugging aids. These invariants help flag an erroneous 
operation in a timely manner such that they allow much 
better localization of the origin of that error. 

V. PROJECT OBJECTIVES 

A. General Implementation Guidelines  
It is suggested that the students base their core on the 

MIPS R10000. As a general guideline, their RTL 
models should capture all details explicitly mentioned in 
[5].  Nevertheless, the students also need to improvise in 
several places where design decisions are not spelled out 
explicitly. In addition to the general guideline above, the 
following set of specific criteria must be met by the 
students’ RTL models. 

 

1) The execution of the out-of-order core must 
correspond to the reference behavior of the 
checker.  

2) In the out-of-order core, pending instructions 
must issue as soon and as fast as possible after 
(true) data dependence and structural hazards 
have been cleared. 

3) Back-to-back dependent instructions must be 
capable of issuing on consecutive cycles (in the 
absence of structural hazards).  

4) Branch rewind must be fast, i.e., taking O(1) 
time, independent of the number of instructions 
to rewind.2  A branch rewind must start and 
complete as soon as possible, without waiting 
for older instructions to retire. 

5) Exception rewind can be slow, i.e., taking O(n) 
time where n is the number of instructions to 
rewind.  

6) The core cannot make use of the special 
semantics of ADD and BNE instructions until 
they are in the functional unit. 

 

 
2 This criterion forces the student to implement a 

“branch rewind stack”. 



 

Other aspects of this design project are essentially left to 
the students’ whim. 

B. Evaluations 
The quality of the resulting RTL model is judged on 

correctness, IPC performance and hardware cost.  For 
the early milestones, the acceptance criterion is simply 
for the out-of-order core to simulate correctly against the 
test environment (isource and checker) for an agreed 
upon number of instructions.  During simulation, the 
checker keeps count and reports the progress.  After a 
sufficient number of instructions has elapsed, instruction 
fetch from isource is stopped, and the out-of-order core 
is switched into the “drain” mode.  The students can 
next verify that the out-of-order core’s committed 
register file state agrees with the reference register file 
state in the checker.  

In Phase 4, the out-of-order core must also achieve a 
minimum IPC performance.  The IPC lower bound helps 
diagnose performance bugs.  For example, we had seen 
a case where one team did not handle back-to-back 
execution of dependent instruction.  The consequence of 
this oversight is obvious in their abysmal IPC relative to 
the other teams.  During Phase 4, the different teams in 
the class are routinely informed of each other’s latest 
IPC achievements.  This effectively turned the last phase 
of the project into a competition.  The students were 
self-driven to fine-tune things like the issue priority 
logic and the branch rewind process to stay ahead of the 
rest of the class. 

Although the RTL models produced by the students 
are synthesizable, we do not use the synthesis outcome 
to evaluate hardware cost.  Synthesized storage 
structures (RAM,  CAM, and FIFO) are much less 
efficient that the custom blocks instantiated in real 
processor implementations.  As a compromise, we 
compute an estimate manually using empirical values.  
We assume each bit of storage (a bit cell) costs 1 unit 
and the integer ALU costs 50,000 units. To compute the 
final cost of a storage structure, the raw bit-cell cost 
must be further multiplied by the number of normal read 
or write ports and by two times the number of 
associative lookup ports.  (For logical structures that 
require different types of references in its different 
columns, the students would have to break the logical 
structure into its physical components to get an accurate 
estimate.)  This very coarse grain model does not 
account for random logic, registers or routing 
congestions.  Nevertheless, it does force the students to 
be aware of the tremendous cost and tradeoffs of adding 
additional ports and associative lookup. 

VI. PROJECT EXTENSIONS 

The project as described is designed to be completed 
by groups of two to three students in a half semester 
(~six weeks).  The duration and scope of the project can 
be extended by including other aspects of modern high-
performance processors, such as branch prediction, 
aggressive load/store ordering and cache hierarchy.  
Here, we briefly suggest some specific ideas. 

 

1. Instead of MIPS R10000, one could also 
retarget the project to be based on Alpha 
21264 with clustered datapath.  This 
microarchitecture is as described in detail in 
[3]. 

2. One could augment a baseline implementation 
of MIPS R10000 with support for 
Simultaneous Multithreading (SMT) [1].  The 
project would serve to clarify the 
implementation consequences of SMT support. 

3. The project currently does not handle loads 
and stores. The memory subsystem in modern 
superscalar processors can easily be made into 
a similar but stand-alone project.  

4. Similarly the project can also be extended to 
examine instruction fetch and prediction issues 
in modern superscalar processors (e.g. wide 
fetch using a trace cache). 

   

The key is to carefully confine the scope of the 
project so the students are exposed to all of the 
important details but without unnecessary tedium.  

VII.  CONCLUSION 

The intent of this project is for students to gain an in-
depth understanding of modern superscalar 
microarchitecture through hands-on practice.  In 
addition, the project also gives the students a chance to 
experience issues in project teaming and participate in a 
full engineering cycle of specification, implementation, 
validation and analysis. We believe this course is 
invaluable training for students who are headed for 
either industry or graduate research.  

This project is challenging and time-consuming.  
Although the students often gripe about its load and 
difficulty, in our experience, the students really did 
enjoy spending the time to work out the details, 
especially for the moments when a fuzzy concept in their 
head suddenly becomes crystal clear in their 
implementation.   
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