
1

1®®
WCAE 2003 06/15/03

Intel Itanium™ Floating-Point
Architecture

Marius Cornea, John Harrison, and Ping Tak Peter
Tang

Intel Corporation

2®®
WCAE 2003 06/15/03

Agenda
Intel® Itanium® Architecture
Intel® Itanium® Processor Floating-Point
Architecture
Status Fields and Exceptions
The Floating-Point Multiply-Add
Exact Arithmetic
Accurate Remainders
Accurate Range Reduction
Comparison and Classification
Division and Square Root
Additional Features
Conclusion

2

3®®
WCAE 2003 06/15/03

Intel® Itanium® architecture
One of the major processor architectures present
in the market today

2001 – Intel Itanium processor
2003 – Intel Itanium 2 processor – highest SPEC
CFP2000 score currently
Price/performance ratio and power
consumption better with every new
implementation
Large register sets : 128 floating-point registers
Predication
Speculation

4®®
WCAE 2003 06/15/03

Intel® Itanium® architecture
Support for explicit parallelism: static and
rotating registers
Floating-point features aimed at speed and
accuracy
EPIC (Explicitly Parallel Instruction Computing)
design philosophy
Target the most demanding enterprise and
high-performance computing applications

3

5®®
WCAE 2003 06/15/03

Itanium Processor Floating-Point
Architecture

Floating-point multiply-add (fused multiply-add)
allows higher accuracy and performance

Software and hardware interaction

Division: the throughput can be as high as one
result for every 3.5 clock cycles

Floating-point formats: 24, 53, 64 bit significands;
8, 11, 15, 17-bit exponents; 1-bit sign

Register and memory encodings: 0, normalized
values, denormalized/unnormalized values,
infinity, NaN, NaTVal (‘not a value’, for speculative
operations); redundant representations

6®®
WCAE 2003 06/15/03

Itanium Processor Floating-Point
Architecture

Examples:
Using double-extended intermediate precision
calculations to compute a double precision
function: the double precision input arguments
can be freely combined with double-extended
intermediate results.
Computing functions involving constants with
few significant digits: whatever the precision of
the computation, the short constants can be
stored in single precision

4

7®®
WCAE 2003 06/15/03

Status Fields and Exceptions
64-bit Floating-Point Status Register (FPSR)

six trap disable bits control the five IEEE
Standard exceptions and the denormal
exception
four 13-bit status fields: s0, s1, s2 and s3
six flags per status field, that record the
occurrence of each of the 6 exceptions
Seven control bits per status field: rounding (2
bits), precision (2 bits), traps disable, flush-to-
zero (ftz), and widest-range exponent (wre bit,
for 17-bit exponents)

8®®
WCAE 2003 06/15/03

Status Fields and Exceptions
Status field usage determined by software
conventions:

s0 is the main user status field
s1, with wre enabled and all exceptions
disabled is used in many standard numerical
software kernels such as those for division,
square root, and transcendental functions
status fields s2 and s3 are commonly used for
speculation

5

9®®
WCAE 2003 06/15/03

The Floating-Point Multiply-Add
Basic assembly syntax:

(qp) fma.pc.sf f1 = f3, f4, f2
which calculates f1 = f3 ⋅ f4 + f2 with one rounding
error
Addition and multiplication are implemented as
special cases of the fma: x + y = x⋅1 + y and x ⋅ y =
x⋅y + 0
Two variants of the fma exist: the fms (floating-
point multiply-subtract) and fnma (floating-point
negative multiply-add):

(qp) fms.pc.sf f1 = f3, f4, f2
(qp) fnma.pc.sf f1 = f3, f4, f2

compute f1 = f3 ⋅ f4 – f2 and f1 = –f3 ⋅ f4 + f2
respectively

10®®
WCAE 2003 06/15/03

The Floating-Point Multiply-Add
Example: the vector dot product x ⋅ y of two n-
dimensional vectors:

p = ∑ xi ⋅ yi
can be evaluated by a succession of fma
operations of the form

p = p + xi ⋅ yi
requiring only n floating-point operations,
whereas with a separate multiplication and
addition it would require 2n operations, with a
longer overall latency

6

11®®
WCAE 2003 06/15/03

Exact Arithmetic
Addition - if |x| ≥ |y| the exact sum x + y can be
obtained as a two-piece expansion Hi + Lo:

Hi = x + y
tmp = x – Hi
Lo = tmp + y

(Hi + Lo = x + y exactly, with Lo a rounding error in
Hi ≈ x + y)
Multiplication - the exact product x ⋅ y can be
obtained as a two-piece expansion Hi + Lo:

Hi = x ⋅ y
Lo = x ⋅ y - Hi

(Hi + Lo = x ⋅ y exactly, with Lo a rounding error in
Hi ≈ x ⋅ y)

12®®
WCAE 2003 06/15/03

Accurate Remainders
If a floating-point number q is approximately equal
to the quotient a / b of two floating-point numbers,
the remainder r = a – b ⋅ q can be calculated
exactly with one fnma operation, if q is within 1
ulp (unit-in-the-last-place) of a / b
Useful in software implementations of the floating-
point division, square root, and remainder; also
for integer division and remainder computations,
implemented based on floating-point operations

7

13®®
WCAE 2003 06/15/03

Accurate Range Reduction
Many algorithms for mathematical functions (e.g.
sin) begin with an initial range reduction phase,
subtracting an integer multiple of a constant such
as π / 2
With the fma this can be done in a single
instruction x – N ⋅ P
Typically:

y = Q ⋅ x
N = rint (y)
r = x – N ⋅ P

where rint (y) denotes the rounding of y to an
integer, and Q ≈ 1 / P

14®®
WCAE 2003 06/15/03

Comparison and Classification
Syntax:

(qp) fcmp.frel.fctype p1, p2 = f2, f3
where the frel completer determines the relation
that is tested for.
Mnemonics for frel: eq for f2 = f3, lt for f2 < f3, le
for f2 ≤ f3, gt for f2 > f3, ge for f2 ≥ f3,and unord for
f2 ? f3.
There is no signed/unsigned distinction but there
is a new possibility, (f2 ? f3): two values may be
unordered, since a NaN (Not a Number) compares
false with any floating-point value, even with itself
fctype is the comparison type – normal, or
unconditional

8

15®®
WCAE 2003 06/15/03

Division and Square Root

Implemented in software, based on the reciprocal
approximation and reciprocal square root
approximation instructions
Given two floating-point numbers a and b, the
floating-point reciprocal approximation
instruction, frcpa, normally returns an
approximation of 1/b good to about 8 bits

(qp) frcpa.sf f1, p2 = f2, f3
Given a floating-point number a, the floating-point
reciprocal square root approximation instruction
normally returns an approximation of 1/√a good to
about 8 bits:

(qp) frsqrta.sf f1, p2 = f3

16®®
WCAE 2003 06/15/03

Additional Features
Transferring values between floating-point and
integer registers by means of the getf and setf
instructions
Foating-point merging with fmerge, useful in
combining fields of multiple floating-point
numbers
Floating-point to integer and integer to floating-
point conversion using the fcvt instructions
Integer multiplication and division - implemented
using the floating-point unit
Floating-point maximum and minimum, using the
fmax, famax, fmin and famin instructions

9

17®®
WCAE 2003 06/15/03

Conclusion
The Itanium floating-point architecture was
designed with high performance, accuracy, and
flexibility characteristics which make it ideal for
technical computing
All floating-point data types are mapped internally
to an 82-bit format, with 64 bits of accuracy and a
17-bit exponent - calculations are more accurate
and do not underflow or overflow as often as on
other processors
Highest current SPEC CFP2000 score for a single
processor system: 1431, for an Itanium 2 system
at 1GHz - the Hewlett-Packard HP Server RX2600

18®®
WCAE 2003 06/15/03

References
[1] Intel(R) Itanium(TM) Architecture Software Developer's Manual, Revision
2.0, Vol 1-4, Intel Corporation, December 2001
[2] John Hennessy, David Patterson, “Computer Architecture - A
Quantitative Approach”, Morgan Kauffman Publishers, Inc., third edition,
2002
[3] Peter Markstein, ‘‘IA-64 and Elementary Functions: Speed and
Precision”, Hewlett-Packard/Prentice-Hall 2000
[4] Marius Cornea, John Harrison, Ping Tak Peter Tang, “Scientific
Computing on Itanium-based Systems”, Intel Press 2002
[5] John Crawford, Jerry Huck, “Motivations and Design Approach for the
IA-64 64-Bit Instruction Set Architecture”, Oct. 1997, San Jose,
http://www.intel.com/pressroom/archive/speeches/mpf1097c.htm
[6] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic, IEEE, New York, 1985
[7] O. Moller, “Quasi double-precision in floating-point addition”, BIT
journal, Vol. 5, 1965, pages 37-50
[8] T. J. Dekker, “A Floating-Point Technique for Extending the Available
Precision”, Numerical Mathematics journal, Vol. 18, 1971, pages 224-242
[9] “Divide, Square Root, and Remainder Algorithms for the Itanium
Architecture”, Intel Corporation, Nov. 2000,
http://www.intel.com/software/products/opensource/libraries/numnote2.htm
,
http://developer.intel.com/software/products/opensource/libraries/numdow
n2.htm

	Intel Itanium™ Floating-Point ArchitectureMarius Cornea, John Harrison, and Ping Tak Peter TangIntel Corporation
	Agenda
	Intel® Itanium® architecture
	Intel® Itanium® architecture
	Itanium Processor Floating-Point Architecture
	Itanium Processor Floating-Point Architecture
	Status Fields and Exceptions
	Status Fields and Exceptions
	The Floating-Point Multiply-Add
	The Floating-Point Multiply-Add
	Exact Arithmetic
	Accurate Remainders
	Accurate Range Reduction
	Comparison and Classification
	Division and Square Root
	Additional Features
	Conclusion
	References

