
Intel® Itanium® Floating-Point Architecture
 Marius Cornea, John Harrison, and Ping Tak Peter Tang
 Intel Corporation
Abstract

The Intel® Itanium® architecture is increasingly
becoming one of the major processor architectures
present in the market today. Launched in 2001, the Intel
Itanium processor was followed in 2002 by the Itanium
2 processor, with increased integer and floating-point
performance. Measured by the SPEC CINT2000
benchmarks, the Itanium 2 processor still trails by about
25% the Intel P4 processor in integer performance,
albeit P4 runs at more than three times Itanium’s clock
frequency. However, its floating-point performance
clearly leads in the SPEC CFP2000 charts, and its
rating is about 25% higher than that of the P4
processor. While the general features of the Itanium
architecture such as large register sets, predication,
speculation, and support for explicit parallelism [1]
have been presented in several papers, books, and
mainstream college textbooks [2], its floating-point
architecture has been less publicized. Two books, [3]
and [4], cover well this area. The present paper focuses
on the floating-point architecture of the Itanium
processor family, and points out a few remarkable
features suitable to be the focus of a lecture, lab session,
or project in a computer architecture class.

Introduction

The performance of today’s processors continues to
increase. But the physical limits for the manufacturing
technology will eventually be reached, rendering
Moore’s Law inapplicable. Substantial further advances
can be attained only by allowing a processor to operate
on more bits at a time, and to execute more instructions
in parallel. This was the motivation that led to the
design of the Itanium processor family. Based on the
EPIC (Explicitly Parallel Instruction Computing)
design philosophy [5], the Itanium architecture was co-
developed by Intel Corporation and Hewlett-Packard
Company, combining the best in the RISC and VLIW
architectures, while also adding several features
originating from recent research studies in processor
architecture. The result is a processor architecture that
can handle a large amount of work based on its ability
to feed instructions quickly to several execution units.

To date, two implementations of the Itanium
architecture have been introduced by Intel Corporation.
The Itanium processor provided hardware man-
ufacturers and software writers with a first development
vehicle. The second implementation, represented by the

Itanium 2 processor, increased the performance level of
the Itanium processor by a factor of 1.5 to 2 in several
cases.

Itanium processors target the most demanding
enterprise and high-performance computing
applications, addressing the growing needs for data
communications, storage, analysis and security, while
also providing performance, scalability and reliability
advantages at significantly lower costs than before.

Common desktop applications have no immediate need
for the computing power or addressing capabilities of a
64-bit processor, but an increasing number of mid-
range and high-end applications already do, or will
soon, require such capabilities. These are mainly
programs that demand a lot of memory space and/or
perform a large amount of computation. Examples
include applications accessing large databases or
delivering Internet content, programs that use 64-bit
long integers, and data-intensive applications solving
scientific and engineering problems. Itanium processor
features that benefit the latter category will be the focus
of the present paper.

Scientific and engineering applications that can take
advantage of the increased floating-point performance
of Itanium processors include among others quantum
chromodynamics (QCD), quantum mechanics,
molecular simulation, cell research, or new drug
discovery applications, computer-aided design tools,
and solvers for large equation systems used in a variety
of scientific and technical problems. Digital content
creation applications that require high bandwidth, large
memory, and powerful floating-point performance are
also going to benefit from running on Itanium
processors. Such applications can run very slowly on
workstations based on 32-bit processors because of the
smaller data item size, and also because of the
continuous data traffic between storage disks and the
memory system. Reduced swapping between memory
and disk on Itanium-based systems are likely to
increase performance of some applications by up to two
orders of magnitude.

Itanium Floating-Point Architecture

The Itanium floating-point architecture has been
designed to combine high performance and good
accuracy. A large floating-point register set of 128
registers is provided, and almost all operations can read
their arguments from, and write their results to,

arbitrary registers. Together with register rotation for
software-pipelined loops, this large number of registers
allows the encoding of common algorithms without
running short of registers or needing to move data
between them in elaborate ways. Registers can store
floating-point numbers in a variety of formats, and the
rounding of results is determined by a flexible
combination of several selectable defaults and
additional instruction completers.

The basic arithmetic operation, the floating-point
multiply-add (fused multiply-add), allows higher
accuracy and performance in many common
algorithms. Several additional features are also present
to support common programming idioms. The fused
multiply-add operation combines two basic floating-
point operations in one, with only one rounding error.
Besides the increased accuracy, this can effectively
double the execution rate of certain floating-point
calculations, as the fused multiply-add operation forms
an efficient computation core that maps perfectly to
several common algorithms used for technical and
scientific purposes. The fused multiply-add operation
creates the possibility of implementing new algorithms,
such as software-based division and square root
operations. As execution units are pipelined, a division
or square root operation does not block the floating-
point unit for the entire duration of the computation,
and several other operations can be initiated or carried
out in parallel.

The large number of floating-point registers available,
of which some are static and some are rotating, allows
for efficient implementation of complicated floating-
point calculations. An illustration of software and
hardware interaction in the Itanium architecture, this is
achieved on one side by avoiding frequent accesses to
memory, and on the other through software pipelining
of loops containing floating-point computations. For
example, the throughput for division operations can be
as high as one result for every 3.5 clock cycles on the
Itanium and Itanium 2 processors.

Floating-Point Formats

The IEEE Standard 754-1985 for Binary Floating-Point
Arithmetic [6] mandates precisely defined floating-
point formats referred to as single precision and double
precision. As well as these IEEE-mandated formats,
Intel architectures have traditionally supported a
double-extended precision type, with 64 bits of
precision and a 15-bit exponent field. In current IA-32
implementations, results computed in the floating-point
register stack may be rounded to 24, 53 or 64 bits of
precision. Although the first two precisions coincide
with the IEEE single and double precision, the
precision control setting in IA-32 processors does not

affect the exponent range, as the exponent uses a 15-bit
field until the number is actually written back to
memory. Although the greater exponent range is
normally advantageous, it can lead to subtle variations
in underflow and overflow behavior depending on
exactly when a result is written to memory (which may
be compiler-dependent and hard to predict).

In order to maintain the useful extra exponent range but
allow the user complete control over rounding, the
Itanium architecture allows for both conventional single
and double precision formats and formats with the same
precision but a 15-bit exponent field. In addition, a still
wider exponent field of 17 bits is provided in each case,
a very useful feature for intermediate calculations with
double-extended precision numbers. This means that
there are actually eight floating-point formats directly
supported by the Itanium architecture, shown in Table
3-1.

Table 3.1. Floating-Point Formats Available in the
Itanium Architecture

Format Precision Exponent
Bits

Exponent
Range

Single 24 8 –126 to
127

Double 53 11 –1022 to
1023

Double
extended

64 15 –16382 to
16383

IA-32
stack
single

24 15 –16382 to
16383

IA-32
stack
double

53 15 –16382 to
16383

Register
single

24 17 –65534 to
65535

Register
double

53 17 –65534 to
65535

Register 64 17 –65534 to
65535

Register and Memory Encodings

The Itanium architecture specifies 128 floating-point
registers f0, f1, ..., f127. Register f0 is hardwired to
+0.0 and f1 to +1.0, and both are read-only, but all
other registers are available for reading and writing.
Each register is 82 bits long, with a 64-bit significand
(using an explicit integer bit), a 17-bit exponent field
and a 1-bit sign. The exponent bias has the value 65535,
or 0xFFFF (hexadecimal).

Certain values, such as NaNs, are neither negative nor
positive. Special encodings, such as zeros, infinities,
pseudo-zeros, pseudo-denormals, NaNs, pseudo-NaNs,
pseudo-infinities, or NaTVal are all possible. Some of
these special categories are explained below.

The minimum (biased) exponent value of 0 is reserved
for double-extended real denormalized numbers
(denormals), and for pseudo-denormals. The maximum
(biased) exponent value of 131071, or 0x1FFFF, is
reserved for special numbers such as infinities and
NaNs.

Other exponent values, between 0 and 0x1FFFE in
biased form, are used for finite numbers. The value in a
floating-point register with sign s, biased exponent e
and significand m0m1m2…m63 is determined by the
following formula for biased 17-bit exponents between
1 and 0x1FFFE:

 (–1)s ⋅ 2 e–65535 ⋅ m0.m1m2…m63

and the following for biased exponents that are zero:

 (–1) s ⋅ 2 –16382 ⋅ m0.m1m2…m63

The register encoding is redundant: the same real value
can sometimes be represented in several different ways.
This is a consequence of the presence of an explicit
integer bit, and is true of all floating-point formats that
support it. For example, one can have positive pseudo-
zeros with significand equal to zero but exponent from
0x000001 to 0x1FFFD rather than zero. Most of these
alternative representations of the same number are
equally acceptable as inputs to floating-point
operations, the only exceptions being the unsupported
numbers with exponent 0x1FFFF and integer bit 0
(pseudo-infinities and pseudo-NaNs). In particular, the
user can freely operate on arguments of mixed format
without any time-consuming format conversions. This
is often useful, especially when:

 • Using double-extended intermediate precision
calculations to compute a double precision function.
The double precision input argument can be freely
combined with double-extended intermediate results.

 • Computing functions involving constants with few
significant digits. Whatever the precision of the
computation, the short constants can be stored in single
precision.

However, results of floating-point operations, and
floating-point values loaded from memory, are always
mapped to fixed canonical representatives in the
register.

Note that the subsets of positive and negative register
format numbers are almost symmetrical, with only two
exceptions. First, NaTVal, the special Not a Thing
Value quantity used to track floating-point

computations that encounter failed speculative loads,
has an encoding as an otherwise unused positive
floating-point number: positive sign, biased exponent of
0x1FFFE and significand of 0 (a pseudo-zero). Second,
encodings with a positive sign and a biased exponent of
0x1003E (corresponding to the unbiased decimal value
of 64) are used also for canonical integers, and for
SIMD1 floating-point numbers (pairs of 32-bit single
precision numbers). These are stored in the significand
portion of a floating-point register.

The register encoding used differs from the encoding
used when floating-point values are stored in memory.
Single precision and double precision floating-point
numbers are stored in the memory format specified by
the IEEE Standard, with exponent biases of 127 (0x7F)
and 1023 (0x3FF) respectively, and no explicit integer
bit. Double-extended and register format numbers are
stored in a more direct mapping of the register contents
(the exponent bias for double-extended values is
0x3FFF).

For example, the value of a single precision floating-
point number with sign s, biased exponent e and
significand m0m1m2…m23 stored in memory is
determined by the following formula for biased 8-bit
exponents between 0x1 and 0xFE:

(–1)s ⋅ 2 e–127 ⋅ m0.m1m2…m23

and the following for biased exponents that are zero:

 (–1)s ⋅ 2 –126 ⋅ 0.m1m2…m23

For double precision values, the exponent bias to
subtract from the exponent e is 1023, and denormals
have an exponent of –1022. For double-extended
precision values, the exponent bias is 16383, and
denormals have an exponent of –16382.

Status Fields and Exceptions

Given the number of floating-point formats available in
the Itanium architecture, it is important to have a
flexible means of specifying the desired floating-point
format for a particular result to be rounded into, as well
as the direction of rounding (e.g. rounding to nearest or
truncation). Moreover, in accordance with the IEEE
Standard, floating-point operations on the Itanium
architecture not only produce results, but may
optionally trigger exceptions or record exceptional
conditions by setting sticky status flags. It would be
impractical to encode all this information into the

1SIMD is an acronym for Single Instruction and

Multiple Data, a form of parallel computing in
which one operation is performed in parallel on
multiple sets of operands.

format of each instruction, so some global status and
control word is necessary for specifying options as well
as recording exception flags. On the other hand, having
only a single record would be inconvenient where there
are several parallel threads of control, or where
exceptions in some intermediate instructions need to be
ignored. Therefore, the Itanium architecture features
four different status fields which can be specified by
completers in most floating-point instructions. An
instruction with a given status field completer is then
controlled by, and records certain information in, that
status field.

A 64-bit Floating-Point Status Register (FPSR)
controls floating-point operations and records
exceptions that occur. The FPSR contains 6 trap dis-
able bits that control which floating-point exception
conditions actually result in a trapped exception (where
control passes to the OS and possibly to a user handler),
and which are merely recorded in sticky status flags.
These bits control the five IEEE Standard exceptions:
invalid operation (vd), division by zero (zd), overflow
(od), underflow (ud) and inexact result (id), as well as
the additional denormal/unnormal operand exception
(dd), which occurs if an input to a floating-point
instruction is an unnormalized number. In addition to
this field, the FPSR contains four 13-bit status fields,
denoted in the assembly language syntax by s0, s1, s2
and s3.

Each status field can be divided into two parts: flags
and controls. The six flags are bits that record the
occurrence of each of the 6 exceptions mentioned
above, when exceptions are masked, or, for the
overflow, underflow or inexact result exceptions, also
when they are enabled (unmasked). These flags are
sticky, meaning that later operations that do not cause
exceptions will not set flags back to 0, so the
occurrence of an exception anywhere in a computation
sequence will be apparent at the end of that sequence.
Of the control part, one bit (td) allows all exceptions to
be disabled irrespective of the individual trap disable
bits from the FPSR (often useful in intermediate
calculations). The remaining 6 bits control the rounding
mode, precision and exponent width, and the flushing to
zero of tiny2 results.

2The IEEE Standard allows for two methods of

determining whether a result is tiny. Intel
architecture processors choose to define a result
as being tiny if the exact value rounded to the
destination precision while assuming an
unbounded exponent is less than the smallest
normal value that can be represented in the
given floating-point format.

The pc and wre fields together determine the floating-
point format into which the result will normally be
rounded. The rounding control rc determines the IEEE
rounding mode.

Although the status fields determine the default
rounding behavior of operations, it is often possible to
override them by explicit completers. This applies, for
example, to many of the instructions to be discussed
below. If an instruction has an explicit .s or .d
completer, then the destination format is single or
double precision respectively, except if the wre flag is
set, in which case register single or register double is
used.

Software conventions for the FPSR determine many of
the appropriate applications for particular status fields.
Typically, s0 is the main user status field used for most
floating-point calculations. Status field s1, with wre
enabled and all exceptions disabled, is used for
intermediate calculations in many standard numerical
software kernels such as those for division, square root,
and transcendental functions. Status fields s2 and s3 are
also commonly used for speculation. The default setting
of the FPSR is such that all status fields use the 64-bit
precision, the round-to-nearest rounding mode, and
have floating-point exceptions and the flush-to-zero
mode disabled. Only status field s1 uses the widest-
range exponent.

The Floating-Point Multiply-Add

In most existing computer architectures, there are
separate instructions for floating-point multiplication
and floating-point addition. In the Itanium architecture,
these are subsumed by a more general instruction, the
floating-point multiply-add or fused multiply-
accumulate, which takes three arguments, multiplies
two of them and adds in the third. The basic assembly
syntax is:

 (qp) fma.pc.sf f1 = f3, f4, f2

which sets f1 = f3 ⋅ f4 + f2. Note that no intermediate
rounding is performed on the result of the
multiplication, and the result is written to f1 as if it were
first computed exactly and then rounded, in a natural
extension of the way conventional arithmetic operations
are specified to behave in the IEEE Standard. The
rounding of the result and the triggering of exceptions
is controlled by the status field specified by the sf
completer and possibly by the FPSR trap disable bits,
except that the rounding precision from sf may be
overridden by an optional precision control completer
pc.

Since the floating-point registers f0 and f1 are
hardwired to the values +0.0 and +1.0 respectively,
addition and multiplication can easily be implemented

as special cases of the fma: x + y = x⋅1 + y and x ⋅ y =
x⋅y + 0. In fact, the floating-point addition and
multiplication assembly instructions

 (qp) fadd.pc.sf f1 = f3, f2
 (qp) fmpy.pc.sf f1 = f3, f4

are simply pseudo-operations that expand into

 (qp) fma.pc.sf f1 = f3, f1, f2
 (qp) fma.pc.sf f1 = f3, f4, f0

respectively. In order to change signs, there are two
variants of the fma: the fms (floating-point multiply-
subtract) and fnma (floating-point negative multiply-
add). The instructions

 (qp) fms.pc.sf f1 = f3, f4, f2
 (qp) fnma.pc.sf f1 = f3, f4, f2

 compute f1 = f3 ⋅ f4 – f2 and f1 = –f3 ⋅ f4 + f2 respectively.
Floating-point subtraction

 (qp) fsub.pc.sf f1 = f3, f2

is likewise a pseudo-operation for

 (qp) fms.pc.sf f1 = f3, f1, f2

An even more degenerate instance of fma, called fnorm
(floating-point normalize) can be used to round a result
into a given floating-point format. This can be used as a
‘lowering’ operation to convert a value to a smaller
floating-point format, but the most common use is just
to ensure that the number is normalized. (This is often
useful, because processing unnormalized values is
slower in most cases than performing an fnorm
followed by the intended operation.) This rounding to a
canonical value is accomplished by the standard fma
behavior, and so fnorm.pc.sf f1 = f3 is simply a pseudo-
operation for fma.pc.sf f1 = f3,f1,f0.

It was stated above that the fma behaves in accordance
with the IEEE Standard. Strictly speaking, that standard
does not cover the fma instruction, but all the
stipulations are extended to it in a natural way.
However, there is some subtlety over the signs of zero
results.

If the result of an fma without the final rounding would
be nonzero, then should it round to zero, the sign of the
final zero will reflect the sign of the exact result. This
of course is the ‘correct’ decision, but is a non-trivial
extrapolation of the IEEE Standard. Here, the sign rules
for multiplications and divisions are obvious (the
exclusive or of the input signs). And for addition and
subtraction, when the rounded result is nonzero, the
exact result must be too (in a fixed floating-point
format), so only the special case of exactly zero results
needs to be dealt with.

Now consider the case when the result of an fma
instruction without rounding is exactly zero. Normally,
the sign of x ⋅ y + z is determined by multiplying the
signs of x and y to give a sign for the intermediate
result, then using the rules of the IEEE Standard,
treating w + z as if it were an ordinary sum. However,
this is not appropriate for considering the ordinary
product a special case of the fma. For example, (+1.0) ⋅
(– 0.0) + (+0.0) would give +0.0, whereas the IEEE-
specified product is (–0.0). This difficulty is
circumvented as follows: if the third argument to the
fma is actually register zero (f0), then the sign of zero is
determined by the IEEE rules for products. Otherwise,
the sign of zero results is decided as specified above for
fma, even if the third argument to fma is not the special
register zero f0 but nevertheless contains the value zero.
This applies equally to the variants fms and fnma.

A floating-point multiply-add is a very valuable
architectural feature, for reasons of both speed and
accuracy. In typical implementations, the final addition
can be combined into the floating-point multiplication
operation without significantly increasing its latency.
Thus, a single fma is faster than a multiplication and an
addition executed successively. Since additions and
multiplications are heavily interleaved in many
important floating-point kernels (the evaluation of
inner, or dot, products of vectors or the evaluation of
polynomials for example), the use of an fma can lead to
significant performance improvements. For example the
vector dot product x ⋅ y:

 p = ∑i=0
N-1 xi ⋅ yi

can be evaluated by a succession of fma operations of
the form

 p = p + xi ⋅ yi

requiring only n floating-point operations, whereas with
a separate multiplication and addition it would require
2n operations, with a longer overall latency.

Apart from its speed advantage, the fact that no
intermediate rounding is performed on the product also
tends to reduce overall rounding errors. In common
cases this difference may be relatively unimportant, but
in special situations, the lack of an intermediate
rounding makes possible a number of techniques that
are difficult or costly on a traditional architecture. The
floating-point division and square root implementations
provide ample illustration of this fact, but here are three
other characteristic examples.

Exact Arithmetic

In certain applications it is important to perform
arithmetic to very high precisions, perhaps hundreds of
bits. A natural way of manipulating very precise

numbers is as floating-point expansions; that is, sums of
standard floating-point numbers of decreasing
magnitude. In order to perform efficient computations
on such expansions, the basic building blocks are
operations that compute exact arithmetic operations on
individual pairs of floating-point numbers. For
example, it is known (Moller [7], and Dekker [8]) that
if |x| ≥ |y| the exact sum x + y can be obtained as a 2-
piece expansion Hi + Lo by the following sequence of
floating-point adds:

 Hi = x + y
 tmp = x – Hi
 Lo = tmp + y

This is straightforward to implement on traditional
architectures, though features of the Itanium
architecture make it significantly more efficient.
However, on traditional architectures there is no
similarly easy way of obtaining the exact product of
floating-point numbers as an expansion; this requires
fairly complicated and inefficient methods based on
splitting the numbers into high and low parts by
masking and performing numerous sub-computations.
However, with the fms instruction, this computation is
simple and efficient:

 Hi = x ⋅ y
 Lo = x ⋅ y - Hi

This sequence always results in Hi + Lo = x ⋅ y exactly
with Lo a rounding error in Hi ≈ x ⋅ y.

Accurate Remainders

It is often the case that given a floating-point number q
approximately equal to the quotient a / b of two
floating-point numbers, one wants to know the
remainder r = a – b ⋅ q. This arises whenever evaluation
of a quotient to higher precision is needed, for example,
in floating-point expansions. Provided the
approximation q is good enough, it can be shown that r
is always representable exactly as a floating-point
number. However, that does not mean it is always
straightforward to obtain it on traditional architectures.
In fact, if a – b ⋅ q is computed by a multiplication and a
subsequent subtraction, the rounding error in the
multiplication may be comparable in size to r itself,
rendering the result essentially meaningless. Thus,
complicated masking and multiple computations are
necessary. But in the Itanium architecture, evaluating

a – b ⋅ q by an fnma instruction will give an exact
answer provided q is accurate enough.3

Accurate Range Reduction

A similar situation arises when one has an integer
approximation to the exact quotient. Many algorithms
for mathematical functions, in particular trigonometric
functions such as sin, begin with an initial range
reduction phase, subtracting an integer multiple of a
constant such as π / 2. With the fma this can be done in
a single instruction x – N ⋅ P yielding an accurate result.
Without the fma however, the rounding error in the
multiplication could severely distort the result, so it
might be necessary to represent P as the sum of two
numbers with fewer significant bits. (Each of these
numbers can be multiplied by N without error, and after
several operations the main result can be obtained.) The
fma is also useful for obtaining the appropriate N rap-
idly in the first place. Typically, one wants to perform
some operation such as

 y = Q ⋅ x
 N = rint (y)
 r = x – N ⋅ P

where rint (y) denotes the rounding of y to an integer,
and Q ≈ 1 / P. Rather than using the special fcvt
instructions to convert y to an integer, the integer
conversion can be performed by adding and subtracting
a large constant like S = 2p–1 + 2p–2 where p is the
floating-point precision, for example p = 53 for double
precision. (Adding such a constant fixes the most
significant bit of the sum and hence performs integer
rounding of y, provided |y| ≤ 2p–2; the use of 2p–2 makes
the technique work for both positive and negative y.)
Using the fma the multiplication by Q and the addition
of S can be combined, and hence the reduced argument
can be obtained by just three fma operations:

 y = S + Q ⋅ x
 N = y – S
 r = x – N ⋅ P

This approach has the additional advantage of avoiding
some rare problems with the intermediate rounding of
the product Q ⋅ x.

Comparison and Classification

Floating-point comparisons are similar to the integer
comparisons. The basic instruction is

3 It suffices for q to be accurate to one unit in the

last place (ulp).

 (qp) fcmp.fcrel.fctype p1, p2 = f2, f3

Here the fcrel completer, which is compulsory,
determines the relation that is tested for. The
mnemonics differ slightly from those used in the integer
comparison: eq for f2 = f3, lt for f2 < f3, le for f2 ≤ f3, gt
for f2 > f3, ge for f2 ≥ f3,and unord for f2 ? f3. There is no
signed/unsigned distinction but there is a new
possibility, shown in the last case (f2 ? f3): two values
may be unordered, since a NaN (Not a Number)
compares false with any floating-point value, even with
itself. Mnemonics are also provided for the
complements of all these conditions, although in the
actual instruction encoding these simply swap the
predicate registers and/or the input floating-point
registers.

The fctype field has two possible values, none (i.e. the
field is omitted in the assembly syntax), and unc. If
omitted, the result of the comparison and its
complement are written to the designated predicate
registers in the usual way. If the completer unc is used,
however, then the behavior is the same if the qualifying
predicate qp of the instruction is true, but both the
predicate registers p1 and p2 are cleared if qp is false.

It is often desirable to classify a floating-point number,
for example to abort a calculation if an input is infinite
or NaN. A comprehensive instruction for classifying the
floating-point value in a register is fclass:

 (qp) fclass.fcrel.fctype p1, p2 = f2, fclass

The result of classifying the contents of f2 is written to
the predicate registers p1 and p2, controlled by the
optional fctype in the same way as for comparisons (i.e.
its values can be none or unc). The fcrel field may be m
(f2 is a member of the class specified by fclass) or nm
(f2 is not a member of the class specified by fclass). The
actual classification is encoded as a 9-bit field whose
bits are interpreted to determine whether the floating-
point value is: positive or negative; zero, unnormalized,
normalized or infinity; NaN or NaTVal.

Division and Square Root

There are no instructions specified in the Itanium
architecture (except in IA-32 compatibility mode) for
performing floating-point division or square root
operations. Instead, the only instruction specifically
intended to support division is the floating-point
reciprocal approximation instruction, frcpa, which
given floating-point numbers a and b, normally returns
an approximation to 1 / b good to about 8 bits. The
syntax of this instruction is as follows:

 (qp) frcpa.sf f1, p2 = f2, f3

Similarly, the only instruction to support square root is
the floating-point reciprocal square root approximation

instruction frsqrta, which given a floating-point number
a, normally returns an approximation to 1 / √a good to
about 8 bits.

 (qp) frsqrta.sf f1, p2 = f3

In special cases such as b = 0 for frcpa or a = 0 for
frsqrta, these instructions actually return the full IEEE-
correct result for the relevant operation (the full
quotient in the case of frcpa), and indicate this by
clearing the output predicate register p2. Usually,
however, the initial approximations need to be refined
to perfectly rounded quotients or square roots by
software, and this is indicated by setting the predicate
register p2. Consequently, one can simply predicate the
software responsible for refining the initial approx-
imation by this predicate register. Thanks to the
presence of the fma instruction, quite short straight-line
sequences of code suffice to do this correction. There
are several reasons for relegating division and square
root to software.

 • By implementing division and square root in
software, they immediately inherit the high degree of
pipelining in the basic fma operations. Even though
these operations take several clock cycles, new ones
can be started while others are in progress. Hence,
many division or square root operations can proceed in
parallel, leading to much higher throughput than is the
case with typical hardware implementations.

 • Greater flexibility is afforded because alternative
algorithms can be substituted where it is advantageous.
It is often the case that in a particular context a faster
algorithm suffices, for example because the ambient
IEEE rounding mode is known at compile time, or even
because only a moderately accurate result is required
(this might arise in some graphics applications).

 • In typical applications, division is not an extremely
frequent operation, and so it may be that the die area on
the chip would be better devoted to something else.

Intel Corporation distributes a number of recommended
algorithms for various precisions and performance
constraints, so the user will not ordinarily have to be
concerned with the details of how to implement these
operations. As an example, consider the single
precision division algorithm, optimized for throughput
(it has the smallest possible number of floating-point
instructions, resulting in the minimum latency per result
in software-pipelined loops): The algorithm calculates q
= a/b in single precision, where a and b are single
precision numbers, rn is the IEEE round to nearest
mode, and rnd is any IEEE rounding mode. All other
symbols used are 82-bit, register format numbers. The
precision used for each step is shown below.

 (1) y0 = 1 / b⋅ (1+ε0), |ε0|<2-8.886 table lookup
 (2) d = (1 - b ⋅ y0)rn 82-bit register format precision
 (3) e = (d + d ⋅ d) rn 82-bit register format precision
 (4) y1 = (y0 + e ⋅ y0) rn 82-bit register format precision
 (5) q1 = (a ⋅ y1) rn 17-bit exponent, 24-bit mantissa
 (6) r = (a - b ⋅ q1) rn 82-bit register format precision
 (7) q = (q1 + r ⋅ y1) rnd single precision (IEEE)

The assembly language implementation follows [9],
assuming the input values are in floating-point registers
f6 and f7, and the result in f8:

 frcpa.s0 f8,p6=f6,f7;; // Step (1) y0=1/b in f8
 (p6) fnma.s1 f9=f7,f8,f1;; // Step (2) d = 1-b*y0 in f9
 (p6) fma.s1 f9=f9,f9,f9;; // Step (3) e = d+d*d in f9
 (p6) fma.s1 f8=f9,f8,f8;; // Step (4) y1 = y0+e*y0 in f8
 (p6) fma.s.s1 f9=f6,f8,f0;; // Step (5) q1 = a*y1 in f9
 (p6) fnma.s1 f6=f7,f9,f6;; // Step (6) r = a-b*q1 in f6
 (p6) fma.s.s0 f8=f6,f8,f9;; // Step (7) q = q1+r*y1 in f8

Support for software pipelining on Itanium processors
allows for this algorithm to be scheduled without any
additional code, so that one result is generated every 3.5
clock cycles (since there are 7 floating-point
instructions to schedule on 2 floating-point units on
Itanium and Itanium 2 processors). This is a lot more
efficient than on most present-day processor
architectures.

Table 3.2 shows the Itanium 2 processor cycle times for
the division root algorithms of various precisions (a
similar table is available for square root [9]). For
algorithms optimized for latency, the operation latency
is given, in number of clock cycles. For operations
optimized for throughput, the number of clock cycles
required to generate one result is given.

Table 3.2. Latency and Throughput for Floating-Point
Division on the Itanium 2 Processor

Division Single
Precision

Double
Precision

Double-
Extended
Precision

Optimized
Latency

24 28 32

Optimized
Throughput

3.5 5 7

The square root algorithms rely on loading constants,
and the time taken to load these constants is not
included in the overall latencies. If the function is
inlined by an optimizing compiler, these loads should
be issued early as part of normal operation reordering.
For comparison, note that on the Itanium 2 processor, a

floating-point add/subtract, multiply, or fused multiply-
add operation has a latency of 4 clock cycles, and a
throughput of 0.5 clock cycles (meaning that two
results can be generated every clock cycle, for example
in a software-pipelined loop).

Additional Features

The Itanium architecture includes a number of other
useful floating-point instructions that have not been
mentioned, which are covered in detail in [4]. They
include:

• transferring values between floating-point and integer
registers by means of the getf and setf instructions

• floating-point merging, useful in order to combine
fields of multiple floating-point numbers to give a new
number using the fmerge instruction

• floating-point to integer and integer to floating-point
conversion using the fcvt instructions

• integer multiplication and division - the Itanium
architecture does not specify a full-length integer
multiplication or division instruction; instead, such
operations are intended to be implemented using the
floating-point unit, by first transferring the arguments to
floating-point registers, performing the multiplication
or division there, and transferring the result back

• floating-point maximum and minimum, using the
fmax and fmin instructions

Conclusion
The Itanium floating-point architecture was designed so
that its high performance, accuracy, and flexibility
characteristics make it ideal for technical computing.
Floating-point enhancements include a high precision
and wide range basic floating-point data type, the fused
floating-point multiply-add operation, software division
and square root operations, and a large number of
floating-point registers. Floating-point code can also
draw on other generic Itanium architecture features
such as predication, register rotation, high memory
bandwidth, and speculation.

All floating-point data types are mapped internally to an
82-bit format, with 64 bits of accuracy and a 17-bit
exponent. This affords calculations that are more
accurate, and do not underflow or overflow as often as
on other processors. The great flexibility in using and
combining various floating-point formats and
computation models makes it easy to implement
complex numerical algorithms more efficiently than
before.

The fused multiply-add operation combines two basic
floating-point operations in one, with only one rounding
error. Besides the increased accuracy, this can
effectively double the execution rate of certain floating-
point calculations, as the fused multiply-add operation
forms an efficient computation core that maps perfectly
to several common algorithms used for technical and
scientific purposes.

The large number of floating-point registers available,
of which some are static and some are rotating, allows
for efficient implementation of complicated floating-
point calculations. An illustration of software and
hardware interaction in the Itanium architecture, this is
achieved on one side by avoiding frequent accesses to
memory, and on the other through software pipelining
of loops containing floating-point computations.

The highest SPEC CFP2000 score for a single
processor system, of 1431, belongs currently to an
Itanium 2 system running at 1GHz - the Hewlett-
Packard HP Server RX2600. The best performing P4
system, running at 3.06 GHz, has a score of 1092. The
SPEC CINT2000 scores are in reverse order though –
810 and 1099 respectively. This gap will likely
decrease and the advantage is expected to be on the
Itanium processor family side as its core frequencies
will get higher - today’s Itanium processors run at
relatively low frequencies, and as the compiler
technology on which Itanium processors depend so
much continues to evolve.

References
[1] Intel(R) Itanium(TM) Architecture Software
Developer's Manual, Revision 2.0, Vol 1-4, Intel
Corporation, December 2001
[2] John Hennessy, David Patterson, “Computer
Architecture - A Quantitative Approach”, Morgan
Kauffman Publishers, Inc., third edition, 2002
[3] Peter Markstein, ‘‘IA-64 and Elementary Functions:
Speed and Precision”, Hewlett-Packard/Prentice-Hall
2000
[4] Marius Cornea, John Harrison, Ping Tak Peter
Tang, “Scientific Computing on Itanium-based
Systems”, Intel Press 2002
[5] John Crawford, Jerry Huck, “Motivations and
Design Approach for the IA-64 64-Bit Instruction Set
Architecture”, Oct. 1997, San Jose,
http://www.intel.com/pressroom/archive/speeches/mpf1
097c.htm
[6] ANSI/IEEE Standard 754-1985, IEEE Standard for
Binary Floating-Point Arithmetic, IEEE, New York,
1985
[7] O. Moller, “Quasi double-precision in floating-point
addition”, BIT journal, Vol. 5, 1965, pages 37-50

[8] T. J. Dekker, “A Floating-Point Technique for
Extending the Available Precision”, Numerical
Mathematics journal, Vol. 18, 1971, pages 224-242
[9] “Divide, Square Root, and Remainder Algorithms
for the Itanium Architecture”, Intel Corporation, Nov.
2000,
http://www.intel.com/software/products/opensource/libr
aries/numnote2.htm,
http://developer.intel.com/software/products/opensourc
e/libraries/numdown2.htm

http://www.intel.com/pressroom/archive/speeches/mpf1097c.htm
http://www.intel.com/pressroom/archive/speeches/mpf1097c.htm
http://www.intel.com/software/products/opensource/libraries/numnote2.htm
http://www.intel.com/software/products/opensource/libraries/numnote2.htm
http://developer.intel.com/software/products/opensource/libraries/numdown2.htm
http://developer.intel.com/software/products/opensource/libraries/numdown2.htm

	Intel® Itanium® Floating-Point Architecture
	Abstract
	The Intel® Itanium® architecture is increasingly
	Introduction
	Itanium Floating-Point Architecture
	
	Floating-Point Formats
	Register and Memory Encodings
	Status Fields and Exceptions
	The Floating-Point Multiply-Add
	Exact Arithmetic
	Accurate Remainders
	Accurate Range Reduction
	Comparison and Classification
	Division and Square Root
	Additional Features

	Conclusion
	References

