Bridging the Gap between the Undergraduate and
Graduate Experience in Computer Systems Studies

Lori Carter and Scott Rae
Department of Math and Computer Science
Point Loma Nazarene University
San Diego, California 92106
{lcarter, srae}@ptloma.edu

Abstract

This paper presents the contents of a Special Top-
ics Class used to introduce undergraduate students
to the different approach to learning and thinking
found in the graduate level Computer Systems envi-
ronment. During the first half of the semester, the
students received instruction in reading and writ-
ing technical documents, and had experience with
professor-guided self-study. During the second half
of the semester, the students presented an idea for
a simulator, built it, and used it to conduct sim-
ple experiments. After completing the experiments,
they were encouraged to brainstorm variations to the
algorithms or architectures they simulated, which
would improve performance. Student evaluations re-
vealed that for 50% of the students, their interest in
graduate school increased as a result of the class.

1 Introduction

The Computer Science undergraduate experience
tends to be one of passive learning, where the pro-
fessors are the producers and the students the con-
sumers. Although in early classes this approach is
necessary, and in later classes it is certainly changing
[11] [8] [9] there is still a chasm between the under-
graduate style of learning, and the graduate school
experience, where the student becomes the producer.
The disparity between the two levels of education af-
fects both the number of students considering grad-
uate school and the quality of the students entering
graduate programs. For some students, obtaining a
Ph.D. is not even a consideration. With a bachelors
degree in hand, they are competent programmers
and tired of sitting in classes. Completely unaware
of the challenges and opportunities that await, the
graduate school scenario they view as “more of the
same” is unappealing. Conversely, if the student has

had some exposure to the opportunities for fascinat-
ing research, creativity and autonomy found at the
Ph.D. level, the tendency is to wonder if their un-
dergraduate education has been adequate to make
them a viable candidate for such an undertaking. If
these students do pursue graduate education, they
are, in fact, often ill-equipped to succeed.

This paper describes a class that was designed
to bridge the gap between the undergraduate ap-
proach to Computer Systems studies, and the grad-
uate level approach. Where the undergraduate cur-
riculum can be quite broad and structured, the grad-
uate counterpart tends to be more correctly char-
acterized as narrow, directed self-study. Successful
graduate students must be able to find the necessary
information and produce the desired results with a
modicum of guidance from an instructor or advisor.
They should have the ability to think "outside of
the book", dreaming of new approaches rather than
simply embracing what has gone before. In addi-
tion, graduate students are expected to be able to
read, write, and present technical papers; using very
different skills than those taught in English Compo-
sition and Speech 101.

In an effort to introduce students to the gradu-
ate level approach to learning and thinking, and to
improve their confidence and competence with skills
required at that level, a Special Topics course was
used to introduce Juniors and Seniors to Computer
Systems research. During the course of the semester,
the students were required to learn Java (their first
language was C++), using the directed self-study
method. The end product of this class for each of
the students was a Java Applet that simulated some
component of Computer Architecture or Operating
Systems, and which was amenable to simple exper-
imentation. In preparation for building the simula-
tor, each student presented a powerpoint presenta-
tion on the proposed project, receiving suggestions
on design and presentation skills from their peers.
They were introduced to technical papers written on

their topics, and received instruction on, and prac-
tice in, reading these papers. The students wrote
a proposal and final paper on the chosen simula-
tion using the technical style exemplified by the pa-
pers they read. Student evaluations revealed that
for most of the students, their interest in graduate
school had increased as a result of their experiences.
The vast majority of students indicated that confi-
dence in their ability to find the solution indepen-
dently had dramatically increased. The remainder
of the paper discusses the various components of the
class, and the responses of the students involved.

2 Syllabus

The semester long Special Topics course was divided
into 2 distinct halves, with grade weights assigned as
follows:
Phase 1 (individual):
Java, DOS labs 30%
Technical Paper Summaries 15%
Paper/Java/DOS Quizzes 15%
Project Proposal 40%

Phase 2 (group if desired):
Powerpoint presentation 20%
Progress Meetings 30%
Final project (paper, demo) 50%

The content of the first half of the semester was
to be completed on an individual basis, while the
second half of the semester could be completed in
groups of 2 if desired. It is interesting to note that
of the 14 students involved in the class, only 3 groups
were formed. Most of those that chose to do the work
as individuals indicated that the motivation for this
choice was to reduce their dependence on others, and
to increase their individual learning.

During the first 8 weeks, the students split their
classroom time between laboratories and lectures.
The lecture time was used for the introduction of
Java topics and learning technical communication
skills, while the labs focused mainly on self-learning
of the Java language. Many of the Java Labs were
based on the Sun Java Tutorial [17]. The schedule
for lectures and labs is shown in Figure 1. Weeks
9-16 were spent building the simulator, beginning
with a powerpoint presentation of their proposed
design. Students met with the professor weekly to
check progress and discuss changes. At the end of
the semester, each student produced a simulation
demonstration and final paper detailing their simu-
lator design, experimental results, and future work.

Week | Lecture Lab
1 Intro to DOS, Java Intro to DOS, “A Cup of Java”
(Sun Tutorial)
2 Intro to Technical Papers | Group Analysis of organization,
content, language of 3 systems
papers
3 Basis Java Constructs, Sun Tutorial using “Click Me”
Discuss paper 1 applet

4 Intro to Java Interfaces, Modifying applets to implement
Discuss paper 2 Listeners

5 Java Threads, Layouts Animation Lab
Discuss paper 3

6 Writing Proposal, Finding | Finish Animation Lab

background papers Locate background papers

7 Writing a Simulator Analysis of Turing Machine
applet simulation

8 Technical Presentations proposal draft meetings

Figure 1: Lecture and Lab schedule for the first 8
weeks.

3 Directed Self-Study of the
Java Environment

When this class was originally envisioned, an
extensive search for a suitable Java textbook was
conducted. Although many fine books exist, the
conclusion was reached that part of the goal of this
class was to encourage life-long self-learning. Conse-
quently, the class was taught without any textbook,
using internet-available resources and encouraging
self-discovery rather than “spoon-feeding”. Ini-
tially this was very uncomfortable for the students.
However, as they began to work though the on-line
tutorials, following links to various "rabbit trails"
on related topics, most began to realize that there
was a huge amount of information available on the
internet, and that it was more current than what is
available in a textbook. In addition, they became
adept at looking for and finding examples of Java
code that performed tasks similar to what they were
desiring to do, modifying it to fit their needs. Rely-
ing on a textbook would have limited the examples
that many students would have considered.

As can be seen from the schedule in Figure 1, Java
was introduced to the students through lectures, tu-
torials, modification and analysis of existing Java
Applets and through the experience of original ap-
plet creation. The goal of the lectures was to present
basic differences between C++ and Java, and to pro-
vide introduction to Java Applet requirements, com-
ponents and capabilities. The use of the Sun Java
tutorials guided the student through learning a spe-
cific topic, while also providing links to be followed
as the student’s interest was piqued with regard to

a particular subject. As a part of other labs, stu-
dents were directed to sources on the internet that
exemplified specific features of Java (interfaces, lay-
outs, animation) [2] [12]. Requiring the students to
answer questions about, and modify, existing ap-
plets, forced them to understand how the features
worked, and provided a model for original imple-
mentations. Written analysis of an existing simula-
tion [14] provided a framework for putting together
a larger project.

4 Reading and Writing Techni-
cal Papers

In a course focused on introducing students to the
post-graduate style of learning, students must be
taught to digest and comprehend technical papers,
the primary source of information for most recent
technical developments. To develop those skills, stu-
dents first reviewed three sample papers: "A Com-
parison of Software Code Reordering and Victim
Buffers[1]," "WSClock — A Simple and Effective Al-
gorithm for Virtual Memory Management[6]," and
"Efficient Implementation of the First-Fit Strategy
for Dynamic Storage Allocation[4]." The papers ex-
tended Computer Architecture and Operating Sys-
tems concepts that the students had encountered in
prerequisite or corequisite courses.

To introduce the reading process, a brochure
obtained from the internet [7] outlined basic steps to
comprehension, such as underlining, outlining, note-
taking, and defining unfamiliar words. A worksheet
provided by the professor helped focus attention on
five basic sections contained in some form in most
papers: the abstract, the introduction, background
information, methodology, and results. Students
were asked to compare the structures of the three
papers to see how different authors might represent
the same basic information. Other questions, such
as, "How are the results presented? Text? Tables?
Graphs?" and, " What is the purpose of the figures
in each paper?” led the students to evaluate both
the contents and the presentation of the papers.

For the second phase of this component of the
class, students summarized the papers’ contents in a
one-page write-up, based on the major points they
had identified. In the summary, they were asked to
begin to mimic the technically-oriented style mod-
elled in the papers they had read. The act of
condensing the information to a readable summary
helped in data retention. In addition, to encour-
age good note-taking practices, quizzes were admin-
istered that tested the students’ ability to extract

details and data they were unlikely to simply re-
tain. Students were allowed access to both their
summaries and the papers, but a time limit ensured
that only information that had been highlighted,
noted, or outlined previously, would be helpful to
the student in answering the questions.

During the second half of the semester, stu-
dents had the opportunity to apply what they had
learned. In preparation for designing their applet
projects, the students were required to research their
chosen simulation topic by locating and reading at
least two existing papers closely related to the topic.
At this point, the students moved from reading tech-
nical papers to writing them. After carefully re-
searching the subject, class members wrote draft
proposals in research format, detailing both the al-
gorithmic and design requirements for the projects.
The selected background papers were referenced to
support the projects’ relevance. Subsequent to sim-
ulation completion, final papers were written, mod-
elled after those the students had studied, complete
with figures showing actual simulation interfaces,
and graphs detailing the results of their experiments.

5 Presentation

A second reason for not having a course text was
economic. The variety of topics presented would
have necessitated the purchase of multiple text-
books. Again, the internet was the source of expert
information on good presentations. A very read-
able, practical essay on technical presentations was
located [2]. Students were required to read the essay,
and make a check-list of features that should exist in
presentation. The following class period, the profes-
sor gave a powerpoint presentation on what was to
be included in the student’s presentation, and sim-
ulation project. The professor’s presentation was
critiqued by the class, based on their check-lists.

Finally, each student gave a Powerpoint presenta-
tion on their proposed simulations. This was used
not only as an opportunity to practice presentation
skills, but as an opportunity for peer feedback on
their proposed simulator interface designs. The pre-
senter as well as the audience received a grade for
the exchange.

6 Simulation and Experiments

As was previously mentioned, the final project for
this course was a Java Applet that simulated some
aspect of Computer Architecture or Operating Sys-

tems. This project consumed most of the second
half of the semester. During this time period, few
formal class sessions were held. Instead, class time
was filled with individual meetings between the stu-
dent and professor, much the way an advisor-advisee
meeting would occur at the graduate level. Require-
ments for the simulators were as follows:

e Must be completely original work, completed as
a Java Applet (or Japplet)

e Must be amenable to experimentation, allowing
user interaction

e Must be on a pre-approved topic

e Must be animated, showing a progression
through an algorithm etc.

e Must display some kind of results

6.1 Why Design Simulators?

The final project for this course was a simulation for
a variety of reasons. First, much of the systems re-
search is completed using simulators [15]. Clearly,
the simulator instructs and informs the user, partic-
ularly when the process simulated is depicted visu-
ally. A less obvious benefit is available to the con-
structor of the simulator. The building of the sim-
ulator improves the understanding of the topic sim-
ulated, and the process of re-creating a technique
often has the effect of causing the programmer to
consider other, better ways of accomplishing the sim-
ulated task.

Second, the simulator provides a target for re-
search. Prior to designing the simulator, the stu-
dents were required to find (and read) several tech-
nical papers on their subject, to improve their ex-
pertise. After construction, the simulators became
a platform for conducting simple experiments. Al-
though traditional Computer Architecture research
is conducted on comprehensive simulators such as
Simple Scalar [5], there are certainly arguments sup-
porting the benefits of simpler component simulators
[3]. Recent textbooks include access rights to web
pages with links to applets supporting the concepts
taught in their books[10].

The third reason for this project this is that it
was meaningful for the students. The simulations
will be used as learning tools for upcoming students
in Computer Architecture and Operating Systems
courses.

6.2 Simulator Implementations and
Experiments

The interfaces for 4 of the simulators created are
shown in Figures 2, 3, 4, and 5. Figure 2 shows the
interface of a simulator designed for instruction on
and experimentation with cache associativity. The
user of the simulator inputs a string of memory ref-
erences and the 2 levels of associativity to be com-
pared. The user can request that the simulation run
to completion and display the results (cache misses
and total access time), or to step through each cache
access. If the latter is chosen, the simulator displays
which memory addresses fill the cache lines in each
associativity version for each address of the string of
references. The user learns how associativity works,
which addresses are brought into the cache with a
single address request, and can experiment with how
different levels of associativity perform with differ-
ent patterns of memory requests (random, sequen-
tial, clustered etc.).

Figure 3 displays an interface for an applet that
simulates different CPU Scheduling algorithms. The
user inputs tuples of information about several
processes entering the ready queue for CPU time.
Each tuple includes the process ID, the time of ar-
rival in the system, and the duration of the current
CPU burst for the process [13]. The output of the
simulation is an animated Gantt chart displaying the
CPU use of the processes. In addition, there is a
text area reporting the ultimate turnaround time
and response time for each process, as well as the
throughput for the entire set of processes. The
user learns how each of the algorithms work, and
can experiment with the effectiveness of each algo-
rithm for improving turnaround time, response time
and throughput on different patterns of process re-
quests.

Figure 4 depicts a simulator that can be used to
explore different paging algorithms for the virtual
memory system. The user can choose between the
FIFO algorithm for page replacement, and the Clock
(also known as Second Chance) algorithm [13] with 1
or 2 reference bits, and choose the number of frames
assigned to the process . In addition, the user can
enter a string of pages in the order in which they
are required by the process. The output of the sim-
ulation is a visual display of each page entering its
assigned frame, and the number of page faults re-
sulting from the use of each algorithm. The project
allows the user to experiment with different patterns
of page accesses for several page replacement algo-
rithms: FIFO, and several different implementations
of Clock (1 bit, and 2 implementations with 2 refer-
ence bits).

Cache Hardware Configurations
Configuration1 [Direct - Configuration2 [Fully -
Input String of Data References I 327 932 132 160 552 84 838 761 188 95 172 125984 774 4826
Data Reference: |160 Input Type: Random =
Run
Direct Mapped Cache Fully Associative Cache
¥V T 7 6 5 4 3 2 1 0 # ¥ T 7 6 5 4 3 2 1 ©
0 1 2 135134133132131 130129128 0 1 40 327 326 325 324 323 322 321 320
10 00 0 000 000 0 1 116935934933 932 931 930 320 928
2 0 0 0 0o o 0 0 0 0 0 o 1 16 135134 133132131 130 129 128
3 0 00 0O 0 0 0 0 0 0 1 20 167 166 165 164 163 162 161 160
4 1 2 167 166 165 164 163 162 161 160 o oo 0 0 0 0 0 0O 0 O
5 0 00 oo 0 0 0 0 0 0o oo 0 0 0 0 0 0 0 O
6 00 000 00 000 00000000000
7 0 0 000 0 0 0 0O O 0o oo 0 0 0 0 0 0O 0 O
Rl 2 il I

Figure 2: Simulation compares behavior of caches
with different levels of associativity

Sio I Normal

Resume

Skip

Figure 3: Interface for simulation of CPU scheduling

Although most of the students designed simula-
tions based on ideas with which they were already
familiar, some students became intrigued with new
ideas based on more advanced material. Figure 5
shows an interface for a simulator demonstrating
power dissipation and fan out. The user can choose a
circuit and set the value for each of the circuit inputs.
The simulation shows the propagation of the values
through the gates, coloring outputs with red for 1
and blue for 0. Experiments using this simulator
can help provide insight as to which combination of
gates provides the optimal circuit in regard to power
usage. Another student designed a simulator dealing
with victim caches, a topic she became interested in
after reading one of the introductory papers early in
the semester [1]. Her experiments centered around
the size or even existence of the victim cache.

7,1,0,8,4,3,9.8,9,0,0,8,2,6,3,5

| T
stop | esume || pouse | tort

Figure 4: Simulation depicting page replacement
6.3 Progress Meetings

During the weekly progress meetings students were
expected to present to the professor evidence of their
progress, showing that they had completed the tasks
discussed at the last meeting. In addition, they
could receive individual help from the professor, and
discuss possible implementation changes. Notice
that this also served to assure the integrity and orig-
inality of the students’ code. They were required to
implement the suggestions that had been discussed
the prior week. Thirty percent of the grade for the
second half of the semester was based on their per-
formance at these meetings.

7 Student Response

Overall, student response to the course was ex-
tremely positive. All agreed that it was very dif-
ferent from what they had previously experienced.
A common thread that ran through student re-
sponses to most aspects of the class was that it was
harder, but ultimately more enjoyable and satisfying
than other Computer Science courses. The students
learned a lot about their learning styles, and their
ability to work independently. The students were
asked to evaluate the learning experience provided
by each component of the class on a scale of 1 to
5, where 1 is described as "fairly worthless" and 5
being "an excellent learning experience". Figure 6
shows the average ranking provided by the students
for each component.

& npplet viewer: digital.class —of x|
Applet
NOR Circuit v | pisplay circut 6 A
Legend: [crom 4106
Lagical 0 | Voltage = 5
Logical 1
e g Frarm 5 to 6:
Yoltage = 5
= Outoff:
Yoltage = 0V
Current=16.0m#A
i Fower Dissipation
1350
[Total Power Dissipation:
TO0.0mi
1~
o
Start “Stop Step.
Figure 5: Interface of simulation demonstrating

power dissipation

5

»
s}

EN

w
13

w

N

average component ranking
n
o

= w

o
13

DOS/Java Studem

o

Java Tutorlals Applet
projects Pr

Tech Paper Paper writing

Figure 6: Student rankings of component learning
experiences.

It is interesting to note that the DOS and Java
presentations, the major lecture component of the
class were ranked the lowest by the students, while
the active, independent learning experiences (tuto-
rials and projects) were ranked the highest. One
aspect of the class, student presentations, involved
the students sharing with each other things they had
learned in the process of completing applet project
assignments. This did not get as high a rating as was
expected. When questioned about their responses,
the students indicated that, although the material
was interesting, it was hard to appreciate and ap-
ply when they weren’t working on the same exact
project.

Another questions that was asked on the evalua-

OBefore WAfter

Student

Figure 7: Student rankings on graduate school con-
sideration before and after class

tion was stated as follows:

This class has introduced a number of
things usually found only at the graduate
level (reading, analyzing and writing tech-
nical papers, directed self-study, thinking
more deeply about a subject than what is
introduced in a textbook.) We’re inter-
ested in knowing if this class has in any
way influenced your desire to seek further
computer science education at the gradu-
ate level. Please indicate your interest
in graduate school prior to this class, and
at this point in the semester on a scale
of 1-5, where 1=grad school? No way,
never!; 2=well, it isn’t completely distaste-
ful; 8=sounds kinds of interesting; 4=I
would seriously consider it; 5=count me
inl.

Figure 7 shows the student responses for both be-
fore and after. There were 14 students involved in
the class, and 2 did not take the survey. The re-
mainder of this section describes in more depth the
responses of the students to some of the class com-
ponents.

7.1 Response to Self-directed Study
Leading to Simulation Project

As is clear from the results shown in Figure 6, learn-
ing Java through tutorials and applet projects was
generally well received. The internet-based assign-
ments (tutorials and code modification) presented
initial insights to the students as to where they

could locate the information required to complete
the larger simulator project. It was still a giant
leap to the implementation of this larger project.
Many students were initially frustrated. They were
not used to persevering when the information they
wanted was not immediately available. Students
approached this dilemma in 3 different ways:

1. They found examples of code that did tasks sim-
ilar to what they wanted to do, copied it in to
their project, and acted mystified when it didn’t
work.

2. They found simple examples of components of
the tasks they wanted to accomplish, and tried
to understand them and then put them all to-
gether, with varying degrees of success.

3. They studied complex examples of similar tasks
until they really understood what was happen-
ing, and then made an overall plan for the com-
pletion of their project using similar techniques.

As can be expected, the first approach led to
the most frustration. The more initial understand-
ing that was gained, the greater the success, and
ultimately, the less time was spent on completing
the project. The students taking approach num-
ber 1 also gave up easily on the applet modification
projects earlier in the semester. They were far too
conditioned to being given a formula, and just plug-
ging in different numbers without taking the time to
understand the concept.

Fortunately, the majority of students did not take
approach number one, and ultimately all were ex-
tremely proud of their successful completion of the
assignment. Student comments included "it was
like self-learning with a safety net - you could come
to the professor if you were really stuck"; "I learned
so much more this way. I had something to apply
my discoveries to, and I found the answers myself, so
the information will stick". Even the students who
initially rebelled at the idea of self-learning grate-
fully received and read (on their own) texts on Java
and Java applets and caught up with the rest of the
class. Once they realized they weren’t going to be
spoon-fed, they learned how to feed themselves.

7.2 Response to Technical Paper

Reading/Writing

The class members were required to read 3 technical
papers over the course of 3 weeks. At first, they were
resistant and frustrated. By the last paper, they had
gotten quite good at extracting the important infor-
mation. Several students indicated that they were

intrigued with the information found in the papers,
information not found in the textbook realm, and
wanted to pursue the topics further. Most were de-
lighted that they were able to make sense of the ma-
terial by the third paper.

The students’ writing improved dramatically over
the course of the semester, beginning with the sum-
maries and ending with the final paper. Some of the
students who weren’t terribly gifted in Composition
100 realized they had a talent for clear, concise tech-
nical writing. One of the students was coauthor on
this paper.

7.3 Response to Simulator Building
and Experimentation

Most students found the simulator building to be a
very satisfying experience. Each student had the
experience of becoming an expert in a small area
of Computer Systems. They admitted to recogniz-
ing that their initial knowledge of their topic was
imprecise. The processes of building the simulators
required that they hone their knowledge of the al-
gorithm or architecture. They seemed to enjoy the
process of composing hypotheses and determining
their validity.

8 Conclusions and Future

Work

The Special Topics Class was designed to equip un-
dergraduate students to be self-learners, creative
thinkers and competent technical readers, writers,
and presenters. It has appeared to be, for the most
part, a very successful experiment. Fifty percent
of the students responding to the evaluation noted
an increased interest in graduate school. More infor-
mally, almost all of the students indicated experienc-
ing a heightened level of confidence in their abilities
to learn and perform.

The next time this class is taught, the number
of lectures on DOS and Java would probably be
decreased, freeing up time to do more in the form
of tutorials, applet modification and code analysis.
More attention would be paid to making the tran-
sition from simple applets to an extensive project
less abrupt. In addition, the student presentations
on "what I learned" would be reserved for the sec-
ond half of the semester. During this time period,
as the simulators were being constructed, students
were much more eager to exchange information.

The internet is already an excellent source for cur-
rent material in teaching computer systems [16]. We
plan, in the near future, to add our contribution in
the form of a web page with links to all of the stu-
dent simulation projects for the purpose of teaching
simple computer systems concepts.

Although this class involved only 14 students, it
could easily scale to a larger class size with the help
of graduate assistants. This would actually provide
invaluable experience to Ph.D. students who, them-
selves, would like to pursue academia as a career.

9 Acknowledgements

Paul Kelly, Jeremy Bradney, Richard Trager, Steven
Potter and Jenni Sapp contributed interface designs
to this paper.

References

[1] I. Bahar, B. Calder, D. Grunwald, "A com-
parison of software code reordering and vic-
tim buffers," Third Workshop on Interaction be-
tween Compilers and Computer Architectures,
October 1998.

[2] K. Boone, "The
/ /www.kevinboone.com

k-zone," http:

[3] P. Bose, "Simulation in the small: the case for
simpler models and testcases in computer ar-
chitecture education and research", Proceedings
WCAE 2002, Workshop on Computer Architec-
ture Education, Vancouver, BC, June 10, 2000

[4] R. P. Brent, "Efficient Implementation of the
First-Fit Strategy for Dynamic Storage Allo-
cation," ACM Transactions on Programming
Languages and Systems, Vol. 11, No. 3, July
1989.

[5] D. Burger, T.M. Austin and S. Bennett,
"Evaluating future microprocessors: the Sim-
pleScalar tool set," Tech. Rept. CS-TR-~96-1308.
Univ. of Wisconsin-Madison, July 1996.

[6] R. Carr and J. Hennessy, "WSClock - a sim-
ple and effective algorithm for virtual mem-
ory management," Proceedings of the Fighth
ACM Symposium on Operating System Princi-
ples, December 1981.

[7] M. J. Hanson, D. McNamee, "Efficient
reading of papers in science and technology, "
http://www.cse.ogi.edu/~dylan/efficientReading
.html

[8] J. Herath, S. Ramnath, A. Herath, S. Herath,
"An active learning environment for intermedi-
ate computer architecture courses," Proceedings
WCAE 2002, Workshop on Computer Architec-
ture Education, Anchorage, AK, May 26, 2002

[9] W. T. Hsu, "Experiences integrating research
tools and projects into computer architecture
courses," Proceedings WCAE 2000, Workshop
on Computer Architecture Fducation, Vancou-
ver, BC, June 10, 2000

J. Kurose, K. Ross, Computer Networking:
A Top-Down Approach Featuring the Internet,
Addison-Wesley, 2003

[10]

[11] L. Papaefstathiou, C. P. Sotiriou, "Read, use,
simulate, experiment and build: an integrated
approach for teaching computer architecture,"
Proceedings WCAE 2002, Workshop on Com-
puter Architecture Education, Anchorage, AK,

May 26, 2002

R. Sebesta, Programming the World Wide Web,
Addison-Wesley, 2002

A. Silberschatz, P. Galvin, G. Gagne, Applied
Operating Systems Concepts, John Wiley and
Sons, 2000.

[14] S. Skinner, "Turing machine simulator
applet," http://www.wap03.informatik.fh-
wiesbaden.de/weberl /turing/tm.html

C. Weaver, E. Larson, T. Austin, "Effective
support of simulation in computer architecture
instruction," Proceedings WCAE 2002, Work-
shop on Computer Architecture Education, An-

chorage, AK, May 26, 2002

W. Yurcik, E. Gehringer, "A survey of web
resources for teaching computer architecture,"
Proceedings WCAE 2002, Workshop on Com-
puter Architecture Education, Anchorage, AK,
May 26, 2002

[16]

[17] "The java tutorial," http:

/ /www.java.sun.com/docs/books/tutorial

