
DOP – A CPU CORE FOR TEACHING BASICS OF COMPUTER ARCHITECTURE

Milos Becvar, Alois Pluhacek and Jiri Danecek

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague,

Abstract: A simple 16-bit processor core called DOP and its teaching environment is
presented. The DOP processor illustrates the basic principles of computer organization
and is therefore used in the introductory hardware course. Its major features are
simplicity, availability of an FPGA implementation and a C compiler. This paper
presents the description of the core, HW and SW tools and teaching methodology.

1. INTRODUCTION

An introductory computer hardware course should teach
students to the fundamental principles of computer
internal functionality. Students, who are familiar with
programming in high-level languages, are required to
understand the interaction between a processor, a
memory and I/O devices, an internal organization of
processor, computer arithmetic and basics of digital
design. Our experience has shown that it is not an easy
task for most of them. The functionality of the processor
executing instructions seems to be something almost
mythical and totally unrelated to intuitive execution of
a program in high-level language.

It is obvious that we have to provide some practical
experience helping to understand these abstract
principles. One common way is to let students to create
a program in high-level language, which simulates a
simple processor. However, this approach is not good
for illustrating the relation between high-level
languages, compilers, program in assembly language
and actual “binary” program executed by processor.
Another approach uses visualization simulators and HW
emulators (Bruschi, 1999; Yurcik et al, 2001; Brorson,
2002; Ellard et. al, 2002).

We present a simple 16-bit processor core called DOP
that is currently used in our introductory computer
organization course. The processor is simple, yet fully
operational, and could be used in the embedded
applications, which do not require an excessive

computing performance. The DOP processor core was
developed at our department together with various SW
and HW visualization tools (Danecek et al., 1994a).

The goal of this paper is to describe this processor core
and its learning environment for teaching basics of
computer organization. The paper is organized as
follows - section 2 outlines the introductory course and
characterizes the students, section 3 describes the DOP
processor core, section 4 describes the SW and HW
tools supporting this processor and finally section 5
outlines the use of the DOP in our introductory course.

2. COURSE REQUIREMENTS

The introductory computer organization is a one-
semester course, which is mandatory for all
undergraduate students of 3rd year of computer science
and engineering. Almost 200 students take this course
every year. The course covers the basic principles of
computer functionality, the data representation,
computer arithmetic and the controller design.
Furthermore it introduces basics of practical digital
design.

Students have relatively strong background in high-level
languages and assembly language of x86 and are mostly
SW-oriented. The majority of students thoughts that the
only computer is an Intel x86 PC. The minority of
students has experience in implementing simple digital
circuits and wants to choose HW specialization in
graduate study.

Machine-Oriented
Languages (x86 ASM)

Computer and Logic
Design (DOP)

Computer Architecture
(DLX, MIPS)

x86 assembly language
programming

introduction to computer organization,
components of digital computer,

computer arithmetic, controller design

ISA design, RISC, pipelining, introduction to
ILP processors, memory hierarchy,
 introduction to parallel computers

Advanced Computer
Architecture (MIPS)

ILP processors, multithreading,
quantitative analysis of peripheral subsystem

architectures of parallel computers

Graduate Courses

Undergraduate Courses

Peripheral Devices Computer Networks

Logic Systems

Fig.1. Computer architecture course flow at CTU

Figure 1 shows the place of “Computer and Logic
Design” course in the overall Computer Architecture
flow at Czech Technical University. It also outlines the
main topics covered at each level and a reference
platform.

The main goal of “Computer and Logic Design” course
is to explain the components of digital computer and
functionality of sequential processor built from a simple
datapath and controller. The reference processor should
illustrate these principles. The processor internal
organization should be reasonably simple to be
understood without deep knowledge in the digital
design (note that “Logic Systems” course is
unfortunately scheduled in parallel).

The next undergraduate course traditionally called
“Computer Architecture” revisits the processor
architecture and introduces the concept of pipelining
and basics of techniques used in modern ILP processors
as well as other concepts found in modern computers.
Some topics are covered in separated courses
“Peripheral Devices” and “Computer Networks”.
Undergraduate courses together cover all topics in the
popular reference book “Computer Organization and
Design – HW/SW Interface” (Patterson and Hennessy,
1998). Some topics from the area of peripheral
subsystem and computer networks are covered in more
detail than in this book. The main graduate course
“Advanced Computer Architectures” is obligatory only
for students of HW specialization. This course is based
on the book (Patterson and Hennessy, 2002).

 With this course flow in mind, we can describe the
organization of the DOP, which is used to illustrate the
basic principles of computer organization and design.
The relation between the DOP and more advanced
courses is discussed in the section 5.4.

3. DOP ARCHITECTURE OVERVIEW

The abbreviation “DOP” means “Danecek’s Original
Processor” according to one of its proponents. The
DOP processor has not been primarily designed to be an
educational platform. Its ISA was designed as a result of
experience with writing HLL compilers for
8-bit and 16-bit microcontrollers like 8051, 68HC11,
PIC16C5x, SAB80C166. These simple processors were
designed for assembly language programming and
writing efficient compilers for them is difficult and
sometimes even impossible (Danecek et al., 1994b).
The DOP was intended to be a simple 16-bit processor
core suitable for embedded systems and implementation
in FPGA (Danecek et al, 1994a). The main feature of
the processor is the simple compilation of high-level
languages. From the nature of applications comes the
requirement to optimize the program size over the speed
of execution.

It is not surprising that the result of this development is
an accumulator-oriented processor with variable length
instruction encoding. Its main characteristics are
outlined in Table 1. The processor contains only few
programmer-visible registers. Local variables,
temporaries and parameters are allocated on the stack in
the main memory. This arrangement is valuable for
illustrating relation between HLL programs and actual
“binary” program executed by the processor.

The DOP processor is connected to the byte-organized
main memory and peripheral subsystem by 16-bit
Address Bus and 8-bit Data Bus. (Multibyte data are
stored using Little Endian format) The main memory is
common for the data and instructions.

Main
Memory

Main
Memory

AB(15:0)

DB(7:0)

MRD, MWR

WAIT

I/O
DEVICE #1

CLK
GEN.

&
POR

16

8

DOP CPU MAIN
MEMORY

I/O
DEVICE #N

INTERRUPT
CONTROLLER

(OPTIONAL)

INT INTA

Interrupt requests

2

CLK

RESET

RESET

CLK

IRQ#1

IRQ#n

Fig.2. DOP system level overview

Peripheral devices for DOP could be memory mapped
and processor supports single external maskable
interrupt signal. The interrupt subsystem could be
further expanded by an external interrupt controller.
Interrupt subsystem was added to illustrate the interrupt
service cycle at the HW level. Figure 2 shows the

interconnection between DOP processor, memory and
peripherals. Some parts of this system exists as an
FPGA implementation, others are only modeled in SW
or exist only in the specification (peripheral devices).
For further discussion of HW and SW tools please refer
to section 4.

Table 1 DOP Characteristics

DOP ALU width 16 bit
Internal bus width 16 bit
Address bus width 16 bit
Data bus width 8 bit
Encoding of signed
numbers

2’s complement

Data types supported
by ISA

Word (16 bit), unsigned byte (8
bit), signed short (8 bit)

Multibyte data storage
format

Little Endian

I/O subsystem Memory Mapped
Programmer visible
16-bit registers

PC, SP, W, S, D

Programmer visible 8-
bit registers

L (loop counter), F (Flags)

External interrupts 1 (maskable),
16 interrupts with external
interrupt controller

3.1 DOP Instruction Set Architecture

The DOP ISA is an example of an accumulator-oriented
instruction set with several enhancements.
First operand of ALU instruction is always an
accumulator – register W. Second operand can be
register or memory location (typically on the stack
where local variables and temporaries are located).
The instruction set also includes a dedicated instruction
LLA, which computes the address of local variable on
the stack. Figure 4 shows the example of computation
with local variables.

DOP instruction set supports three data types – 16-bit
word, 8-bit unsigned byte and 8-bit signed short integer.
Bytes and short integers are internally extended to word
length and all operations are performed with these 16-
bit operands. This is another solution than in x86 ISA,
which provides separated instructions for 8-bit
operands. Moreover, all data manipulation instructions
support all three data types. This regularity simplifies
the task of code generation and is also a good
educational example.

DOP ISA also includes several provisions for efficient
support of operands longer than 16-bit word and
addition and subtraction of operands of different sizes
(see Fig.5). Firstly, lower words of the two operands are

added or subtracted (if the shorter operand is an 8-bit
short integer, it is sign-extended). In the same time, the
sign of the second ALU operand is stored in the special
Auxiliary Flag (AF) (see also AUXF signal on the fig.
6). The addition or subtraction is finished by applying
instruction AAF to the remaining words of the longer
operand (instruction adds extended sign XAF of shorter
operand stored in the AF and carry flag CF from the
previous operation.)

There are also two special instruction prefixes
modifying the behavior of the following ALU
instruction. First prefix is an UCF (use carry flag) this
prefix enforces the use of the CF in the following ALU
instruction. For example the prefix UCF followed by an
ADD instruction is equivalent to the ADDC instruction
(add with carry) whereas the UCF followed by the SUB
behaves like the SUBB (subtract with borrow). Second
prefix is the SWW (suppress write to W) that allows
synthesizing the comparison and test instruction. The
SWW followed by the SUB behaves like the CMP (only
flags are set, W is not modified) and the SWW followed
by an AND is similar to the TEST instruction.

OPERATION CODE

8-bit

OPERATION CODE

8-bit

8-bit IMMEDIATE

8-bit

OPERATION CODE 16-bit IMMEDIATE

8-bit 16-bit

Instructions without
Immediate

 Instructions
with short or byte

immediate

Instructions with
word immediate,

jump and call instr.

Fig.3. DOP instruction formats

The DOP is oriented to the high instruction encoding
density and uses three formats of instruction. Most of
instructions occupy only a single byte (1st format);
other formats are used for instructions with 8-bit or
16-bit immediate. The DOP encoding density is
superior over comparable processors. It has been
reported that programs compiled for DOP occupy less
than 60 % of memory space than for 8051. This feature
can be very valuable for embedded systems (Danecek
et. al, 1994c)

LLA S, 0x04 ; S <= SP – 0x04 (address of a)
LLA W, 0x07 ; W<=SP – 0x07 (address of b)
LLA D, 0x03 ; W<=SP – 0x03 (address of c)
LD W, [W] ; W<=Mem[W]
ADD [S+] ; W<= W + Mem[S], S++
ST [D] ; Mem[D]<=W

Fig. 4 Example of c:=a+b in DOP assembly language
(a,b and c are local variables allocated on stack)

A3 A2 A1 A0 B0

ADDS/SUBS

B0

A0A1

AF

CFAAF

AF

CF

A2A3

XAF

±

Fig.5 Example of addition/subtraction of short integer
(8-bit signed) to doubleword (32-bit signed)

3.2 DOP Arithmetic and Logic Unit

 The DOP Arithmetic and Logic Unit is based on the 16-
bit W register which serves as an accumulator. This
organization is very simple yet efficient for this class of
processor. The second operand for ALU could be an
internal register or an operand read from memory (to
temporary register). The second operand is connected
by the internal 16-bit bus to the second ALU input.

BLF

CIS

W EC WEN
ENW

CIN

0 1 OP(3:0)OP(3)

"0"

OEW

BUS(15:0)

ECW

SWW

ECW
 CI0

CF

W (15:0)

CY

SUM(15:0)

W 0

+
OVERF cy(15)

cy(16)

ZERO

S(15:0) R(15:0)

AUXF R(15)

SIGN SUM(15)
CLK

RESET

UCF

BUS(15:0)

 Fig.6. DOP ALU organization

 The ALU internally contains the Block of Logic
Functions (BLF) and 16-bit binary adder. This
organization implements all basic binary arithmetic and
logical operations (addition, subtraction, logical and, or,
xor, negation and shifts). The logical operations are
implemented in BLF, while the second input of adder is
connected to zero. More complex operations such as
multiplication or division could be synthesized by SW
routine (library of these routines is available).
 The blocks labeled CIS (carry in selection) and WEN
(write enable) implement the prefixing instructions UCF
and SWW.

 The ALU also contains Flags – Carry Flag, 2’s
complement Overflow Flag, Zero Flag, Sign Flag and

Auxiliary Flag used for addition or subtraction of
operands longer than 16-bit word. All Flags are set after
each ALU operation.

3.3 DOP Registers

Beside mandatory 16-bit PC (program counter) register
the DOP contains only a few programmer-visible
registers - SP (stack pointer), W (accumulator), which is
a part of the ALU, S (source register) and D
(destination register). Both S and D register could be
used as general-purpose data storage during expression
evaluation or address computation. All registers could
be connected via 16-bit internal bus to ALU or to 16-bit
external address bus and serve as an address for the
main memory. The SP, S and D register support
autoincrement and autodecrement addressing modes for
accessing arrays and longer operands. Therefore these
registers are implemented as bi-directional counters.

The DOP also includes the 8-bit L register, which is
used as loop counter for an easy compilation of short
for loops. The L register could be accessed separately
or together with the FLAGS register as a 16-bit PSW
(program status word).

U
register

PC
register

SP
register

S
register

D
register

ALU
and
W

register

FLAGS L
register

ADDRESS
DATA
I / O

DB(7:0)

AB(15:0)

BUS(15:0)

16

PSW

T
register

Fig. 7. DOP datapath

The whole datapath is outlined in figure 7. Note that U
and T registers are not visible to the programmer and
could be used as a temporary storage for the complex
instructions. These registers were added only for
educational purposes (original DOP ISA could be fully
implemented without these registers).

3.4 DOP Controller

The DOP processor was originally implemented with
optimized hardwired controller. However, this
controller is not very suitable for practical experiments
of our students. Consequently, a very simple horizontal
microprogrammed controller was designed. The DOP
controller currently needs the 58-bit wide
microinstruction for all control signals (actual width is
64-bit including several spare control signals). Each

microinstruction corresponds to a single clock cycle.
An Address of the next microinstruction is specified as
a field in the current microinstruction. Three the lowest
significant bits of this address could be modified by the
condition multiplexer. This organization allows
branching to the 8 destination addresses in a single
microinstruction depending on the status of various
internal and external signals. The DOP controller uses
the condition multiplexer for gradual instruction
decoding (decoding takes 2-3 clock cycles per
instruction). The condition multiplexer is also employed
for the testing of flags and external signal WAIT (from
main memory or I/O) and INT (from interrupt
controller).

Control Memory
512 x 64 bits

ANM(2:0)

ANM(8:3)=MA(8:3)

IR(7:0), OVF, SF,ZF, CF, IF, LZERO, WAIT, INT

Control Signals

CLK, RESET

SC(4:0)

Register of
microinstruction

address

Condition multiplexer

Address of the next
microinstruction

Condition
selection

MA(8:0)

MA(2:0)

ACM(8:0)

Fig.8. DOP microprogrammed controller

The complete implementation of the DOP instruction
set needs less than 270 microinstructions in the control
memory. This controller is definitely not the fastest
possible microprogrammed one for this processor.
However, its major advantage is the simplicity and
regularity.

4. DOP HW AND SW TOOLS

4.1 DOP simulators and models

Four SW models of the DOP currently available are
characterized in Table 2. Each of them allows the
analyzing of the processor behavior on the different
level of abstraction for various purposes. The first two
simulators are executable on almost any personal
computer, whereas the VHDL models require complex
and relatively expensive VHDL simulator. Therefore
only a limited number of students could use the VHDL
models simultaneously. Recently, the major FPGA
vendors offers relatively cheap versions of VHDL
simulators but it is still unlikely that every student can
buy one and run it at home on his computer.

Table 2 DOP SW simulators and models

Type of
simulator

Modeling
Language

Purpose

Instruction
Cycle Accurate

C++ Assembly program debugging,
compiler debugging

Functional
Clock Cycle
Accurate

Pascal Microprogram development,
observation of the int. function
of the processor

VHDL RTL
model

VHDL Design verification, detailed
view of signal flow

VHDL post
P&R model

VHDL
+ SDF

Timing verification, detailed
view of real delays on FPGA

The instruction-cycle accurate simulator can be used for
debugging of DOP assembly program and the compiler
development. The functional clock-cycle accurate
simulator is used for development of DOP
microprogram (firmware) for each instruction. The
third type of model is synthesizable RTL VHDL model
including memory and an interrupt controller. This
model could be used to confirm results of functional
clock-cycle accurate simulation. It allows more detailed
view of the CPU behavior in time (namely signal
sequences). The most accurate model is the post-place
and route generated VHDL Vital model with SDF file.
It shows the real delays of signals on FPGA.

4.2 HW emulator board

A FPGA based emulator board was designed for the
DOP processor. The board contains the control memory
8 k x 64 bits made from 8 SRAM chips. The size of
control memory is significantly higher than necessary
for the DOP. It allows reusing the emulator board for
different processors. The rest of the DOP is
implemented in the Main FPGA (XC4013E-PQ160).
The board also includes the additional 8k x 8bit SRAM
circuit as the main memory for the program and data
and some interface circuitry with the host system
(implemented in separate Interface and Control FPGA).
SW on the host computer controls all functionality of
the emulator board.

 Having configured the Main FPGA, the control
memory could be downloaded with the microprogram.
The SW on the host computer generates clock signal for
CPU. The status of each register could be read out from
the DOP processor after each clock cycle. Besides this
debugging mode, the DOP processor is able to execute
the sequence of instructions independently and later
generates an interrupt to the host system.

DOP
DATAPATH

XC4013E-3PQ160

(MAIN FPGA)

CONTROL
MEMORY
8k x 64bit

SRAM

MAIN
MEMORY
8k x 8bit
SRAM

INTERFACE
AND

CONTROL
FPGA

XC4003-6PC84

DB(7:0)

AB(15:0) Microinstr.MAddr

Clock and control

RD/WR

MRD, MWR

ISA
BUSHOST

SYSTEM
(PC)

Fig. 9. DOP HW emulator board block diagram

Moreover, the HW emulator board offers the possibility
of experiments that are not possible with the SW
simulators. For example, it is possible to extend the
basic DOP processor by additional functional units such
as multiplier or divider and control them by currently
unused signals in the control memory.

5. USE OF DOP IN COMPUTER AND LOGIC
DESIGN COURSE

5.1 Overview of seminars

The “Computer and Logic Design” course is in the
typical format of CTU. It takes one semester (14
weeks). Every week is a single 90-minutes lecture and
90-minutes seminar. Seminars are held in classrooms or
in laboratories. The table 4 describes the current
schedule of these course seminars. Most of the seminars
are held in classroom and there are only two laboratory
seminars. This is not optimal, but it is the result of
limited availability of laboratories, which are used by
parallel Logic Design course.
It can be also seen that DOP currently occupies
approximately half of the semester.

Table 4 Example of Computer and Logic Design
seminar schedule

Seminar Scope
1 Introduction to DOP processor,

Instruction Set Architecture
and Data Types

2 Principles of synchronous design,
Datapath of DOP - design of registers,
ALU and interface circuitry, arithmetic

3 DOP controller implementation,
principles of horizontal microprogram.,
discussion of possible enhancements

4 DOP basic cycle, DOP firmware,
homework assignment

5
(laboratory)

Exercise with DOP cycle accurate
simulator

6
(optional)

Evaluation of homework on VHDL
simulator and HW emulator

5.2 DOP classroom seminars

During the first four seminars the internal organization
of the DOP processor is explained to students. This is
done with aim to maximally involve students in
explaining the DOP schematic diagrams. These
seminars have a strong link to lectures and goal is to
illustrate the topics of lectures on practical examples.
For example: during the DOP ALU description,
arithmetic is exercised and other possible organizations
are discussed. Similar approach is used for explaining
the DOP controller and basic cycle.

5.3 DOP laboratory seminar

After explaining the DOP schematics, the SIMDOP –
functional clock cycle accurate simulator is introduced
during laboratory seminar. Students are let to write a
short program in DOP assembly language, translate
instructions into hexadecimal form and execute them
step-by-step on the simulator. Students are also shown
that the same program is executed in the VHDL
simulator and most importantly on the HW emulator
board. The majority of students does not understand the
VHDL simulator and the HW emulator board but they
appreciate that the processor “really exists”.

Fig. 10. SIMDOP – functional cycle accurate simulator

5.4 DOP homework assignment

The main educational method based on the DOP is the
homework, which is solved by every student
independently. Each student has to write a
microprogram implementing some complex instruction,
which can possibly extend the DOP instruction set.
Currently, we have collection of around 50 complex
instructions usable as homework. Most instructions are
extending DOP arithmetic capabilities (e.g.
multiplication and division, operations on long
operands). Typical complexity of homework is between
10 and 20 microinstructions. One of the requirements is

preserving functionality of the original instructions.
Two registers U and T were added to the DOP for
making the implementation of these complex
instructions easier.

The microprograms are developed using functional
cycle accurate simulator (SIMDOP), which is available
to all students (see figure 10). For easier writing of
horizontal microinstructions symbolic language -
microassembler and its compiler were developed.
Microassebler represents each microinstruction as a set
of active signals and uses labels to represent addresses
in Control Memory (see Control Memory section on
figure 10). Compiler is responsible for allocation of
microinstruction in the Control Memory and translates
the microprogram to the binary format. It also does
some correctness checks on the microprogram – for
example it checks the control of tri-state buffers to
avoid the most frequent mistakes coming from the
collision on the internal bus.

This compiler simplifies the student task but can also
lead to misunderstanding of the real content of Control
Memory (binary format of microinstructions is created
as a side effect of compilation, this format can be used
with VHDL models).

Besides the implementation of the instruction, student
has to write a report, which can become a part of DOP’s
documentation for a programmer. Students have to
describe the number of clock cycles and typical use of
the added instruction.
Homework are reviewed at the end of semester by the
teaching assistants and become part of students
evaluation.

5.4 Optional seminar

At the end of semester one optional laboratory seminar
is offered. There is usually no time to present this for
every student. Volunteers are typically students more
interested in HW. During this seminar, homework are
evaluated on the VHDL models and downloaded to the
HW emulator.

5.5 Experience with the DOP

Before the DOP processor was chosen a simple CPU
based on AMD 2900 CPU slices had been used for the
same purpose. It means that this approach of teaching
this course has a relatively long tradition.
Student reports shows that t he main pedagogical tool is
the homework. It has to be stressed that nowadays the
main goal of the homework is not to teach
microprogramming but make the students understand

how the processor works. Microprogrammed controller
offers the possibility to easy modify the processor
functionality, which is advantage over the hardwired
controller.

Student reports shows very frequently that they were
afraid from the complexity of the homework but finally
found it simple and interesting. They claim that
homework helps them to finally understand how the
processor works. It also seems that classroom seminars
are not very efficient way to explain the DOP and
students forgot most of it before they start to solve the
homework assignment.

It is also interesting to note the most frequent mistakes
students make in homework. Typically they use some
dedicated register as PC or SP for intermediate storage
in instruction and do not understand that it is not
possible. Second most frequent mistake is made in
reports where students are not able to write a reasonable
description of instruction for a programmer. Description
usually contains a lot of implementation details but
important requirements for the programmer are omitted
(state of input registers, modified registers, and flags).

5.6 Relation of the DOP to more advanced courses

It has been shown that the DOP reasonably describes
the basic principles of computer organization, which are
explained in the “Computer and Logic Design” course.
It introduces some old concepts (accumulator-oriented
ISA, microprogramming), which are not currently used
in the mainstream general-purpose computers
 On the other hand similar processors are still used in
the area of embedded systems. It seems more
appropriate to show these principles on this type of
architecture than building some artificial combination of
RISC ISA and non-pipelined datapath with
microprogrammed controller.

After introducing the quantitative approach and ILP in
the following “Computer Architecture” course, students
can see that the main idea behind the DOP (orientation
to simple HLL compilation and high instruction
encoding density) has lead to simple processor but with
poor performance. More advanced concepts such as
pipelining and superscalar execution are explained on
the RISC processors. This is perhaps not a direct way
to the contemporary computer architecture but it
explains the evolution of processor architectures and
ISA and relation between them.

6. CONCLUSIONS AND FUTURE WORK

The DOP core presents an example of a simple
processor that could be used to illustrate the basics of
computer organization and digital design.
 In comparison with commercial products, it has simple
and orthogonal architecture. The DOP is currently used
in introductory computer organization course seminars.
Students participate on the design of the DOP datapath
and controller and finally write a microprogram for
DOP, implementing some complex instruction. Students
use the cycle accurate simulator for homework
assignment and could later evaluate the results on more
accurate VHDL model or HW emulator board. The
feedback from our students is mostly positive. They
claim that homework assignment finally helped them to
understand the processor functionality. More
experienced students appreciated introduction to FPGA
and VHDL style of circuit description.

In the future we want to increase the number of
laboratory seminars which are more efficient than
explaining the DOP processor in the classroom. We
prepare new laboratory seminar for experimenting with
C compiler and DOP instruction-cycle accurate
simulator. The HW emulator board can be also used
more efficiently. New experiments with this emulator
would allow extending the DOP by additional units
such as multiplier and controlling it by spare bits in the
microinstruction. However, this requires significant
rearrangement of the seminars and other courses.

At the same time the DOP is used also in more
advanced digital design courses for experiments with
FPGAs and as a simple target for developing compiler
from subset of C in the introductory to compilers
course. Currently, we plan to make the DOP
documentation and tools available via Internet and
JAVA version of SIMDOP is prepared.

REFERENCES

Brorson, M. (2002). MipsIT – a Simulator and
Development Environment using Animation for
Computer Architecture Education, In: Proc. of
Workshop of Computer Architecture Education,
Anchorage, USA

Bruschi, S. M. (1999). Simulation as a Tool for
Computer Architecture Teaching, In: Proc. of SCS
Summer Simulation Conference, pp. 81-86.,
Orlando, USA

Danecek, J., Drápal, F., Pluhácek, A., Salcic, Z., Servít,
M. (1994a): DOP – A Simple Processor for Custom
Computing Machines. In: Journal of
Microcomputer Applications , vol. 17, pp. 239-253,
Academic Press Limited

Danecek, J., Drápal, F., Pluhácek, A., Servít, M.
(1994b) The Architecture of General-Purpose
Processor Cell. In: Proc. of 4th International
Workshop on Field-Programmable Logic and
Applications, FPL94, pp. 321-325, Prague

Danecek, J., Drápal, F., Pluhácek, A., Salcic Z.,Servít,
M. (1994c) Methodologies for Computer Aided
Hardware/Software Co-Design Using Field
Programmable Gate Arrays. In: Research Report.
Department of Computers, CTU Prague

Drápal, F., Danecek, J., Pluhácek, A., Servít, M. (1995),
Implementation of a General-Purpose Processor
Macro, In: Proc. Design Methodologies for
Microelectronics, pp. 89 –97, Smolenice, Slovakia

Ellard, D., Holland, D., Murphy, N., Seltzer M. (2002)
On the Design of a New CPU Architecture for
Pedagogical Purposes In: Proc. of the Workshop of
Computer Architecture Education, Anchorage,
USA

Patterson, D., Hennessy, J. (1998),
Computer Organization and Design: The
Hardware/Software Interface, 2nd edition, Morgan
Kaufmann Publishers , San Francisco, USA

Patterson, D., Hennessy, J. (2002),
Computer Architecture A Quantitative Approach, ,
3rd edition, Morgan Kaufmann Publishers,
San Francisco, USA

Yurcik, W., Wolffe, G., Holliday, M. (2001).
A Survey of Simulators Used in Computer
Organization/Architecture Courses, In: Proc. of the
2001 Summer Computer Simulation Conference
(SCS 2001), Orlando, USA

