
Abstract

The use of simulation is well established in
academic and industry research as a means of
evaluating architecture trade-offs. The large code
base, complex architectural models, and numer-
ous configurations of these simulators can con-
sternate those just learning computer
architecture. Even those experienced with com-
puter architecture, may have trouble adapting a
simulator to their needs, due to the code complex-
ity and simulation method. In this paper we
present tools we have developed to make simula-
tion more accessible in the classroom by aiding
the process of launching simulations, interpreting
results and developing new architectural models.

1 Introduction
The use of simulation tools in computer engi-

neering is essential due to the time overhead and
cost of manufacturing prototypes. To better pre-
pare the student, we and many others have inte-
grated the use of architectural simulation tools
into our computer organization curriculum. How-
ever, detailed simulators can be very daunting to
the beginner, as they typical possess hundreds of
options and thousands of lines of code. In this
paper we discuss how simulators can be made
more approachable to both students who are
learning the fundamentals of computer architec-
ture and those that are investigating a particular
issue in the field.

In our introductory courses, users who are
learning the fundaments are more concerned with
running simulations, than understanding or modi-
fying its implementation. We have found the best
way to aid novice students, is to provide tools that
have a simple interface and an output that allows
them to clearly see what is going on. We present

two graphical tools (SS-GUI and GPV) and a
backend perl script that decrease the complexity
of using architectural simulators.

In our more advanced courses, we often ask
our students to add performance enhancing fea-
tures to a microarchitectural simulator. We have
found the students are best served by a simulator
that is modular and simple to alter. In addition,
they require a verification method to ensure their
changes do not break the simulator. If bugs are
detected the infrastructure should have methods
to expedite the detection and correction of the
error. We present the features of the Micro Archi-
tectural Simulator Environment (MASE) that
make it ideally suited for class projects.

The rest of the paper is structured as follows.
First we discuss the tools (SS-GUI and perl script
backend) that we have developed that simplify the
running of a simulation. Next we talk about the
graphical pipetrace viewer (GPV) which simpli-
fies the simulation analysis process. We then
focus on MASE, which aids more advanced stu-
dents in developing new architectural models.
Finally, we give some concluding remarks on
these tools and their use in education.

2 Launching Simulations
SS-GUI, shown in Figure 1, is a user-interface

form that contains all of the fields necessary to
launch a simulation. The save and load options
make it possible for an instructor to setup a tem-
plate for the class to use as the basis of their sim-
ulations. Presently the environment is customized
to the SimpleScalar toolset [3], however the only
non-generic field is the simulator options field.
These fields are constructed by parsing a global
configuration file that specifies the options avail-
able for the simulator. Additional features of the
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GUI are enumerated below with corresponding
marks on Figure 1.
1. File options- This menu allows for the load-

ing and saving of the GUI form contents. This
allows the system admin or class instructor to
fill in a base line form that the student can
load and alter.

2. Setting Menu- This menu bring up prompts
for the form comments.

3. Simulation Settings- This section contains all
the paths to the necessary components to run
a simulation. This can be classified as three
different types of data: configuration of the
simulator, run setup, and benchmark specifi-
cation. The configuration of the simulator
requires the user to supply the path to the
actual simulator and any configuration file to
use. The run setup requires the user to supply

the path of the backend run script (talked
about in the next paragraph), where to run the
simulation, where to store the results and how
to tag the results for later inspection. Finally,
the user must supply the benchmark to exe-
cute, the path to the executable and type/path
of the input set to use.

4. Benchmark Selection window- The user has
the option to select the benchmark from a list
or type the benchmark and its options in man-
ually. The pop-up window contains informa-
tion about each of the different benchmarks
that are supported (currently spec2000,
spec95 and a few others). A global bench-
mark configuration file specifies how to run
the experiments.

5. Simulator Option Scroll Window- This win-
dow contains all of the simulator options that
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Figure 1:  SS-GUI - a frontend for running simulations



are available for the current simulator. If a
configuration file is specified, the options will
display this value. The entries can also be
modified by the user. A color guide is used to
illustrate whether the value is the default,
specified in the config file, entered by the user
or contains multiple entries. The multiple
entry fields are reserved for future usage,
where the GUI can be used to generate test
queues for a variety of simulator options.

6. Update Options Button- This button will run
the simulator without any arguments, so that
the available options are reported. The
reported options are then parsed and reloaded
into the Simulator Option Scroll Window.

7. Run Simulation Button- This button will run
the backend perl script with the options setup
in the GUI form.

8. Launch Visualization Button- The launch
visualization option will run the backend perl
script with a flag that causes the output to be
streamed into GPV (described in the next sec-
tion).

9. Exit- Exit the GUI environment.

The backend perl script contains a variety of
features, however its basic function is to copy all
of the simulation files to a experiment directory,
launch the simulation, and copy back the results.
The script contains all of the arguments need to
launch the supported benchmarks (currently
spec2000, spec95 and a few other benchmarks).
The run script can optionally check that the simu-
lator gave the correct output. The logs generated
by the script expedite the diagnosis of run fail-
ures.

3 Interpreting Results
Figure 2 gives an overview of GPV, our pipe-

line viewer. An architectural simulator is used to
produce a pipetrace stream. This stream contains
a detailed description of the instruction flow
through the machine, documenting the movement
of instructions in the pipeline from “birth” to
“death”. In addition, the pipetrace stream denotes
various other events and stages transitions that
occur during an instruction’s lifetime.

The pipetrace stream from the architectural
simulator can be sent directly into GPV or buff-
ered in a file for later analysis. GPV digests this
information and produces a graphical representa-

tion of the data. The graph generated by GPV
plots instructions in program order, denoting over
the lifetime of an instruction what operation it
was performing or why it was stalled. In addition,
the tool is able to plot any other numeric statistics
on a resource graph.

Multiple traces can be displayed on the screen
at any given time for easy analysis. GPV also
supports both coarse and fine grain analysis
through the use of a zoom function. Color coded
events, which are user definable, makes spotting
potential bottlenecks a simple task. The remain-
der of this section will outline the tool in detail,
including the main view, advanced features, trace
file format, and other infrastructure with which
GPV has been designed to communicate.

3.1 Main Visualization Window
The main GUI window of GPV is illustrated in

Figure 2. The GUI has two main graphical dis-
play windows, the instruction window and the
resource window. The instruction window plots
instructions in program order on a time axis
(measured in cycles). For example, the third
instruction bar in Figure 2, shows the execution
of an ADDQ instruction on a 4-wide Alpha simu-
lator. As shown in the figure, this instruction is
stalled in Fetch (IF) until the stall in the internal
ld/st is resolved, after which it continues to com-
pletion.

This method for graphing instructions as they
flow through a pipeline is a common visual repre-
sentation, used in many textbooks including Hen-
nessy and Patterson [6]. The instruction axis
contains tick marks to indicate the cycle count.
Additionally, the vertical axis will also display
the instruction mnemonic when the window is
zoomed in enough to fit legible text aside each
instruction mark (typically two zooms from when
the pipetrace is first loaded).

The right panel provides a legend of the color-
ing that is used to illustrate the instruction’s flow
through the different stages of the pipeline. Sig-
nificant events, such as branch mispredictions or
cache misses, are displayed in conjunction with
the instruction’s transitions through the pipeline.
The use of color (with a user configurable palette)
provides an effective means for spotting potential
bottlenecks. A highlight option, which can flash
the occurrences of a particular event, can be used
as an alternative method of locating bottlenecks.



The bottom window, the resource view, dis-
plays graphs of any numeric statistic provided in
the pipetrace file. GPV has been designed to plot
both integer and real statistics. Up to four data
sets (our current development extends this to ten)
can be displayed simultaneously with color coded
axes that indicate the range of the variable. Since
there can be a wide variation in the data range of
a statistic, a separate x-axis is provided for each
one of the four resources that can be displayed at
a time. Both the resource and instruction views
are plotted against simulator time on the x-axis.
This permits widely varying statistical data sets to
be plotted within the same window. To avoid clut-
ter, the GUI allows the selective hiding of individ-
ual resource views.

The resource view in Figure 2 is shown plot-
ting the IPC of a simulated program. As shown in
the figure, the IPC of the program starts to drop
during the cache miss. Once the miss has been
handled and instructions start to retire, the IPC
begins to recover. The flexibility of the resource
view allows the user to chose the statistics that are
most valuable for performance analysis and cor-
relate these statistics to instructions flowing
through the pipeline. This simplifies the task of
identifying bottlenecks, as illustrated by the rela-

tionship of the cache miss to the IPC drop in Fig-
ure 2.

The GUI provides several additional features
that assist in diagnosing performance bottlenecks.
The display can be zoomed in and out to trade off
detail for trend analysis. When the display is
zoomed out it is straightforward to determine
areas of low performance by locating pipeline
trace regions with low slope. The slope of the line
is given by 1:

Thus for a perfect single wide pipeline (no
data, control or resource hazards) with no multi-
cycle stages the IPC would be 1 (slope of -1). The
display will show the areas of low performance
with a gradual (more horizontal) slope and areas
of high performance with a steep (more vertical)
slope.

GPV also allows users to select instructions for
more information. Selecting an individual

Figure 2: GPV Display Window. This example shows the execution of instructions on a 4-wide Alpha ISA
model. (Note: Internal micro-code operations, i.e. internal ld/st, are allowed to finish out of program order.)
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instruction displays the cycle time of execution
and the instruction mnemonic. This makes it pos-
sible to get information about single instructions
when the pipeline display is too small to label
each individual instruction. Similarly, the
resource view allows resource graph lines to be
selected, which returns the label, cycle number
and instantaneous value. Since the resource
graphs are displayed as continuous lines from dis-
crete data in the pipetrace file, intermediate points
are calculated by linear interpolation.

4 Developing New Models
MASE (Micro Architectural Simulation Envi-

ronment) is a flexible performance infrastructure
to model modern out-of-order microarchitectures.
It is a novel performance modeling infrastructure
that is built on top of the SimpleScalar toolset [3].
MASE is most appropriate for advanced com-
puter architecture courses where students are add-
ing enhancements to a baseline microarchitecture
and analyzing their results. MASE simplifies this
process by adding a dynamic checker that can
detect implementation errors, modularizing the
code base improving code readability and under-
standing, and adding support for optimizations
that are difficult to implement. Additional infor-
mation on MASE can be found in [7].

4.1 Dynamic checker
The dynamic checker is used to verify that any

changes or enhancements to the simulator code
are indeed correct. Since not all errors directly
cause an error in the output, it provides extra
security that a model enhancement did not violate
any microarchitectural dependencies or program
semantics. In most simulators, it is difficult to
determine precisely where an error occurred
when there is a difference in the output. The
checker will pinpoint the first instruction where a
mismatch occurs, greatly reducing debugging
time.

The checker resides in the commit stage, moni-
toring all instructions that are committed. It com-
pares values produced from the core to the correct
value. The correct value is obtained by the use of
an oracle in the fetch stage. The oracle is an in-
order functional simulator that has its own archi-
tectural state and memory. The oracle data is
passed to the checker using a queue. In addition
to checking the output value, the checker will also

check (if appropriate) the PC, next PC, effective
memory address, and any value written into
memory. If the results match, the result will be
committed to architectural state and the simula-
tion will progress as normal. If the results do not
match, an error message is printed out indicating
the failing instruction along with the computed
and expected values. The simulation may con-
tinue or be aborted depending on a user-con-
trolled flag. If the simulation is allowed to
continue, the oracle result will be committed to
architectural state and a recovery will be initiated.
The instruction with the bad result is allowed to
commit (with its result corrected) in order to
ensure forward progress. The remaining instruc-
tions in the pipeline are flushed and the front-end
is redirected to the next instruction.

Our experience with the checker has been very
positive, starting when we were implementing
MASE itself. The first bug we found involved
failing instructions that referred to Alpha register
$31 (the zero register). Almost immediately, we
were able to determine that the processing of this
special register was incorrect. Once that problem
was flushed out, we noticed that most of the prob-
lems dealt with conditional move instructions and
how the output was incorrectly zero most of the
time. We concentrated our debugging efforts at
the conditional move and quickly identified that
when the conditional move was not executed, it
was not handled properly.

The checker was also useful in implementing a
blind load speculation case study1. As one might
expect, loads were the only instruction that failed
so the error message provided by the checker did
not provide as much insight as in the previous
cases. Instead, we focused on the first error that
was signalled. We used gdb to debug the simula-
tor and set a breakpoint on the failing instruction.
Once we arrived at the failing instruction, we ana-
lyzed the state of the machine at that time and
were able to isolate the problem relatively
quickly.

4.2 Modularized code
The MASE performance model has been

divided into several files, summarized in Table 1.
The rest of the SimpleScalar infrastructure is well

1. Loads are allowed to speculatively execute once their
addresses are known regardless if earlier stores could over-
write the data the load is accessing [9].



modularized with separate files for branch predic-
tors, caches, and memory systems. This organiza-
tion allows users to focus on the part of the
simulator they plan to work on without requiring
intimate knowledge of the other sections. It also
allows different users to work on different files
without having to worry about combining
changes within in a single file later1. It is straight-
forward to add enhancements since most of the
new code can be placed in separate files usually
requiring only slight modifications to the existing
code.

Many of the features in MASE were added to
make the model more realistic and representative
of modern microarchitectures. A side effect of
this is that it makes it easier for new users to
understand how the provided code works. For
example, one of the main obstacles to understand-
ing how sim-outorder works is due to the fact that
the core only simulated timing - there is no exe-
cute stage. The core of MASE executes instruc-
tions, allowing new users to track an instruction
from fetch to commit without wondering where
the execute stage is. To further improve readabil-
ity, the execution and decoding macros have been
placed into separate file, removing machine-
dependent code from the bulk of the core.

4.3 Modernized microarchitectural model
One of the goals of MASE is to modernize the

baseline microarchitectural model, allowing for
the creation for more accurate models. To accom-
plish this, we added support for several different
types of optimizations or analyses that would be
difficult to implement in the previous version of
SimpleScalar. This section outlines some of the
things we added.

A micro-functional core is added that executes
instructions instead of just timing them. This
allows for timing dependent computation which
is necessary for accurate modeling of the mispec-
ulated instruction stream or multiprocesssor race
conditions. Lastly, it is necessary to execute
instructions in the core in order to use the checker
to find implementation errors such as violating
register dependencies.

An oracle sits in the fetch stage of the pipeline
and is a functional emulator containing its own
register file and memory. Oracles are commonly
used to provide “perfect” behavior to do studies
that measure the maximum benefit of an optimi-
zation. A common case of this is perfect branch
prediction where all branch mispredictions are
eliminated. In order to provide this capability, the
oracle resides in the fetch stage so it knows the
correct next PC to fetch.

We added a flexible speculative state manage-
ment facility that permits restarting from any
instruction. The ability to restart from any

Table 1: Description of MASE files

mase-checker.c Oracle and checker.

mase-commit.c Backend of the machine: writeback, commit, and some recovery routines

mase-debug.c MASE-specific support for SimpleScalar’s DLite! debugger

mase-decode.h Macros used for decoding an instruction

mase-exec.c Core of the machine: issue and execute

mase-fe.c Frontend of the machine: fetch and dispatch

mase-macros-exec.h Execution macros for the execute stage

mase-macros-oracle.h Execution macros for the oracle

mase-mem.c Memory interface functions

mase-opts.c File contains all MASE-related options and statistics

mase-structs.h Common MASE data structures

mase.c Initialization routines and main simulator loop

1. sim-outorder.c is 4,692 lines long!



instruction allows optimizations such as load
address speculation and value prediction to be
implemented. In these optimizations, instructions
other than branches could be mispeculated, mak-
ing it necessary to restart at the offending instruc-
tion. This approach also simplifies external
interrupt handling since any instruction could fol-
low an interrupt request, forcing a rollback. The
checker also uses this mechanism to recover from
any errors that are detected since any instruction
could potentially cause an error.

MASE uses a callback interface is used that
allows the memory system (or any resource) to
invoke a callback function once the memory sys-
tem has determined an operation’s true latency.
The callback interface provides for a more flexi-
ble and accurate method for determining the
latency of non-deterministic resources.

5 Related Work
There are a number of performance modeling

infrastructures available to instructors today that
implement various forms of these technologies.
The Pentium Pro simulator [12], Dinero [5], and
Cheetah [15] are examples of simulators that read
external traces of instructions. Turandot [10],
SMTSIM [16] and VMW [4], are simulators, like
SimpleScalar, that generate instructions traces
through the use of emulation. RSIM [11] is an
example of a micro-functional simulator; instruc-
tions are emulated in the execution stage of the
performance model. Unlike MASE, it does not
have a trace-driven component in the front-end.
This prevents oracle studies such as perfect
branch prediction. The idea of dynamic verifica-
tion at retirement was inspired by Breach’s Multi-
scalar processor simulator [2]. Other simulation
environments include SimOS [13] and SimICS
[8] which focus on system-level instruction-set
simulation. MINT [17] and ATOM [14] concen-
trate on fast instruction execution.

There are also numerous visualization infra-
structures available today. The tools range from
pedagogical aids to comprehensive performance
analyzers. DLXview [18] is a tool that depicts the
DLX pipeline that is outlined in Computer Archi-
tecture: A Quantitative Approach by John Hen-
nessy and David Patterson [6]. It was created as
part of the CASLE (Compiler/Architecture Simu-
lation for Learning and Experimenting) project at
Purdue. Another common method for visualizing
the performance of a simulator is to abstract away

the architecture and provide statistics based on
the actual code running. CPROF [20][21] and
VTUNE[19] are two examples of programs that
display information such as cache misses or
branch mispredictions for specific segments of
code. RIVET [22-24] is a powerful display envi-
ronment developed at the Stanford Computer
Graphics Laboratory. The tool provides a very
detailed time line view to identify problem areas.
This view uses multiple levels of selection to
gradually decrease the area of code being viewed,
while simultaneously increasing the detail. Fur-
ther background information on these tools and
how GPV differs can be found in [25]. This paper
also illustrates how visualization can be used for
performance analysis.

6 Conclusion
We have introduced three tools in this paper

that aid students using simulation in the class-
room. The SS-GUI and backend perl script make
it simple to launch simulations, by allowing the
user to graphical select the simulator options and
benchmark to simulate. The graphical pipeline
viewer (GPV) aids the student in analyzing the
simulation results. Finally, MASE’s modularized
code base and built-in checker mechanism make
it ideally suited for efficient architectural model
generation.

SS-GUI and GPV can be downloaded from
http://www.eecs.umich.edu/~chriswea/visual-

ization/vis.tar . The MASE toolset and documen-
tation can be downloaded from http://
www.simplescalar.com/v4test.html.
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