
A lab course of Computer Organization

J. Real, J. Sahuquillo, A. Pont, L. Lemus and A. Robles

{jorge, jsahuqui, apont, lemus, arobles}@disca.upv.es

Computer Science School

Department of Computer Engineering

Technical University of Valencia (Spain)

Abstract
Lecture topics in Computer Organization courses
offered by different Universities around the world
do not differ significantly. This is because, in
general, lecturers use the same textbooks and are
inspired by common curriculum sources.
However, lab courses and project assignments
require more and more expensive resources
(computers, assemblers or assembler simulators,
logic circuit simulators, …) This fact, together
with the rapid advance of these tools, causes lab
courses to widely differ among universities.

This paper summarizes the lab course on
Computer Organization offered this year at the
Technical University of Valencia, Spain. The
course is composed by several experiences and
jobs, each one aimed at working on one specific
topic. Our goal is not only to introduce the tackled
topics, but also to discuss some characteristics of
the tools. All the tools used are freely available,
which is a must for the students to be more
motivated and to be able to extend their work
using their own computers at home.

1. Introduction and motivation

The Technical University of Valencia offers a
three-year Bachelor degree course in Computer
Engineering. A modification of the curriculum has
recently been undertaken to adapt it to the new
trends and professional outlines. The
recommendations from the IEEE/ACM
Computing Curriculum 2001, as well as curricula
from some relevant Spanish and foreign
universities have influenced the new design. The
course includes 60 lab hours (25% of the total),
distributed along two core courses in the first and

second year. Each course is attended by more than
800 students, which strongly impacts on the lab
organization and the type of experiments. Up to 40
students attend each lab session, working in
groups of two people. Theoretical lectures are
attended by up to 120 students.

To properly design the lab course it is necessary to
consider the contents of the theoretical courses, the
academic year when they are given and, specially
in our context, the high number of students, which
this is not a trivial task. One of the main problems
is to choose appropriate tools for the lab
experiences. An excessive use of abstract
simulators is a risk because some of them
(specially those very didactic) are quite far from
the real world. On the other hand, the contents of
the Computer Organization subjects are very
difficult to implement in a practical way without
additional technical knowledge. Finally, the tools
and equipment needed for the lab sessions tend to
be expensive.

Some universities propose lab courses based only
on a part of the subject (generally the part whose
contents are easier to practice in the lab) and they
do not cover, in a practical way, the whole
theoretical contents. The main reason is usually
the lack of appropriate tools to do it.

The structure of this paper is the following: section
3 briefly describes the theoretical course of
Computer Organization; section 4 details the lab
course, both describing the experiences and the
needed tools; section 5 presents the time schedule
of the theoretical and lab courses. Finally, section
6 summarizes our conclusions.

2. Computer Organization theoretical
course

The Computer Organization course is a core
subject of the Computer Engineering degree. This
course is given along the first and second year of
the degree, having assigned up to 180 lecture
hours in all (90 lecture hours each year).
Evaluation is performed in an annual basis.

The main goal of this course is to introduce the
students to the organization of computer systems
through the study of each one of the functional
units that compose them. Topics include data
representation, digital logic, assembly language,
simple processors, memory unit, input/output unit,
arithmetic-logic unit, basic pipelining, and
advanced processors.

Tables 1 and 2 show the themes into which each
topic is broken down and the number of hours
assigned to them. This information corresponds to
the syllabus of the first and second year courses,
respectively.

Syllabus (First year)

Topic Themes Hours
Introduction 1. Introduction to computer

systems
2

Data
representati
on

2. Data representation 9

3. Basic concepts of digital
systems

12

4. Combinational systems 10
5. Sequential systems: Flip-
flops

4

Digital logic

6. Sequential systems:
Registers and counters

8

7. Introduction to assembly
language

10

8. Assembly programming 6

Assembly
language

9. Procedures 6
10. Datapath 10
11. Control unit: Hardwired
realization

8

Simple
processors

12. Control unit:
Microprogrammed realization

5

 Total hours 90

Table 1. Syllabus of the first year course on Computer
Organization.

Syllabus (Second year)
Topic Themes Hours

13. Memory system 3
14. Memory system design 10

Memory unit

15. Memory hierarchy 10
16. Input/output devices 9
17. Input/Output management 12

Input/Output
unit 18. Buses 4

19. Integer arithmetic unit:
Adders and subtracters

6

20. Integer arithmetic unit:
Multiplication and division

8

Arithmetic-
Logic unit

21. Floating-point arithmetic
unit

4

22. Introduction to the
pipelining

6
Basic
pipelining

23. Pipelined processor 12
24. Examples of contemporary
processors

4
Advanced
processors

25. Introduction to
multiprocessor systems

2

Total hours 90

Table 2. Syllabus of the second year course on Computer
Organization.

3. The lab course

We propose a selection of experiences on
Computer Organization, aimed at covering the
classical computer functional units: processor,
memory, and input/output system. The lab course
goals complement those of the classroom course.
We have designed and selected some experiences,
trying to balance the course time among the
mentioned functional units according to their
importance. The aim is to acquire an elementary
but complete knowledge about Computer
Organization as well as its basic working
principles and underlying design aspects. We also
discuss the selection of a set of free software tools
that allow those students requiring additional time,
or those who show further interest, to continue
their work at home.

The described experiences are organized in lab
sessions, each taking two hours of work.

3.1 Experiences

Experience 1: Assembler

Three lab sessions are dedicated to implement
simple assembly language programs. The topics
are assembly instructions (bare machine) and
pseudoinstructions, instruction coding, data
representation, and functions in assembly

language, exercising the MIPS register usage
convention.

The first session is an introduction to the PCSpim
interpreter [spim02] that simulates how the
assembler works for the MIPS architecture. The
session lab is addressed to give the students
practice with several features of the tool, and to
strengthen some topics studied at the classroom,
like character, integer and floating-point
representation, as well as memory data alignment.

The second session has three types of exercises.
The first one deals with the instruction coding.
Students must codify some assembly language
instructions and check if their results match to
those given by the tool. The second one is
addressed to check the results of some instructions
that use predefined target registers (e.g., LO and
HI for integer division and multiplication
instructions). The last one is addressed to running
a program that performs the scalar product of two
vectors. Students must run the program and
answer some questions: i) to determine which
function it performs, ii) to identify the
pseudoinstructions of the program, and iii) to
explain why the assembler not always codifies a
given pseudointruction by using the same machine
instructions (e.g., the load address instruction).

In the last session, the students must break down
the scalar product program in two parts: main
program and procedure. The programs must be
implemented by using the callee-saved as the
procedure call convention.

Experience 2: The Processor

Three lab sessions are dedicated to the study of the
central processing unit (CPU). The main goal of
these sessions is to develop a simple CPU (no
pipelining) that executes a reduced instruction set -
a subset of the MIPS archite cture [Patterson97].
The different CPU elements are interconnected by
means of busses. The instructions include several
arithmetic and logic operations, load and store,
and different types of branch instructions,
including unconditional, conditional and jumps to
subprograms. These instructions permit to
implement simple, though fully operating sample
programs that can be traced during their execution,
allowing the student to follow their steps in the
datapath and the activation of the relevant control

signals. We use the Xilinx schematic editor and
functional simulation tools to implement and test
the resulting circuitry [Xilinx01].

The first session is an introduction to the tool
itself, as this is the first time it is used. During this
session, a register file is implemented and tested. It
takes a long time to develop the whole register
file, therefore an almost complete version is
supplied for the students to complete and test it,
according to a set of predefined experiments. The
second session deals with a complete datapath,
including a Program Counter, Arithmetic and
Logic Unit, the memory interface and several
auxiliary registers and very simple operators like
fixed shifters and a sign extender. Most of these
units are supplied in advance and the work to do
consists in interconnecting units and testing the
resulting datapath by executing isolated
instructions. The third session completes the CPU
implementation with a Control Unit (CU). It is
based on a phase counter and the needed
combinational logic to generate the 24 control
signals required by the datapath. The students are
required to complete the design of the CU by
implementing a couple of control signals and then
put it together with the datapath. The memory
circuit contains a simple program with a loop that
has to be tested.

Experience 3: Memory Design

This experience is organized in three sessions. The
common goal of all is them is to understand how
the memory system in a computer is designed,
from the basic cell to the construction of memory
modules based on smaller elements and including
the decoding and selection system. For this
purpose we use the simulation environment
Xillinx as tool.

This first lab session deals with the internal
structure of memory circuits. The students must
design a small memory unit (16x1 bit). We
propose this small size for practical reasons: the
memory structure designed is also valid for larger
memories; the only difference is the number of
elementary cells and the size of the decoding
circuits.

In the second session, we give the students a
predesigned 32Kbytes RAM element, in order to
build a 256 Kbytes memory module. The students

must pay special attention to access different types
of data (bytes or 16 bits words). For checking
purposes we supply a module that acts like a CPU,
generating addresses and byte selection lines.

In this session, we supply a circuit that simulates a
memory system composed by 4 different modules
and a checking element that acts as an address
generator. With all these circuits the students must
implement different memory maps.

Experience 4: Cache Design

The goal of this session lab is to understand why
cache memories are the basic and ineludible
mechanism that computers incorporate to reduce
memory accesses latency.

We give the students a small testing program
written in C language (in similar manner to D.
Patterson [Patterson01]), to experimentally
determine the parameters of the computer’s
caches.

To perform the experiments the program defines
an array of 1 mega integer elements size, and
different scenarios are modeled. Each scenario is
determined both by the amount of elements that
are accessed (1K elements, 2K elements, …) and
by the stride (1, 2, 4, …, 512K). The program has a
main loop that runs repeatedly many times in
which the elements of the scenario are accessed to
measure the data access time. Then, all the
resulting times are averaged. The loop execution
time is relatively long (approximately 1 second) in
order to get precision in the measure process.

From the results, the students must firstly notice
the number of cache levels Then, for each cache
level they must determine: i) the block size, ii) the
set associativity, iii) the cache size, iv)
approximately how fast the cache hit is, and v)
approximately how fast the cache miss is. Some
other parameters about the memory hierarchy like
the page size and the page fault penalty are also
determined.

Experience 5: The input/output system
The main objective of this experience is to practice
the basic methods of synchronization: status
checking (polling) and interrupts. To achieve this,
the students develop simple interactive programs
by using the input/output available facilities.

In the first session, we present a hypothetic case of
communication between a MIPS R2000 processor
and two basic I/O devices: the keyboard and the
printer. A simulator acts like these two devices
mapped in memory positions. Both are character-
oriented devices. The PC keyboard is used as the
input device while data output is displayed in a
window that simulates the printer. The students
must write a small program in MIPS R2000
assembly language to read characters from the
keyboard and print them in the printer. The
program must use polling for synchronization and
program-controlled for data transfer.

In the second part the students have the
opportunity to practice interrupt handling in a real
computer (PC compatible). They also can access
the PC memory and I/O maps. We propose them
two typical problems to solve: first, students must
modify some of the system interrupts (clock and
keyboard are the proposed ones) writing the
appropriate routines to handle them. In a second
step, they must extend the service given by an
existing interrupt handler by linking the system
routine with their own handler.

Experience 6: Circuits to Support Integer
Arithmetic
The main objective of this experience is to design
simple integer arithmetic circuits and to modify
them to achieve better performance by using
pipelining techniques. This experience is
organized in three sessions. In the first one, the
students must implement a 16 bit adder/subtracter
for integer numbers by using 4 bit carry lookahead
adders (CLAs). The basic circuits (half and full
adders) that form the CLA must also be
implemented. Next, they develop a fast multiplier
for two 6 bit unsigned numbers by using a Wallace
tree. For this purpose, they build and interconnect
carry save adders. The last stage of the Wallace
tree is built by using the already implemented
CLAs. To complete the fast multiplier, the
students must build a partial product generation
circuit that takes the two integer operands as
inputs and generates the six partial products to
feed the Wallace tree. Finally, they have to split
this multiplier circuit into pipeline stages. For this
aim, the students must identify the pipeline stages
and establish the suitable clock period to improve
the circuit speedup. The students must simulate

and measure the response time. Moreover, they
must calculate the speedup the pipeline achieves.

Experience 7: Pipelined Processor

The goals pursued in this lab session are to
understand the concept of pipelining, identify
hazards, realize how hazards affect performance,
and to know how the different solutions for
conflict solving are implemented.

A program that simulates the behavior of a
pipelined DLX processor [DLXide] is used. The
DLX processor [DLX02] exhibits a similar
architecture to that of MIPS. In the simulator,
instruction execution can be tracked in a time
diagram, cycle by cycle, therefore it allows to
follow their walk through the different stages. The
simulator permits also to define a particular
technique for hazard solving, including bubble
insertions, forwarding, predict-not-taken branches
and delayed branches. The datapath (shown by the
simulator) appears modified according to the
technique applied. Control signals, memory and
register contents and some statistics are also made
available by the simulator, which permits to
extract some conclusions based on quantitative
data.

A simple but illustrative assembler program is
supplied for the students to trace its execution in
the pipelined datapath. First, they must solve
dependencies by inserting bubbles and then
counting the resulting CPI. Secondly, more
effective techniques such as forwarding and
branch prediction are exercised, allowing to
observe how these techniques work and to
compare results with the previous experiments.

4.2 The tools

For the experiences described in the previous
subsection, we are currently using different tools.
Below, we briefly describe how we use them and
how they allow us to reach the goals of the lab
experiences.

1. Logical board. It is basically a circuit
board with some logic gates and flip-flops
that can be interconnected by means of
wires and connectors. The board also
allows for commercial integrated circuits
to be added, thus increasing the number of
different exercises that can be tackled. By

using real circuits and wires, the student
realizes the difficulties in implementing
real circuits (bad connections, collision of
outputs, etc.) which are more difficult to
detected when logical simulators are used.
The logical board is used for the most
basic circuits, leaving the complex ones to
be simulated.

2. MIPS simulator PCSpim. For assembly
language experiences, we use this free
MIPS simulator to implement and trace
simple programs. The simulator is
complete enough for the intended
purposes and makes it straightforward to
work in assembly language without
having to deal with particularities of the
platform. On the other hand, it represents
an important economical saving, as PC's
are available in all of our labs, differently
to MIPS-based computers.

3. Xilinx schematic editor and simulation
tools . The Xilinx Foundation is an
application framework for programming
logical devices with logical functions of
different levels of complexity, from very
simple combinational functions to
virtually any larger project with both
combinational and sequential components,
allowing for tristate devices as well as
conventional ones. The tool is complex, if
used as a whole, but for the purposes of
the course, we only need to be able to
specify a circuit and to simulate it. The
Xilinx tool offers several ways of
specifying a circuit, namely a Hardware
Description Language, a Finite State
Machine and a Schematic Editor. The last
one is the most appropriate for our
students, since this is the common way of
describing circuits in the classroom as
well. On the other hand, the simulator is a
powerful tool that allows us to track the
behavior of the specified circuit in
connection with the schematic editor.
Despite the complexity of the whole
application, our students quickly learn
where to click to carry on their work,
since the working platform is well
bounded from the very beginning of the
corresponding lab exercises. This tool has

proven to be very suitable for
implementing our simplified RISC
datapath and for the control unit as well. It
is also used in the exercises related with
memory modules.

4. DLXide is a simulation tool of the DLX
computer. This simulation tool has been
developed by lecturers from the Computer
Engineering department of the Technical
University of Valencia with the aim of
providing a suitable environment for
performing pipelining experiences. The
simulator is able to simulate the pipelining
execution unit of the DLX computer in a
cycle-by-cycle basis, also showing how
the instructions progress through the
pipelining stages. For simplicity, it only
supports the integer instructions of the
DLX architecture. The tool permits to edit,
assemble, and execute a DLX assembly
program. There exist separate cache
memories for instructions and data. User
can initialize and modify both machine
registers and data memory contents, which
are displayed in two separate windows.
Moreover, it is possible to display the
instruction memory contents and the
instruction addressed by the program
counter. Through the configuration
window, the user can establish the
mechanism used for hazard solving among
the following techniques: stalls, predict-
not taken, delay-slot 1, and delay-slot 3
for solving control hazards, and stalls and
forwarding for solving data dependencies.
Step-by-step simulation shows how each
mechanism solves the hazards. The
simulator runs on MS Windows and Linux
operating systems.

5. 2. Coordinating theoretical and lab courses

The first and the second year theoretical courses
are 30 weeks long organized in two weekly
sessions 1.5 hours long, where both theory and
problems aspects are lectured. Sessions take place
in classrooms of 160 students capacity.

The lab courses have the same duration as the
theoretical and their timing must be synchronized.

These courses are organized in two types of weeks
(A and B), so that the type of the week
alternatively changes from A to B and vice-versa.
Students must attend to the lab sessions in those
weeks they are registered in. Sessions are two
hours long every two weeks and take place in labs
of 40 students capacity. This has proven to be
more suitable than having weekly sessions of 1
hour.

Table 3 shows the planning of the theoretical and
the lab course of the first year. Numbers on the top
row refers to the week number. Central row shows
the planning (theoretical and problem sessions) of
the themes. The first 15 weeks focus on the study
of both the data representation and the digital logic
topics (T3, T4, T5 and T6) mentioned above.
Next, 7 weeks and a half are dedicated to the study
of both machine and assembly languages. The
remaining weeks are addressed to implement a
simple datapath and its control unit (both
hardwired and microprogrammed). The bottom
row refers to the lab sessions. As it can be seen,
lab sessions begin at the same time as classroom
sessions. Some times; e.g., when studying simple
data paths, the lab session starts a little bit before
the theoretical topic is studied at classroom. This
does not cause any inconvenient, because that time
is devoted to study how the tool (Xilinx in this
case) works.

Table 4 shows the temporal planning for the
second year course detailed above. In this case, no
overlap appears between the theoretical and the
lab course.

WEEK NUMBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 T2 T3 T4 T5 T6

 P 1 P 2 P 3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T7 T8 T9 T10 T11 T12
 P 4 P 5

Table 3. Planning of classroom and lab sessions of the first
year course. Legend: P refers to practical experience and T to
topic.

WEEK NUMBER
1 2 3 4 5 6 7 8 9 10 111 12 13 14 15 16

1 T2 T3 T4 T5 T6

P1 P2 P3

17 18 19 20 21 22 23 24 25 26 27 28 29 30

T7 T8 T9 T10 T11 T12 13

P3 P4 P5

Table 4. Planning of classroom and lab sessions of the second
year course. Legend: P refers to practical experience and T to
topic.

6. Conclusions

In this paper we have presented a lab course on
computer organization, and we conclude that a
complete course needs the following requirements:

1. A set of tools of a very different nature
(assembler, logical circuit simulator,
pipeline simulator) to cover the whole
theoretical course.

2. It is important that the tools be as close as
possible to a professional tool (e.g. we are
currently using the educational version of
a professional tool.)

3. It is necessary to devote an important
amount of time to learn how the tools
work, therefore it is important to chose
tools also used in other subjects (e. g. the
Xilinx framework is used in Logical
Design courses too.)

7. References
 [Patterson97] D. A. Patterson and J. L.

Hennessy, Computer organization
and design: the hardware/software
Interface, Morgan Kaufmann
publishers, 2nd edition, 1997.

 [Patterson01] D.A. Patterson, Course CS61C1C:
Machine Structures, UC Berkeley,
http://inst.eecs.berkeley.edu/~cs61
c/fa01/calendar/week13/lab10/,
Fall 2001

 [Spim02] J. Larus, SPIM: a MIPS
R2000/R3000 simulator,
http://www.cs.wisc.edu/larus/spim
.html, 2002.

 [Xilinx01] Jan Van der Spiegel. Xilinx Web
page.
http://www.prenhall.com/xilinx/,
2001.

 [DLX02] Computer Systems Laboratory,
FTP Site for Interesting Software,
http://max.stanford.edu/max/pub/h
ennessy-patterson.software/max-
pub-
hennessypatterson.software.html

[DLXide] P. López. DLXide web page.
http://www.gap.upv.es/people/plo
pez/english.html

