
ESCAPE : Environment for the Simulation of Computer

Architectures for the Purpose of Education

Jan Van Campenhout Peter Verplaetse ∗ Henk Neefs
Department of Electronics and Information Systems

University of Ghent, Belgium
{jvc|pvrplaet|neefs}@elis.rug.ac.be

Abstract

We have developed ESCAPE, an easy-to-use, highly
interactive portable PC-based simulation environment
aimed at the support of computer architecture educa-
tion. The environment can simulate both a micropro-
grammed architecture and a pipelined architecture with
single pipeline. Both architectures are custom-made,
with a certain amount of configurability. Other tools,
such as a memory monitor, assembler/disassembler
and analysis tools, such as on-the-fly generation of
pipeline activity and usage diagrams, are integrated
with the environment.
Based upon our limited experience with the material so
far, we can state that the results are excellent. Students
invariantly respond very positively, and the evaluations
indicate a far deeper understanding than was previously
attainable by using only the traditional textbook-and-
paper-problems approach.

1 Introduction

The complexity of computer architectures has in-
creased significantly over the past decades. It is our
experience that many students fail to understand even
the basic concepts, such as microprogrammed architec-
tures or pipelined execution with simple pipeline, mak-
ing it impossible to fully understand the operation of
a contemporary processor—typically superscalar with
out-of-order execution, branch prediction and possible
speculative execution.

One way to clarify these simple concepts is by the use of
simulation tools. There are many simulators for com-
puter architectures available, but most of them are un-
suitable for inexperienced users. Most simulators are
designed with accurate modeling as a main feature, as

∗Research Assistant of the Fund for Scientific Research –
Flanders (Belgium)(F.W.O.)

a result these simulators have a complexity similar to
today’s processors.

This paper describes ESCAPE , a computer architec-
ture simulation environment used extensively in an un-
dergraduate level course on computer architecture at
the University of Ghent. This environment was cre-
ated to increase the effectiveness of the course, i.e. to
increase the level of insight in and understanding of
computer architectures achieved by the students.

The paper is organized as follows. We first situate our
work in the context of computer architecture educa-
tion. After identifying problems and defining a solu-
tion in terms of requirements for the simulation envi-
ronment, we briefly describe the architectural aspects
of both machines. Details of the simulation software
and possible uses for the environment are described in
the next sections. We then briefly evaluate the prelim-
inary results obtained, and conclude with an outlook
on future work.

2 Computer architecture educa-
tion: goals and means

The course in which the work presented here is situ-
ated, is a second course on computer architecture in
the computer science and computer engineering under-
graduate curriculum of the University of Ghent. The
preceding course covers instruction-level aspects, such
as addressing modes, assembly language, etc. The sec-
ond course focuses on the micro-architectural aspects of
contemporary architectures, with significant emphasis
on their evolution. The course is a one-semester course
featuring 12 weekly 75-minute lectures, and three lab
sessions each initiating an independent homework as-
signment to be completed by the students.

The course starts with a discussion of the internal con-
trol of the instruction interpretation or execution pro-

1

cess; it covers both microprogramming and pipelined
execution. This is an ideal basis for more advanced
topics such as multiple and superscalar pipelines, also
treated in the course. Next, we address the issues of
the memory hierarchy, covering topics such as caches,
virtual memory, cache coherency, register optimization,
etc.

Although the initial approach taken in the course is
rather qualitative, we clearly aim at a more quantita-
tive treatment of the material, along the style advo-
cated by some recent excellent textbooks [1][2][3]. Ob-
viously, hands-on experience is crucial to achieve the
latter.

Based on the experience of many years of teaching
computer architecture and related courses, we feel that
the lack of a thorough understanding of basic concepts
makes it hard for students to fully grasp more complex
topics, let alone to achieve quantitative insights.

3 Achieving a more thorough
understanding

To make such understanding easier to achieve by the
student, we decided to develop a simulation envi-
ronment addressing some of the architectural issues
treated in the course. The main goal of this en-
vironment is to present the students with an easy-
to-understand custom-made architecture that allows
them to become familiar with the basic concepts of
computer architecture, without being overwhelmed by
the complexity of realistic microprocessor architec-
tures.

The application area is twofold:

1. to allow its interactive use during lectures for the
demonstration of basic concepts;

2. to form a foundation for homework assignments
and projects that will allow students to obtain
valuable insight in more complex matters, with-
out first having to study many manual pages.

To be successful in meeting these goals, a number of
requirements should be met.

First, the environment should support architectures
for both microprogrammed and pipelined execution.
Even though many recent textbooks mainly focus on
pipelined execution, we feel that in-depth coverage of
microprogrammed control is essential because it can
provide valuable insight on the internal operation of
the processor. Furthermore, we deem the capability to
put contemporary evolutions into their proper histori-
cal setting essential in a university-level course. And,

lastly, by having identical instruction sets for both ar-
chitectures, the sometimes subtle distinction between
instruction level and micro-architectural aspects is ide-
ally exemplified.

Second, the architectures provided should be custom-
made with a certain amount of configurability. The
size of the register file, the number of temporary reg-
isters (for microprogrammed control), memory access
time and ALU functionality should not be fixed. This
may require a flexible instruction encoding. Other as-
pects that can influence the behavior are cache emula-
tion and pipeline specific features such as enabling or
disabling the delay slot or register forwarding.

Third, an easy-to-use, highly interactive interface is
essential. Simulation of the architecture should be
possible on a cycle-per-cycle basis, with an option
for rewinding the clock. The content of the registers
should be visible while simulating, and the memory
content and cache behavior should be represented in a
clear and concise way. Visual representation of mul-
tiplexers and bus behavior is necessary to expose the
forwarding and stalling mechanism. On-the-fly trace
generation and pipeline activity diagrams will further
clarify the way the architecture operates.

Fourth, it should also serve to collect quantitative data,
in addition to provide valuable qualitative insight. This
requires single click multiple cycle simulations with
breakpoints. Simulation speed is an important factor
here.

In the following sections, we shall present ESCAPE .
A preliminary version of this tool is already available;
the full-featured version is still under development at
the time of writing, but should be completed shortly.

4 Architectural details

The ESCAPE environment consists of two simula-
tors. The instruction set architectures of both ma-
chines are essentially identical, even though the mi-
croarchitectural aspects are very different (a micropro-
grammed processor versus a pipelined processor with
simple pipeline).

The instruction set architecture is inspired by Hennessy
and Patterson’s DLX [1]. The three distinguished
types of instructions (I-type, R-type and J-type) are
shown in figure 1. Contrary to the DLX architecture
the size of the bitfields is not fixed, but depends on the
maximum number of instructions and the size of the
register file. All instructions have a 32-bit encoding,
hence the length of the immediate fields (ni1 and ni2)
can be derived from the bitfield sizes of the opcode and

2

Figure 1: instruction encoding.

formals (no and nr):
ni1 = 32− no − 2nr

ni2 = 32− no

R-type instructions can have up to 6 formals (assum-
ing nr is sufficiently small). This can be useful for
implementing more advanced operations in the micro-
programmed architecture, a popular homework assign-
ment.

4.1 Microprogrammed architecture

The architecture consists of a control unit and a dat-
apath (figure 2). The datapath consists of a register

Figure 2: microcoded architecture.

file, two read registers (A, B) and a write register (C), a
memory interface with address (MAR), data (MDR) and

Operation Result Note
+ S1 + S2 add
− S1 − S2 subtract
−r S2 − S1 reverse subtract
& S1 & S2 bitwise and
| S1 | S2 bitwise or
ˆ S1 ˆ S2 bitwise exclusive or
<< S1 << S2 shift left
>> S1 >> S2 shift right
>>a S1 >>a S2 shift right arithmetic
S1 S1 pass S1
S2 S2 pass S2

Table 1: basic ALU operations.

instruction (IR) registers, a number of extra registers
(typically IAR, PC and a few temporary registers) and
an ALU. The different parts are connected by two in-
put buses (S1 and S2) and a result bus. The ALU can
perform a number of basic operations in a single cycle
(table 1). A built-in comparator does zero and sign
detection on the result.

The memory interface can load and store bytes, half-
words (16 bit) or words (32 bit), with adjustable access
time. Both instructions and data are stored in the same
memory (von Neumann architecture).

The control unit is microcoded. The microcode ad-
dress is kept in a special register (uAR). During each
cycle uAR is either incremented or replaced with a new
value (i.e. a jump to a new microinstruction). Typ-
ical jump conditions are: memory busy, ALU output
zero, ALU output negative and interrupt pending. The
jump address is either in the microcode, or read from
a jump table (indexed by the opcode field in IR). The
latter is useful for instruction decoding. The number
of jump tables is adjustable from 1 to 4.

The standard register file functionality ((A,B)←(r1,r2),
r1←C and r3←C) can be extended with A←ri, B←rj

and rk←C operations.

The microprogrammed architecture (both control unit
and datapath) have deliberately been kept simple.
There is no microcode pipelining register, it only has
basic single-cycled operations, and virtually no mi-
crocoding tricks have been used [4]. The datapath is
very lean, and could be improved on several counts.
This deliberate simplicity leaves ample room for the
students to suggest improvements for the architecture.

4.2 Pipelined architecture

Both the control unit and the datapath are pipelined
into the five traditional stages (figure 3): IF (instruc-

3

Figure 3: pipelined architecture.

tion fetch), ID (instruction decode), EX (execute and
effective address calculation), MEM (memory) and WB
(write back). Because there are at least three cycles
between reading the register file and write back, a for-
warding mechanism is implemented to prevent the pipe
from unnecessary stalling. The register file is read in
the ID stage, but written during the WB stage. Write
through is explicit by the use of multiplexers.

The EX stage consists of an ALU and a comparator.
The ALU can perform the same operations as the one
for the microprogrammed architecture, and additional
multiply and divide operations. These two operations
can have a latency of more than one cycle. During
the execution of a branch the comparator evaluates the
branch condition while the ALU calculates the effective
address. Depending on the settings of the simulator the
two instructions following the branch can be executed
(i.e., a double delay slot), nullified (no delay slot), or
only the instruction in the IF stage is nullified (single
delay slot).

There are two separate memory interfaces: one for in-
structions and one for data (Harvard architecture). Ac-
cess to the data memory occurs during the MEM stage.
The data memory access time is adjustable. The SMDR
and MAR registers can be frozen to mitigate stalling.

5 Features of the simulation en-
vironment

The ESCAPE environment has been implemented in
Borlandr’s Delphir. Because the code is compat-

ible with Delphi 1.0, we have both 16- and 32-bit
versions, which makes the application run on every
Windowsrbased operating system. A copy of the lat-
est version, further documentation as well as sample
exercises can be downloaded from the web:

http://www.elis.rug.ac.be/ pvrplaet/escape.html

After starting the simulator an architecture specific
form appears. The layout of this form is based on the
structural representation of the architecture (figures 2
and 3). Having all the key elements of the architecture
on one single form makes it possible to understand the
processor operation without having to swap back and
forth between windows. Screenshots of these forms are
shown in figures 4 and 5. The forms have been de-
signed to be displayable with a 640 × 480 resolution,
for classroom use.

A few other forms exist. The memory can be viewed
and/or edited in two ways. The data form acts as a
memory monitor/editor that allows you to examine or
edit the memory content in groups of bytes, halfwords
or words, and different number bases (unsigned hex-
adecimal and unsigned or signed decimal). The code
form behaves as an assembler/disassembler that allows
easy writing of assembly code.

For the microprogrammed architecture a form similar
to the code form exists to edit the microinstructions
and jump tables. This is the so-called microcode form.
Another important form is the configuration form, that
allows one to configure the two architectures.

Key features of the simulation environment are:

• easy-to-use interface;

4

Figure 4: screenshot of the microprogrammed architec-
ture.

Figure 5: screenshot of the pipelined architecture.

• partially configurable, easy-to-understand
custom-made architectures;

• cycle-per-cycle simulation, or multi-cycle simula-
tion with breakpoints;

• clock rewind, can be disabled to increase simula-
tion speed;

• memory monitor and assembler/disassembler;

• microcode editor;

• on-the-fly trace generation;

• on-the-fly generation of pipeline activity and
pipeline usage diagrams;

• all files are in ASCII format, which allows them to
be altered with external editors.

A pipeline activity diagram plots for each instruction
the current pipeline stage versus time, as shown in fig-
ure 6.

Figure 6: pipeline activity diagram.

A pipeline usage diagram plots for each pipeline stage
the current instruction (if any) versus time, as shown
in figure 7.

6 Possible uses of ESCAPE

Studying the microprogrammed architecture will allow
the student to

• become acquainted with the basic synchronous op-
eration at the register transfer level of a datapath
and its microprogrammed control;

5

Figure 7: pipeline usage diagram.

• learn the basics of microprogramming;

• learn about microprogram optimization tech-
niques, which is quite relevant with respect to con-
temporary VLIW architectures;

• obtain quantitative data on speed and code size,
the influence of memory speed on microcode effi-
ciency, etc.

By using ESCAPE for simulating the pipelined archi-
tecture, the student can

• become acquainted with pipelined operation, haz-
ards and their solutions;

• experiment with traditional code optimization
techniques such as code motion, register renam-
ing, loop unfolding, software pipelining, etc;

• perform small-scale quantitative measurements on
benchmark programs, which will result in bet-
ter insight on the power and main limitations of
pipelined execution.

7 Results

As stated before, the simulation environment is still
under development, therefore it is premature to draw
final conclusions as to its effectiveness. However, a
provisional version of the ESCAPE environment has
been used for two different offerings of the course: once
in a post-graduate version, addressed to students that
graduated 5–10 years ago (class size: 15), and once in
the regular engineering curriculum of the University of
Ghent (class size: 120).

At the time of writing, the final exams had not yet
taken place, but from the experience gathered from

homework assignments, significant improvement has
been observed both in the understanding of the ar-
chitectural issues, as in the ability to effectively de-
ploy such architectures. The comparison is based on
the performance on similar assignments during previ-
ous years.

8 Conclusions and future work

In this paper, an interactive graphical simulation en-
vironment has been presented, aimed at the support
of computer architecture education. The environment
allows simulation of simple custom-made micropro-
grammed or pipelined architectures.

First experiments have revealed significant improve-
ments of the teaching effectiveness. Students invari-
antly respond very positively, and the evaluations in-
dicate a far deeper understanding than was previously
attainable by using only the traditional textbook-and-
paper-problems approach.

At this point the environment simulates either a micro-
programmed or a pipelined machine with limited con-
figurability. Several extensions and additions are being
formulated. We plan to extend the simulation model
with caches (which will result in variable instruction
memory access), out-of-order write back, multiple ex-
ecution units, and possibly superscalar pipelines with
scoreboarding and branch prediction. This will allow
the use of a single environment for teaching a wide
range, from basic concepts to more advanced topics in
contemporary computer architecture.

References

[1] Hennessy, J.L, Patterson, D.A. (1990, 1996), “Com-
puter Architecture A Quantitative Approach”, Morgan
Kaufmann Publishers: San Mateo, CA, USA.

[2] Patterson, D.A, Hennesy, J.L. (1998), “Computer Or-
ganization & Design. The Hardware/Software Inter-
face”, Morgan Kaufmann Publishers: San Francisco,
CA, USA.

[3] Flynn, M.J. (1995), “Computer Architecture Pipelined
and parallel processor design”, Jones and Barlett Pub-
lishers: Boston, MA, USA.

[4] Rauscher, T.G., Adams, P.M., “Microprogramming: A
Tutorial and Survey of Recent Developments”, IEEE
transactions on Computers, Vol. C-29, No. 1, pp 2–20.

[5] Sima, D., Fountain, T., and Kacsuk, P. (1997), “Ad-
vanced Computer Architectures A Design Space Ap-
proach”, Allison Wesley Longman: Harlow, England.

[6] Heuring, V.P., and Jordan, H.F. (1997), “Computer
Systems Design and Architecture”, Allison Wesley
Longman: Menlo Park, CA, USA.

6

