Computer Architecture Instruction at the University of Michigan

Gary S. Tyson
Steve Reinhardt
Trevor Mudge
The University of Michigan
tyson,stever,tnm@eecs.umich.edu

1 Curriculum Overview

The Electrical Engineering and Computer Science de-
partment (EECS) confers BS, MS and PhD degrees
in both electrical and computer engineering within the
College of Engineering. In addition, the EECS depart-
ment supports majors in the Computer Science degree
program administered through the College of Litera-
ture, Science, and the Arts. Undergraduate Computer
Engineers and Computer Science majors take similar
courses in computer architecture; CS majors are re-
quired to complete a three course sequence (EECS 100,
EECS 270 and EECS 370), with CE majors taking an
additional course (EECS 373) .

In this paper, we will describe both undergraduate
and graduate course offerings in computer architecture
and discuss new trends in instruction of this material
at the University of Michigan.

2 Undergraduate Education

In the past, undergraduate students in CS or CE have
taken two or three required courses in computer hard-
ware/architecture. In the past two years, we made sig-
nificant changes to the introductory course to incor-
porate a broad overview of the computing discipline
including machine organization.

In this section, we will examine the changes to the in-
troductory course (EECS 100) as well as provide a brief
description of the standard architecture sequence. The
catalog description for both undergraduate and gradu-
ate courses can be found on this last page of this paper.
This table also includes prerequisite requirements for
each course and the average annual enrollment at the
University of Michigan.

! Undergraduate courses are numbered from 100 to 399; grad-
uate courses are numbered from 500-799; transitional courses
offered to advanced undergraduates and first year graduate stu-
dents are numbered 400-499.

2.1 EECS 100

EECS 100 is an introductory class to the Computer Sci-
ence and Computer Engineering programs. Over the
past two years the EECS 100 content has changed dra-
matically. Many introductory computer science courses
are all about programming. We consider this to be un-
fortunate because there is much more to computer sci-
ence than programming. There is the mystery of how
a computer was designed, how it works, and how we
get it to do our bidding. In this course, we address
a broad foundation of topics in computer science to
lift the veil of mystery that pervades much of the un-
dergraduate experience. Course topics range from the
components that make a computer work (instructions
and gates) to high level language abstractions. A de-
tailed description of the subject material is included in
Table 1. The course is partitioned into two major areas
with computer organization covered in the first half of
the semester and high level language (C) organization
in the later half. A large amount of material is covered
in this course, but our experience has shown that high
retention is possible even for the average student.

Course information for this class (and most other
classes) is available on the departmental web site.
These pages are generally used to improve com-
munication among the instructor(s), teaching as-
sistants and students in the course; the web
pages are also available to the general commu-
nity. the EECS 100 web page is located at
http://www.engin.umich.edu/class/eecs100/ (in May
1998). A new textbook 2 has been developed to support
this new approach.

2.2 EECS 270

EECS 270 is a first course on digital logic. Like sim-
ilar courses at most universities, this course covers a

2»From Bits and Gates to C and Beyond” by Yale N. Patt
and Sanjay J. Patel

Wk

Course material Covered

Administration, Bits and operations on
bits.

Bits and operations on bits (contin-
ued), Basic logic structures (transis-
tors, gates, truth table representation),
ADDER, MUX, DECODER

Storage elements (register, memory ad-
dressing), Introduction to the von Neu-
mann model. Emphasis on memory.

ISA Specification of simple processor
(instruction formats, control, datap-
ath), Problem Solving and On-Line De-
bugging,

control structure of a stored program
(sequential, conditional, iteration), As-
sembly Language (translation, hand as-
sembly of sample programs)

Physical 1/O (Keyboard Data and
Status Registers, Polling, Interrupts),
Traps, ISRs

Subtroutines (JSR/RET mechanism)
Stacks, Parameters. How are they
passed?

Motivation for programming at a
higher level, An introduction to the
C programming language, Variables
(types, declaration, scope, symbol ta-
ble, allocation).

Operators (arithmetic, bitwise, logical,
relational, assignment), Control struc-
tures (if, if-else, switch, for, while, do-
while), Translation to assembly.

10

Function (prototypes, definition, calls),
Revisiting the compiling, linking pro-
cess; what happens with functions.
Translation to assembly. Stack man-
agement.

11

Source Level Debugging, Recursion,
Pointers.

12

Arrays in C, I/O in C, Structures in C,
Translation to assembly.

13

Dynamic allocation, linked list data
structure.

14

Analysis of algorithms (Big-O nota-
tion), Divide and conquer algorithm
(binary search), Space complexity:
Memory usage.

15

What comes after EECS 1007 What do
computer engineers and computer sci-
entists do?

Table 1: EECS 100 Lectures.

variety of design components. Boolean algebra is first
introduced in this course; logic gates, logic minimiza-
tion and standard combinational circuits are presented
and reinforced in a lab component to the course. Labo-
ratory includes hardware design and CAD experiments.

2.3 EECS 370

EECS 370 has been the first course on computer orga-
nization, but with the changes to EECS 100 the con-
tent of EECS 370 is being expanded. This course fo-
cuses on pipelined architectures with students building
simulators of the pipeline execution at varying levels
of complexity. Both C and Verilog have been used to
construct the detailed simulation.

2.4 EECS 373

While EECS 370 treats the implementation of proces-
sors from low-level digital components, EECS 373 cov-
ers the application of microprocessors as components in
complete digital systems. Students learn hardware and
software aspects of interfacing devices to modern micro-
processors through a combination of lectures and lab-
oratory exercises. Lectures stress fundamental, device-
independent concepts, illustrated by a range of current
and historical examples. Topics include bus protocols,
interrupt structures, DMA, memory technologies, A/D
and D/A conversion, and basic video and disk interfac-
ing. Both embedded and general-purpose system issues
are covered.

Laboratory exercises reinforce these concepts via
hands-on experience with specific devices. For Fall
1998, we are introducing new, state-of-the-art lab
equipment. FEach lab station is built around a Mo-
torola embedded PowerPC development system cou-
pled with a custom interface board. Each interface
board contains two Xilinx field-programmable gate ar-
rays (FPGAs) and a number of peripherals, includ-
ing switches, a seven-segment LED display, A/D and
D/A converters, and a small SRAM. Students design
interface circuits for the various peripherals and down-
load them to the FPGAs. They also develop small
assembly-language programs to exercise the peripher-
als. Students develop and debug their software using
an integrated environment from Software Development
Systems, Inc. (SDS) that includes a C compiler, an as-
sembler, and a debugger. The debugger uses the Mo-
torola processor’s built-in debug facilities to achieve in-
circuit emulation capabilities without additional hard-
ware. Hewlett-Packard 16600A 136-channel logic ana-
lyzers work in tandem with the SDS debugger to pro-
vide a complete, sophisticated view of hardware ac-

tivity supporting both software and hardware debug.
Both the Xilinx development tools and the SDS envi-
ronment include simulation capabilities, and are avail-
able on machines in the public engineering computer
labs. Students can design and test their hardware and
software independently outside the lab, leaving pre-
cious lab time to focus on hardware/software integra-
tion and to observing and measuring the physical sys-
tem at work.

3 Graduate Education

The University of Michigan has a very large and active
graduate program, particularly in computer architec-
ture. With over 50 PhD students associated with the
Advanced Computer Architecture Lab (ACAL), there
is a great demand for a variety of courses in architecture
at the graduate level. All graduate students in Com-
puter Engineering are required to take EECS 470 (or
equivalent). In addition, several elective courses are
regularly offered (EECS 570, 571, 573 and 583). Fi-
nally, experimental courses (EECS 598 and EECS 670)
are often offered — these courses are selected to cover
current topics and are therefore unlikely to be repeated.

3.1 EECS 470

The introductory graduate-level class in computer ar-
chitecture (EECS470: Computer Architecture) is de-
signed for the student who wishes to obtain a detailed
understanding of how computers are designed and im-
plemented. We assume that the entering student un-
derstands the concepts of assembly language, machine
language, ALU design, and the basic ideas of pipelin-
ing, caches, and virtual memory, which are covered in
our senior-level class EECS 370. EECS 470 expands on
this material in both depth and breadth. In addition
it introduces advanced material on instruction set de-
sign, microprogramming, instruction-level parallelism,
vector processing, and storage systems. Concepts are
illustrated with historical and state-of-the-art systems.

The class is offered in both the Fall and Spring
semesters and meets twice a week for 90 minutes. Ex-
cluding classes taken for exams and reviews, there are
about 25 classes. The class material emphasizes a quan-
titative approach to design. Design goals are usually
formulated in terms of performance or power measures
and require the students to understand performance
evaluation techniques. So that the student is aware
that performance comes at a cost, tradeoffs in design
and implementation are discussed. Trends that will af-
fect these tradeoffs in future systems are also discussed.

To give students a deeper understanding of the prac-
ticalities of many of the concepts and tradeoffs studied
during lecture, students are required to design a sub-
stantial, realistic processor using the Verilog hardware
design language. A weekly one hour discussion session
is scheduled to learn how to use the design tools and to
discuss implementation issues. The discussion is also
used to discuss homework problems.

For the project the student is expected to use the
extensive design environment that has been developed
over the past 10 years at Michigan. It includes modern
commercial CAD tools from Cadence, Mentor, Cascade
and Avant. Not all of these tools are necessary in this
particular class where the goal is to design and test
a mixed behavioral/structural Verilog model that can
be synthesized using the Synopsis synthesis tools. The
project represents a significant investment of time for
the student and the grade breakdown for the class re-
flects this.

The required text is the second edition of ” Computer
Architecture: A Quantitative Approach,” by Hennessy
and Patterson. Additional texts that are referred to
include, ”Computer Architecture: Pipelined and Par-
allel Processor Design,” by Flynn, and the second edi-
tion of ” Computer Architecture and Organization,” by
Hayes. Papers that supplement the text are also used
and handed out in class as needed. Verilog material in-
cludes tutorial chapters from the Cadence manual and
a set of class notes on synthesizeable design with Ver-
ilog.

3.2 Graduate Electives

In addition to the required graduate architecture
course, electives are available to further explore differ-
ent aspects of architecture. EECS 570 concentrates on
the design and use of parallel processors. Students tak-
ing this course are exposed to a variety of parallel archi-
tectures (IBM SP2, HP Convex Exemplar SPP-1000,
GSI Power Challenge GR, etc.). Many of the students
in this course continue working on parallel machines
with the Parallel Performance Project (PPP) and/or
the Center for Parallel Computing (CPC) at the Uni-
versity of Michigan.

The EECS571 course is intended to cover principles
and foundations of real-time computing (RTC). Due to
its vital role in almost all application domains, such as
multimedia, virtual reality, telecommunications, indus-
trial automation, aerospace, embedded commercial and
defense systems, medical instrumentation and life sup-
port systems, RTC has become an essential discipline
in the field of computer science and engineering. RTC
as studied in this course is based on three attributes:

high performance, ultra-high reliability, and environ-
mental interface. These three attributes are strongly
coupled together by a single precious resource, time.
In this course students will be exposed to the state-
of-art (both analytic and experimental) research and
development related to all these three attributes and
their interplay.

EECS 573 provides a fundamental body of knowl-
edge useful to grad students who plan to do research
in microarchitecture. In particular the emphasis is on
combining the mastery of fundamentals with critical
reading and analysis and creative thinking. The course
begins with four fundamental properties of microarchi-
tecture dealing with instruction supply, instruction pro-
cessing, data supply and control flow. The bottlenecks
in each of the four aspects are covered. Various archi-
tectural paradigms (e.g. VLIW, Superscalar, HPS and
MultiScalar) are discussed with the focus on how these
paradigms try to overcome the bottlenecks described
above. Finally an introduction to patent and copyright
laws are discussed and the pros and cons of patenting
a design are explained.

4 New Directions in Teaching
Architecture

Architecture designs continue to evolve with differing
tradeoffs leading to new solutions. In order to provide
the flexibility in the curriculum to explore new archi-
tectural research, two courses are available: EECS 598
and EECS 670. EECS 598 is the primary mechanism
for introducing new course offerings into the curricu-
lum; these are courses that are taught first as a 598
course and later, if successful, designated a new course
number and added to the regular curriculum. In con-
trast, 670 courses are designed to enable instruction on
a current topic one time only.

In a recent EECS 598 course, we introduced a new
course examining the relationship between compiler op-
timization, instruction set design and microprocessor
architecture. With the advent of just-in-time (JIT)
compilation and object code translation, the time has
come to more closely integrate compiler development
with instruction set design and microarchitecture. This
course has been taught once as an EECS 598 course
with the intention of incorporating it as the regular
graduate elective course in later years. By teaching
it as a special projects course, we were to experiment
with the class before finalizing a new course proposal.
In this particular course, we were able to discuss cur-
rent trends in instruction set design (e.g. Intel’s EPIC

architecture) while determining which features of the
course capture more fundamental aspects which can be
included in a more permanent course.

5 Summary

In this paper we have discussed the course framework
for teaching computer architecture. The University of
Michigan has a very active faculty in this area which
enables us to offer a broad range of courses on this
subject. The course structure has been developed to
provide as much flexibility as possible to change course
content as our field advances. This is best demon-
strated in the major reordering of the introductory
course (EECS 100), which is now better able to prepare
incoming students for the rigors of the later courses. At
the graduate level, the curriculum is designed to pro-
vide a core set of courses covering major aspects of
computer architecture as well as enable the addition of
experimental courses.

Course Prereq Annual Course
Title Courses | Enrollment | Description
How a computer works, from the machine Tevel to high Ievel programming. Cir-
100 cuits, instructions, memory, data. Assembly language. Binary arithmetic, data
Introduction to Com- 800 types, data structures. Translation of high level languages. The C program-
puting Systems ming language: data structures, control, iteration, recursion. Basic algorithm
analysis.
Binary and non-binary systems, Boolean algebra digital design techniques,
270 logic gates, logic minimization, standard combinational circuits, sequential cir-
Introduction to Logic 100 450 cuits, flip-flops, synthesis of synchronous sequential circuits, PLLAs, ROMs,
Design RAMs, arithmetic circuits, computer-aided design. Laboratory includes hard-
ware design and CAD experiments.
Computer organization will be presented as a hierarchy of virtual machines
370 representing the different abstractions from which computers can be viewed.
Introduction to Com- | 270, 280 300 These include the logic level, microprogramming level, and assembly language
puter Organization level. Lab experiments will explore the design of a microprogrammed com-
uter.
373 IF)’ri'nciples o'f hardware a%nd softwarf: microcgmputer. interfac'ing; digital logic
Design of Microproces- 370 940 deS.lgI{ and 1mplem(?ntat10n: .Experlments with sp.ec1ally des1gne<.i laboratory
sor Based Systems facilities. Introduction to digital development equipment and logic analyzers.
i Assembly language programming. Lecture and laboratory.
Basic concepts of computer architecture and organization. Computer evolu-
tion. Design methodology. Performance evaluation. Elementary queueing
470 370 90 models. CPU architecture. Introductions sets. ALU design. Hardware and
Computer Architecture microprogrammed control. Nanoprogramming. Memory hierarchies. Virtual
memory. Cache design. Input-output architectures. Interrupts and DMA. 1/0
processors. Parallel processing. Pipelined processors. Multiprocessors.
473 This course introduces advanced digital system design concepts, such as tim-
Advanced Digital Sys- 373 o ing analysis, relia})ility, a.md testability. These ct?ncepts are then applied t.o a
tem Design semester-long design project of the student’s choice. The result of this project
will be a highly testable, highly reliable digital system.
570 Pipelining and operation overlapping, SIMD and MIMD architectures, numeric
Parallel Computer Ar- 470 20-40 and non-numeric applications, VLSI, WSI architectures for parallel computing,
chitecture performance evaluation. Case studies and term projects.

571 Pr:jn(npl.es of real—‘;l.me c;)mpugmgh.based on hllgh .pirformance,.ultra rehablht()jf
. . and environmental interface. Architectures, algorithms, operating systems an
gglrr:;ﬂ?rslgf Real-Time | 470, 482 <20 applications that deal with time as the most important resource. Real-time

scheduling, communications and performance evaluation.

Graduate Ievel introduction to the foundations of high performance micropro-

cessor implementation. Problems involving instruction supply, data supply,
57,3 . 470 <20 and instruction processing. Compile-time vs. run-time tradeoffs. Aggressive
Microarchitecture branch prediction. Wide-issue processors, in-order vs. out-of-order execution,

instruction retirement. Case studies taken from current microprocessors.

Code Generation and Optimization: Advanced code generation techniques.
583 Representation of intermediate code. Data flow analysis, code movement, loop
Advanced Compiler | 470, 483 < 20 optimization, common subexpression elimination, and peephole optimization.
Construction Optimization by program transformation. Machine specific optimizations, im-

proving instruction schedule for pipelined microprocessors.

Trends in Instruction Set Architecture Design (taught Winter 1998): This

course will analyze current trends in the evolution of instruction set architec-
508 tures. In particular, we will explore modifications to existing instruction sets
Special Topics: Trends) tl.lat enable th.e compi.ler to convey additional inf.orrna.tion U?efl.ll in achieving
in Instruction Set Ar- varies high levels of instruction parallelism. These modifications will include: mem-
chitecture Design ory prefetch, speculative load, predicated execution and newer VLIW designs

including the Intel/HP Explicitly Parallel Instruction Computing (EPIC) ap-

proach used in the next generation platforms for Intel (P7 or Merced) and HP.

Current research projects will also be discussed.

Advanced concepts and specialized areas in computer systems design are dis-
670 cussed and anfilyzed.in dept.h. Topics chosen by instructqr. .E>.(amp.les are
Advanced Topics in 570 o database machines, highly reliable systems, computers for artificial intelligence,

Computer Architecture

architectural support for operating system functional, high-level language ar-
chitectures, object-oriented architecture, other special purpose architecture (vi-
sion, dataflow).

Table 2: EECS Catalog Course Descriptions.

