
The Training Environment for the course on Microprocessor Systems at the
Politecnico di Torino

M. Rebaudengo, M. Sonza Reorda1

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

1 Contact address: Matteo SONZA REORDA, Politecnico di Torino, Dip. Automatica e Informatica, Corso Duca degli Abruzzi 24, I-10129 –

Torino, Italy, Tel. + 39 11 564 7055, Fax + 39 11 564 7099, E-mail sonza@polito.it, http://www.polito.it/~sonza

Abstract

This paper describes the training environment used
for the course on Microprocessor Systems held within
the curriculum toward the MS degree in Computer
Science at the Politecnico di Torino. The environment is
composed of inexpensive hardware and software
material that allows students to perform a final
assignment work based on implementing a stand-alone
video-game system. The characteristics of the hardware
and the specifications of five games are described. The
experience gathered in the past five years is referred to
in explaining the advantages of this approach: more
effective learning of microprocessor system architecture
and programming, practical experience in project
management, first contact with complex systems
handling.

1. Introduction
This paper presents the training environment

(hardware and software material, exercise
specifications) used in the undergraduate course on
Microprocessor Systems held at the Politecnico di
Torino.

The course presents the basics in Microprocessor
Systems architecture and programming, and adopts as a
reference the Intel 8086 family [1]; it overviews the
architecture and assembly language of the processor, as
well as the use of the family’s main peripherals (serial
and parallel interface, programmable timer, interrupt
controller). The course is located in the middle of the
curriculum leading to the MS degree in Computer
Science: previous courses teach the students about the
basics of Computer Science, high-level languages
programming, algorithms and data structures; further
courses provide knowledge about more advanced
microprocessors and microcontrollers architectures, as
well as Operating Systems and Software Engineering.
This course is thus designed to provide a basic
knowledge about microprocessor systems, and to give
the students a real experience in software programming
of simple boards based on a microprocessor and related
peripherals.

The Intel 8086 family has been chosen for two
reasons: first, the large availability of Personal
Computers for experimenting the Assembly language,
and second, the requirements of several local industries
working in the PC market and interested in recruiting
engineers able to write drivers for specific devices and
boards.

The laboratory exercises consist of two parts: the
first comprises a set of guided exercises focused on
single topics (language constructs, peripheral
programming, etc.); the second calls for a final
assignment corresponding to a project students must
carry out. Since training in microprocessor board
programming is the prime aim, this assignment requires
the programming of an existing hardware. The
definition of the hardware and software environment, as
well as the specification for these assignments were
strongly influenced by the following requirements:

• the size of the assignment should be large enough
to simulate a real project, but small enough to be
completed within the course;

• its specifications should cover the maximum
number of course topics to ensure their fuller
acquisition through practical experience;

• they should be challenging and interesting enough
to strongly motivate students during the execution
of their assignment;

• they should be vague enough to allow the choice
of a variety of solutions, but precise enough to
allow comparison of the assignments handed in;

• hardware and software should not be expensive;
• the hardware should be flexible to enable it to be

employed for future assignments and thus achieve
a good ROI (Return On Investment).

These requirements were met by providing the
students with all the hardware needed to produce a
simple stand-alone video-game system and asking them
to write the software implementing the game. The
experimental results we gathered by adopting this
approach in the past five years have demonstrated that it
fulfills most of the goals.

The paper focuses first on the hardware material
(Section 2), and then on the specifications of the work
to be done by the students (Section 3). Some examples

are given in Section 4, and the results are assessed in
Section 5. Conclusions are drawn in Section 6.

2. Hardware Material

The hardware material is composed of 3 parts (Fig.
1): a PC, a microprocessor board and a peripheral
device.

2.1 Personal Computer

This provides a simple and well-known development
environment. It is employed to write, assembly, and
download the Assembly code running on the
microprocessor board. Any kind of PC (from 8086 PC
on) is acceptable.

2.2 The Flight86 board

The microprocessor board is a commercial board
called Flight86 [2] designed and sold by Flight
Electronics Ltd.

It is designed to simplify teaching of the 8086
CPU and some of its commonly used peripherals, and is
equipped with a 8086 microprocessor, 16 Kbytes of
RAM, 16 Kbytes of ROM, 2 parallel interfaces (8255),
a serial interface (8251), an interval timer (8253) and an
interrupt controller (8259). A serial port connects the
board to a PC through the RS-232 protocol; hardware
interfacing of peripheral devices is achieved through
two parallel I/O ports.

Two programs are provided with the board: a
Monitor program resident in EPROM, and the host
software for the PC. The main operations allowed by
the software are code downloading from the PC onto
the memory board, program running and debugging.
Several facilities permit an effective debug, such as
inserting breakpoints into the code, running the program
step by step, controlling the values stored in the
registers and in the memory, and disassembling the
code. Once the code has been debugged and the final
version downloaded into the board memory, the
Flight86 can be isolated from the PC and act as a stand-
alone machine.

2.3 The Programmable Video-Game Device

The Flight86 needs some additional device to
interface with the outside world; for this reason we
designed a peripheral called the Programmable Video
Game Device (PVGD) formed of 3 parts assembled into
a single box: a Liquid Crystal Display (LCD), a
keyboard and a buzzer. It is connected to the Flight86
through a connector.

The LCD [3] has an alphanumeric display of 160
characters (4 lines of 40 characters): each character is
formed of 8x5 dots. The LCD contains a built-in
Hitachi HD44780 controller chip that allows it to
receive data directly from a 4-bit or a 8-bit
microprocessor or microcontroller. The chip has 192
character patterns in a ROM memory. A programmable
RAM memory is also available, allowing the user to
define up to 8 new characters.

Data for display on the module are sent through the
data bus from the microprocessor to the LCD controller
via a parallel interface. Data transmission is
programmable and can be performed in either 8-bit
words or 4-bit nibbles. The input lines to the LCD
controller are two enable signals, a read/write control
signal, a control register signal and 8-bit data bus lines.

The keyboard has 16 keys organized in 4 rows and 4
columns. Row and column lines are connected to an
output and input 4-bit port of the Flight86 board
respectively.

The buzzer is a piezo-electric element that
transforms alternating voltage into acoustic signals and
can be driven by sinusoidal or square waves.

The interface between the Flight86 and the PVGD is
designed to use the three ports of one of the two 8255s
and one counter of the 8253 to drive the PVGD
peripherals.

2.4 Cost

The total cost for the hardware is about $600 for the
Flight86, including the software, and about $200 for the
PVGD, including material, assembly, and testing costs.

A PC equipped with a text editor and an Assembler
program is available for each student. Their cost is not
included because they are not specific for the course
and also used for other courses.

The total cost is regarded as acceptable, since we
expect the system to be in use for at least 8 years and
support the execution of a wide set of assignments.

3. Work Specifications

As already stated, students are required to program
the hardware and produce a stand-alone video-game
system composed of the Flight86 board driving the
PVGD.

Personal Computer Microprocessor

board

Peripheral

device

Fig. 1: The training environment.

Video-games were chosen for several reasons: first
of all, their characteristics are normally well known,
which makes it easier to define the specifications and
reduces the risk of misunderstandings; secondly, despite
its relatively low complexity, construction of a video-
game raises several interesting problems, such as
graphical and sound interface definition and
implementation, real-time programming, and concurrent
processes coordination; lastly, students are much more
motivated in implementing a game than other
applications. Some basic notions about game theory and
game programming [4] are provided before they start
their assignment.

Students are organized in groups, each composed of
three persons. Each group can access the laboratories
where the hardware and software material is available
during a period of about two months without any
restrictions. Each student group is also allowed to loan
the Flight86 board and the PVGD, so that they can
work at home, if they own a PC. After a specified
period, the groups are asked to deliver their final
product in the form of a floppy disk containing the
source code of the program and some related
documentation corresponding to its Installation Guide,
User Guide, and Product Reference Manual.

Students are provided with very simple
specifications based on well-known and simple games
(see below for details) that also allow them to enrich
what they produce according to their own fancy and
capability.

The following parameters (in order of decreasing
importance) are used to evaluate the work of each
group:

• conformity to specifications
• user-friendliness of the interface
• completeness of documentation
• robustness, modularity, and efficiency of the

implementation
• improvements.

4. Assignments

We will now describe the works assigned for
implementation in recent years to show what the
hardware described can be exploited for. Further
specifications could readily be devised for the same
hardware. Works assigned are always a simplified
version of well-known video-games:

• Hunter: a target runs in a random way on the
screen. The player can move the hunter via the
keyboard, rotate his gun towards the target, and
shoot. If the target reaches the hunter before being
hit, the hunter dies.

• Squash: a single player moves a racket around the
court and hits a ball, which bounces off the walls
bounding the court along three sides. A maximum

number of balls are allowed to leave the court
through the back side. The score corresponds to
the number of rebounds against the wall.

• Tetris: Pieces with simple shapes and composed
of a small number of square blocks fall one after
the other from the top of the screen. The player
may rotate each piece and move it horizontally as
it falls, to make it fit in with those that pile up at
the bottom of the screen. When a solid row of
blocks (no holes between the pieces) forms in the
bottom, the row disappears. Otherwise, the pieces
continue to pile up and reduce the space to be left
for new pieces, thus increasing the difficulty of
the game.

• Grand Prix: the screen represents a car
racingtrack, like the Indy one. The player moves a
car via the keyboard. The score corresponds to the
number of laps covered by the player in a fixed
amount of time. The games is over if the car goes
off the track or the time terminates

• Worm: the player moves a worm across the screen
to collect as many apples among the ones
randomly apperaing on the screen. The longer the
worm lasts and the more apples it eats, the higher
is the score. The game is over if the worm crashes
into a wall or into its body.

4.1 Characteristics

An important feature of any implementation of these
games is that the program is composed of several
modules performing different tasks. A Main Module
orchestrates the other modules and runs the core
algorithm. A Timing Process provides the time
information required to coordinate the execution of the
other modules: a polling management could be used,
but better results can be obtained with an interrupt
mechanism to activate each procedure. A Graphic
Interface displays the characters on the LCD; the
displaying of objects in motion and the definition of
new characters greatly increase the number of features
which can be implemented on the LCD. A Music
Interface drives the buzzer and could be made very
sophisticated to produce a musical background. A
Keyboard Interface manages the keyboard: difficulties
arise from the correct management of the arrow keys,
which in an action game corresponds to a real-time
problem.

The complexity of the task (the final code normally
amounts to some thousands of lines) means that
students must carefully organize their work: they first
identify the high-level modules, and then proceed in a
top-down approach that can sometimes be combined
with a bottom-up approach, by introducing a procedure
library to manage specific hardware components (e.g.,
the LCD, or the buzzer). Some parts of the code (e.g.,

the one implementing the core algorithm) can be written
in C, provided a suitable interface towards the other
modules is defined. Modularity also eases the task of
sharing the work among the components of each group.

5. Evaluation of the Results

Implementation of a video-game machine using the
material described was first introduced five years ago.
A different game was assigned each year and data were
collected on the number of groups to which the work
was assigned, of the groups that delivered a successful
product, and of the groups that added some new
features. As can be seen in Tab. 1, about 75% of the
groups were able to deliver a working product,
demonstrating that the main goal of the course, i.e.,
providing the students with the ability to solve a real
problem on a microprocessor board, had been reached
by an acceptable percentage. About 50% of the groups
introduced additional features: these mainly concerned
new game options (e.g., transforming tetris game into a
2 players game), sophisticated graphic interfaces, and
musical effects.

The didactic advantages of adopting this
environment for implementation of the games will now
be described.

Game Groups Successfull With new Features
% # %

Hunter 27 21 77 14 52
Squash 30 23 76 17 56
Tetris 32 24 75 18 53

Grand prix 31 23 74 16 51
Worm 33 25 75 18 54

Tab. 1: Group activity.

5.1 In depth knowledge about Computer
Architecture and Assembly Language

The work assigned requires about 2 full-time weeks
per student and a high degree of involvement. It thus
forces students to acquire a very good knowledge of
both the 8086 assembly language, and the architecture
and characteristics of a 8086-based board; we noted
significant improvements in this connection compared
with the conventional laboratory exercises (previously
adopted for the same course); this result has been
reached without a significant increase in the time
required by the students to prepare their final
examination.

5.2 First Expertise in Advanced Topics

The assignments require the implementation of a set
of concurrent processes: one for keyboard handling,
another for updating the LCD, an optional one for
playing sounds, and one for computation. The processes

can be managed either with a polling strategy or by
resorting to the interrupt mechanism. They possibly
share data, and some of them must be accessed in a
mutual-exclusive way. Time constraints have to be
considered and solved to devise a correctly working
product. A number of important problems are thus
present, and students deal with them first from a
practical point of view on simple cases. Further courses
(e.g., the one on Operating Systems) provide them a
more complete and theoretical framework, and a set of
complete solutions. We believe that the illustration of
practical problems, followed by the provision of
solutions, is well-suited for a technical university. It has
certainly been very well accepted by the students.

5.3 Real Experience in Project Management

The complexity of the software, which must be
structured in several modules (possibly corresponding
to processes), requires students to devise a logic
architecture for their program. This planning phase must
be based on a preliminary evaluation of the advantages
and disadvantages of the possible solutions.

Moreover, the specifications we provide are
generally quite vague, especially with regard to the
user-interface and the features that could be added to
the basic game: this forces students to devise solutions
and to design alternatives. More importantly, as they are
also in charge of putting their ideas into practice, they
must evaluate how expensive and risky (in terms of
robustness) their solutions could be. Our experience
suggests that most groups that fail do so because they
add excessively complex features to the basic
specifications. The main weakness here is not a lack of
implementation capabilities, but an inability to evaluate
the complexity of what is going to be implemented.

Completion of an assignment thus constitutes a real
experience in project management, something that has
been previously indicated as one of the most serious
weaknesses of our students, and which will be more
deeply dealt with by the following course on Software
Engineering.

6. Conclusions

We have described the training environment used for
the course on microprocessor systems held at the
Politecnico di Torino.

The environment is based on a commercial board
equipped with a 8086 microprocessor and several
peripheral devices from the same family; the board is
connected to an ad hoc designed peripheral device
containing a keyboard, an LCD, and a buzzer. Programs
to be run on the system can be edited and compiled on a
PC, and then down-loaded and debugged on the system
itself.

Students exploit the described hardware to develop a
real product corresponding to a stand-alone video-game
system. Our experience over the past five years
demonstrates that this approach leads to the following
important results:

• thanks to their great involvement, students get a
deep knowledge in microprocessor systems
architecture and programming;

• they experiment how to manage a real project and
understand where some critical problems must be
faced, e.g., in the definition of a suitable user
interface;

• they work on a system complex enough to acquire
an initial experience of advanced topics they will
deeply deal with in further courses, such as
Operating Systems and Software Engineering.

The best works done by the student groups for this
course in the past years are available at the URL
http://www.polito.it/Ulisse/CORSI/INF/N0460/material
e/tesine/.

7. References
[1] Yu-Cheng Liu, G.A. Gibson: Microcomputer Systems: the

8086/8088 Family, Prentice-Hall, 1986
[2] Flight86 Microprocessor Training Equipment: Technical

Reference Manual, Flight Electronics International Ltd.,
Southampton, UK, 1991

[3] Liquid Crystal Displays Alphanumeric and Graphic Modules
Standard and Custom Design, Varitronix Ltd., Hong Kong, 1991

[4] E. Solomon: Games Programming, Cambridge University Press,
Cambridge, UK, 1984

