
 

Abstract 

The debate over whether  a Computer  Science graduate should 
have an appreciation of hardware related topics has a long 
history in Computer  Science Education. Given that the subject 
is getting broader and specialization is occurr ing ear lier  in a 
Computer  Science degree the calls to omit this vital aspect of 
the subject are stronger than ever. One reason for  avoiding this 
type of mater ial is that its flavor is not to every student’s taste, 
especially students interested in Information Systems as their  
major . I f it is considered an essential component of a major  
then the challenge to educators is to produce a course that is 
technical without technical detail dominating essential concepts, 
coherent from a systems’  perspective and relevant to majors 
who might have quite different or ientations within the subject.  

I. INTRODUCTION  

The ACM guidelines for an undergraduate program in 
computer science [1] and Information Systems [2] both 
include coverage of computer architecture, logic design, 
operating systems and computer communications as core 
material that all students should meet. For many students this 
portion of the curriculum may well be the final chapter in 
their hardware education, especially if they are in a 
programme that involves a degree of specialisation. This 
situation generates a significant challenge for the teacher of 
such a course. Not only do they need to stimulate those 
students who wish to continue to study hardware related 
subjects, but they must maintain the interest of students who 
do not have an a priori interest in hardware. For these 
students it is important to emphasise the logical equivalence 
of software and hardware, and to show them a coherent view 
of a computer system so that they can more fully appreciate 
the relationships between the different components of such a 
system. This has to be achieved without falling into the trap 
of describing too much device-specific detail. Technical 
detail in a computer systems course cannot be avoided, of 
course, but its effects can be minimised by a careful 
selection of a supporting architectural model. 
 
This paper describes the development of a new computer 
systems course and a platform to support teaching of the 
course in the Department of Computer Science at the 
University of Waikato. The course is a compulsory course 
for all computer science majors and includes the full range 
of students from those taking an information systems stream 
to those taking a computing technology stream who will take 
further courses in Computer Architecture. 
 
Despite the diverse needs of these students the course has 
achieved a substantial success. This has been achieved 

                                                           
The authors are adjuncts to The Department of Computer Science University of 

Waikato, Hamilton New Zealand. Email: mpearson@cs.waikato.ac.nz  

through the use of real hardware and by integrating computer 
architecture with operating systems and data 
communications 

II. COURSE OUTLINE 

The departments curriculum committee established a set of 
key topics that should be covered by the course. These 
included data representation, machine architecture (including 
assembly language programming), memory and I/O, 
operating systems and data communications. 
 
The initial planning of the structure of the course was 
conducted through text selection. Popular texts such as 
Tanenbaum’s Structured Computer Organization [3], 
Stalling’s Computer Organization and Architecture [4], and 
Patterson and Henessey’s Computer Organization and 
Design [5] were considered to be too technical for a core 
computer systems course. While no text has been found that 
covers all of the material in the course the text “A 
Programmers View of Architecture” [6] covers the material 
in the first half of the course very well and has been used for 
the last two years. 

III. SELECTION OF THE MODEL ARCHITECTURE 

The first stage in selecting a new platform was to decide 
whether to use a simulated or a real architecture. Using a 
simulated system offers two main advantages. Firstly, it is 
possible to develop a simulator to any desired CPU. This is 
an advantage as it is then possible to develop a CPU that is 
tailored to the goals of the course. Secondly, using a 
simulator offers a number of possibilities to generate 
visualizations of a program executing which can be used to 
help reinforce important concepts. While using a simulator 
offers advantages, it is itself a program running on a 
computer. This makes if difficult for students to readily 
identify the target system and tend to confuse the roll of 
components of the system. When this happens there is a risk 
that students will focus on the most obvious difference 
between practical work in this area and others: the 
programming language. When real hardware is used the real 
focus is more likely to be on the target system. We strongly 
believe that this disadvantage far outweighs the advantages 
of using simulation. For this reason we have chosen to go 
against the trend and use a real system. 
  
Because the goal of the course is to explain the role and 
interaction of the components of a computer system not to 
teach assembly language programming for its own sake there 
are two main requirements for a model architecture: 

1. a simple, easy to learn instruction set  
2. an architecture that can easily demonstrate the 

relationship between high and low level languages.  

 Teaching Computer Systems to Majors: a MIPS 
Based Solution 

Murray Pearson, Tony McGregor and Geoffrey Holmes 



For these reasons simplified MIPS architectures are used in 
both the Goodman and Millar [6] and the Patterson and 
Hennesey [5] books. In both of these cases however, they 
have elected to use simulators to support the practical 
components of their courses. However for the reasons 
described above we have chosen to use a real MIPS based 
system. 
 
While the MIPS processor is suitable for teaching assembly 
language programming there are a small number of features 
which were included to improve its efficiency. The most 
noticeable of these are semantics associated with load and 
branch slots that only add complexity when used in an 
educational environment. To cope with both of these 
situations the students are instructed to place “nop”  (no 
operation) instructions after each load or branch instruction. 
We have found this to be a perfectly satisfactory solution to 
date. These problems were considered to be small enough 
that their disadvantages did not outweigh the benefits of 
using a real system comprising a MIPS processor. In the 
future we plan to develop an assembly pre-processor that 
will notify the students if a nop is not placed after either a 
load or branch instruction.  

IV. COURSE CONTENT 

Figure 1 shows the order of the topics that make up the 
course and the relative levels of abstraction used to describe 
them. The main content of the course can be broken into two 
parts. The first part illustrates what happens to a high level 
program when it is compiled and executed on a computer 
system. This serves two purposes. First it demonstrates some 
of the major issues which determine the performance of a 
computer system. Second, it shows the likely consequences 
of writing a particular construct in a high level programming 
language in terms of speed and size of the code generated.  
 
To gain a good insight into this process the student must 
have a good understanding of assembly language 
programming and machine architecture. These form the next 
two major topics covered in the course. As programming at 
the assembly level is a foreign concept to most students 
entering the course, an attempt is made to introduce it using 
examples from the C programming language (a language 
they are familiar with). Not only does this add interest and 
illustrate the motivation for particular programming 

constructs, it also shows the relationships between a high 
level language and the corresponding assembly language. To 
complete this section the students do an assignment where 
they document the assembly language code generated by the 
gcc compiler. 
 
Once the students have a good grounding in assembly 
language programming they complete a section on the 
assembly process and machine architecture again using 
MIPS examples. To illustrate how machine language 
instructions execute on hardware, a simple MIPS 
architecture is introduced as shown in Figure 2. Each 
component of this architecture is introduced with the control 
signals used to control them. To reinforce the process, we 
use interactive sessions where the class pretends to be the 
control unit for the CPU and a number of example 
instructions are fetched and executed on it. While this 
architecture is significantly simpler than an actual MIPS 
CPU it illustrates the important issues that determine the 
performance of a particular architecture. It also forms the 
basis for students to move onto more advanced computer 
architecture courses. 
 

M
A

B

B

M
I

Memory

P
C

Reg File
(R0-R31)

A
L
U

T
E
M
P

4
I
R

Control

C Bus

B Bus

A Bus

AC

 

Figure 2 Example MIPS Architecture 

The aim of the second part of the course is to produce an 
understanding of operating system principles and 
components, their role in supporting the user, and in the 
execution of programs written in high level languages such 
as C (the starting point of the course). The focus is on 
achieving an empathy with the operating system rather than 
an ability to write a new one. 
 
This empathy is achieved by building on concepts 
introduced in the first half of the course starting with the 

Figure 1 Topics Covered in the Course 

Part 1 Part 2

Compilation

Assembly Language
Programming

Machine
Architecture

Input
Output

Operating
Systems
libraries

file system
memory
processes

Data
Comms

Time

Introduction

gate

RTL

ASM

OS

C

L
ev

el
 o

f 
A

bs
tr

ac
ti

on



introduction of I/O. The concept of interrupts are then 
introduced as a means of making more efficient use of 
systems resources.  This leads into multitasking, memory 
management, and the typical system calls provided in 
modern operating systems. 
Most modern computer systems communicate with other 
systems. The final section of the course is aimed at giving an 
understanding of data communication principles (low-level) 
and networks (high-level).  

V. PRACTICAL COMPONENT 

To support the practical component of the course a MIPS 
based system has been designed and manufactured. In 
keeping with the flavor of the course we wanted to use a 
minimal system that only used components used by the 
course, and we also wanted all the components of the system 
to be visible to the students.  For these reasons we decided 
that the system should be contained on a single printed 
circuit board (PCB). 
 
A search of suppliers did not reveal any system that matched 
the requirements for the course. So a board was designed to 
support the course. In designing the board a number of 
requirements were set to make it more suitable for the 
teaching environment.  The first was to ensure that the board 
was laid out so that it was easy to identify all of the major 
components that make up a computer system (i.e. processor, 
memory, bus and input/output). The second was to include a 
set of switches and a seven-segment display in the design 
which programs running on the board could access, giving 
students a greater sense of using the actual hardware. To 
protect the boards and let the students see all of the 
hardware, the boards have been packaged in a case with a 
clear perspex cover. A sticker has been attached to this cover 
to identify the major components.  
 
The board contains two serial ports. One is connected to a 
PC running LINUX and provides an interface for the 
students to interact with the board. The second is connected 
to a dumb terminal and is used for the I/O assignments. 
 
The assignments that make up the practical component of the 
course are shown in Table 1. Of particular note is the 
implementation of a multitasking kernel by the students. 
Given that most students are not computer technology 
students and that most successfully complete this exercise 
we belief this is a major indication of the success of the 
course. 
 
Each assignment has been arranged so that there are a 
number of finishing points allowing more advanced students 
to be extended without overwhelming the less able students. 

VI. CONCLUSIONS 

In light of our experiences, we believe that this approach to 
teaching computer systems has great merit.  
 
Firstly, technical detail is kept to a minimum by the model 
architecture that we have chosen. It would seem from the 
student feedback and their performance in the course that 

this model is appropriate when dealing with a broad 
spectrum of student interests. 
 
Secondly, the MIPS system with its single well laid out PCB 
(with no superfluous components) that has been developed 
provides a clear, reliable, and realistic vehicle for teaching 
computer systems.  
 
Finally, the course does not seem to discourage non-
computing technology students who see real value in taking 
the course. These students take the course seriously and this 
in part is due to the open-ended nature of the assignments 
which allow motivated students to be extended. 
 
Assignment Topic Objectives 
Data Representation Write program to read in 

different types and out memory 
location contents 

Introduction to MIPS 
board 

Assembling, downloading, 
executing and debugging 
programs written for the board 

MIPS programming I Write a series of assembly 
language programs to read 
values off the switches and 
display on seven segment 
display 

C -> MIPS Write a C programming and 
compile it to assembler and 
document the assembler 
showing the relationship 
between the two programs 

RTL design  Paper exercise to simulate the 
execution of a number of MIPS 
instructions on a model 
architecture 

MIPS programming II Write a program to set up and 
use a serial I/O device 

MIPS programming III Write a program to set up an 
interrupt service routine 

MIPS programming IV Write a multitasking kernel to 
allow switching between a fixed 
number of tasks 

MIPS programming V Write an extended multitasking 
kernel 

Data Communications Investigation of simple error 
detection mechanisms  

Table 1 Assignments for  Computer  Systems Course 

VII. REFERENCES 
[1] ACM Curricula Recommendations Volume I: Computing Curricula 

1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force. 
ACM 1991. 

[2] IS'97 - Model Curriculum and Guidelines for Undergraduate 
Degree Programs in Information Systems. ACM 1997. 

[3] Tanenbaum, A.S., Structured Computer Organisation (Third 
edition), Prentice Hall, 1990. 

[4] Stallings, W. Computer Organisation and Architecture: Principles 
of and Structure and Function (third edition), MacMillian, 1993. 

[5] Patterson, D. A. and Hennessy, J.L. Computer Organisation and 
Design: The Hardware/Software interface, Morgan Kaufman, 1994. 

[6] Goodman, J. and Millar K., A Programmer’s View of Computer 
Architecture with Assembly Language examples from the MIPS RISC 
Architecture, 1992. 


