
 A Hierarchical Memory System Environment
J. Djordjevic, A. Milenkovic, S.Prodanovic*

Faculty of Electrical Engineering, University of Belgrade
P.O.Box 3554, 11120 Belgrade, Yugoslavia

*Informatika, Jevrejska 32, 11000 Belgrade, Yugoslavia
E-mail: jdjordjevic@kiklop.etf.bg.ac.yu

Abstract: The paper presents an environment for teaching
elements of a computer system memory hierarchy. It is
made up of a hierarchical memory system, a reference
manual, a software package and a set of laboratory
experiments. The hierarchical memory system is devised to
cover the virtual memory and translation lookaside buffer,
the cache memory, and the main memory. The reference
manual provides all implementation details with the
appropriate circuits drawings and detailed descriptions.
For the devised hierarchical memory system a software
package, which includes the graphical simulator with the
accompanying tools, is developed. They allow one to carry
out the simulation down to the register transfer level by
executing a set of laboratory experiments

1 Introduction
The hierarchical memory system is one of the topics

extensively covered in the third year course in Advanced
computer architecture and organization at the Faculty of
Electrical Engineering, University of Belgrade, attended by
the students at the Department of Computer Science. The
students acquire the knowledge necessary for following
such a course through the first year course in Fundamentals
of Computer Science and the second year courses in
Programming methodology and languages and Computer
architecture and organization. The course in Computer
architecture and organization covers the basic concepts
related to the most commonly found structure of a computer
which includes the processor, the memory, the input/output
subsystem and the bus. The course in Advanced computer
architecture and organization goes one step further covering
topics such as the architecture and organization of CISC
and RISC processors, the organization of pipelined
processors, the storage system, the interconnection
networks, and the memory system [1].

The memory system is presented as a hierarchical one,
made up of the virtual memory and translation lookaside
buffer, the cache memory and the main memory. The
secondary memory, although part of the hierarchical
memory system, is studied within the storage system. The
virtual memory and translation lookaside buffer is studied
by introducing the notions of virtual and real address spaces
and the need for mapping the virtual into real addresses.
Special attention is given to the separation of activities
carried out by the operating system and the translation
lookaside buffers. The cache memory begins by pointing
out at the behavior of programs, which display temporal
and spatial locality. It follows by the study of the
associative, direct and set associative mapping techniques
of main memory blocks into cache memory blocks, the
cache memory replacement algorithms, the main memory
updating policies and some other techniques that might
improve the performance of the cache memory. The main

memory study concentrates at the techniques, such as the
memory interleaving, used to increase the memory
bandwidth.

Generally, a great problem in teaching any course in the
field of computer architecture and organization is how to
provide means which would facilitate the students to make
a cognitive leap from the blackboard description of the
architecture and organization of a computer to its utilization
as a programmable device and connect their theoretical
knowledge with practical experience. This problem the
authors had treated in another paper concerning their course
in Computer architecture and organization and came to the
decision to devise and develop their own educational
environment [2, 3]. Based on the number of discussions
conducted with the students that have used it in the
laboratory experiments and the results of the exams, the
authors are convinced that the educational environment has
been a power aid in teaching the course in Computer
architecture and organization. This resulted in the
development of similar environments as help in teaching
other topics for some other courses in the field of computer
architecture and organization. One of them, the hierarchical
memory system environment used within the course in
Advanced computer architecture and organization, is the
subject of this paper.

The hierarchical memory system environment (the HMS
environment), which includes the Hierarchical Memory
System (HMS), the reference manual for it, and the
Software Package of the HMS (SPHMS), is used by the
students to carry out the laboratory experiments. The HMS
is devised to cover all concepts concerning the virtual
memory and translation lookaside buffer, the cache
memory and the memory interleaving and its detailed
description is given in the accompanying manual [4]. The
HMS is described in Section 2. The SPHMS includes the
tools for initializing the appropriate parts of the HMS, and
the graphical simulator of all implementation details of the
HMS down to the register transfer level. A brief description
of the SPHMS is given in Section 3. A set of laboratory
experiments, devised to demonstrate to the students the
situations of interest during their practical work with HMS,
is presented in Section 4. Section 5 contains the conclusion.

2 The hierarchical memory system
The hierarchical memory system is made up of the

virtual memory and translation lookaside buffer, the cache
memory and the main memory. The initial idea was to
develop such a hierarchical memory system where the
process of accessing the translation lookaside buffer, the
cache memory and the interleaved memory is realized as a
whole. In addition to that, the hierarchical memory system
was envisaged to be such that all most commonly used

techniques for realizing the virtual memory and translation
lookaside buffer, the cache memory and the interleaved
memory could be demonstrated. Finally, the aim was to
develop a user friendly environment which would make it
possible to follow the above process at the clock level and
examine, at any time, the values of all signals of the
hierarchical memory system down to the register transfer
level. Although the realization of such an HMS
environment was feasible, the authors felt that such a
system would be too complex and very difficult to be used
by the students. Therefore, it was decided to split up the
HMS environment into three separate entities for the virtual
memory and translation lookaside buffer, the cache
memory and the interleaved memory. Their detailed
description is given in the accompanying manual written
specifically for the course in Advanced computer
architecture and organization [4].

2.1 The virtual memory and
translation lookaside buffer

The virtual memory and translation lookaside buffer
(TLB) are demonstrated by using three types of lookaside
buffer and three types of virtual memory. The TLB holds
certain number of descriptors of most frequently accessed
pages or segments. For any address translation request,
coming from the processor, the TLB checks, according to
the mapping technique implemented, whether the descriptor
is in it. If the descriptor is in the TLB, the virtual to real
address translation is carried out and the real address
returned to the processor. In the case of the TLBs for
segmented and segment paged virtual memories the access
and address violation checks is performed. If any or both
checks fail, the TLB generates an interrupt. If the descriptor
is not in the TLB, it goes into the appropriate segment
or/and page table(s) and checks the appropriate descriptor.
If the segment or page is in the main memory, its descriptor
is loaded in the appropriate entry in the TLB. Now, for the
same address translation request the TLB check is carried
out again. The activities are now the same as for the above
explained case when the descriptor is in the TLB. If the
segment or page is not in the main memory, the TLB
generates an interrupt. The TLB entry to be replaced with a
new descriptor is selected according to the Least Recently
Used (LRU) algorithm for the TLB with the associative
mapping and according to either the LRU or First In First
Out (FIFO) algorithm for the TLB with the set associative
mapping.

The processor sending address translation requests to
the TLB is simulated. The HMS environment allows a user
to initialize a table in the simulated processor with address
translation requests and time intervals between them before
the simulation starts. Once the simulation is started, the
simulated processor according to the information obtained
from the table will generate address translation requests.

The virtual memory is realized by interrelated activities
of the TLB and the operating system. Therefore, some of
the operating system activities dealing with situations when
the processor and the TLB are switched from a process to a
process, when an interrupt is generated by the TLB etc. are
also simulated. Here again the HMS environment allows a

user to specify parameters relevant for the operating system
activities in such situations.

2.2 The cache memory
The cache memory is demonstrated by using three types

of cache memory realized with the direct, associative and
set associative mapping. The cache memory holds certain
number of most frequently accessed blocks from the main
memory. For any main memory access request, coming
from the processor, the cache memory checks, according to
the mapping technique implemented, whether the block is
in it. If the block is in the cache memory, the requested
access is carried with the cache memory, and, in the case of
the read access request, the data read is returned to the
processor. If the block is not in the cache memory, the
block is transferred from the main memory into the cache
memory. For the same memory access request the cache
memory check is carried out again. The activities are now
the same as for the above explained case when the block is
in the cache memory. The cache memory block to be
replaced with a new block is selected according to the First
In First Out (FIFO) algorithm for the cache memories with
the associative and set associative mapping.

Some other activities in the cache memory depend on
whether the write back or store through technique for
updating the main memory is used. The cache memory with
the direct mapping uses the write back technique. As a
consequence, the cache memory block, selected to be
replaced with a new block, is first returned to the main
memory, and then the new block is transferred from the
main memory into the cache memory. However, this is
done only if at least one write access for the cache memory
block to be replaced has been carried out. The cache
memory with the associative mapping uses the store
through technique. Therefore, there is no need to return to
the main memory the block selected to be replaced with a
new block. The cache memory with the set associative
mapping uses the write back technique with buffering. The
cache memory block, selected to be replaced with a new
block, is returned to the main memory only if at least one
write access for that cache memory block has been carried
out. However, this block is first written only into a buffer
block, then the new block is transferred from the main
memory into the cache memory, and, finally, the block
selected to be replaced is transferred from the buffer block
into the main memory.

The processor is realized in a similar way as for the
virtual memory.

2.3 The interleaved main memory
The interleaved main memory is demonstrated in a

system made up 16 units, 16 memory modules, a split
transactions synchronous bus and the arbiter.

Each unit can be configured to generate either the single
word accesses or the block accesses. The single word
accesses are typical for a processor fetching instructions or
accessing scalar values or a direct memory access controller
working with a slow peripheral device. The block accesses
are typical for a processor transferring blocks between the
cache memory and the main memory or a direct memory

access controller working in the burst mode with a fast
peripheral device. A unit includes the bus interface and the
requester. The bus interface includes all circuitry necessary
to perform the appropriate operations when the unit is either
a master or a slave. When the unit is a master, it sends a bus
request to the arbiter and performs a read request or write
request cycle when it gets the grant. When the unit is a
slave, it accepts data, requested by an earlier read request
cycle, in a data available cycle. The requester simulates
parts of a processor or a direct memory access controller
which generate the memory read and write requests and
accepts data returned as a response to a read request. It is
realized in a similar way as the processor for the virtual and
cache memories.

A memory module contains the bus interface and the
RAM memory. The bus interface contains all circuitry
necessary to perform the appropriate operations when the
unit is either a slave or a master. When the module is a
slave, it accepts a write or read request from the bus and
initiates the write or read operation in the RAM module. As
the result of the read operation performed in the RAM
module, the bus interface obtains data requested by a bus
read request cycle, and starts with activities as a bus master.
It sends a bus request to the arbiter and performs a data
available cycle when it gets the grant. The RAM memory of
the module is used to store data. The HMS environment
allows a user to initialize locations of interest in the
simulated RAM memory and specify the desired access
time for each memory module separately. Each memory
module can obtain its number in the range from 0 to 15. In
addition to that, five possible ways of interleaving memory
modules can be specified. One of them is consecutive
addresses in the same module, the other one is consecutive
addresses in 16 consecutive modules and the remaining
three are possible cases of mixtures of the first two.

The bus is realized as a split transactions synchronous
bus. The bus cycles performed are the write request, the
read request and the data available. In order to make it
possible for the module to return data to the unit that
initiated a read request cycle, the unit sends its identifier
with the read request cycle. When the data requested are
read, the module as the master uses the identifier in the data
available cycle to send it to the appropriate unit.

The arbiter realizes the parallel arbitration between all
units and modules. Each of them is connected with the
arbiter with a pair of lines. One of them is used for sending
a request to the arbiter, and the other one is used for
receiving a grant from the arbiter. The memory modules are
given higher priority than the units.

3 The Software Package of the HMS
The Software Package of the HMS (SPHMS) contains

the simulators that provide the graphical presentation of all
implementation details of the HMS down to the register
transfer level and makes it possible to follow the
functioning of all its parts. The SPHMS offers various
facilities such as the interactive setting and examination of
the contents of memory locations, registers etc., the
drawing of timing diagrams of any of the selected signals of
the HMS during the execution of the appropriate operation,

etc. All these features are provided in a user friendly
manner by extensive use of modern tools for the
development of Windows applications.

The facilities offered by the SPHMS make it possible to
initialize the HMS and run the simulators.

3.1 Initialization of the HMS
The first step in the initialization of the HMS is the

selection of one of three simulators for the virtual memory
and TLB, the cache memory, and the interleaved memory.
For the virtual memory and the cache memory one must
further select one of three types of TLBs and cache
memories, respectively. For the interleaved memory one
must specify one of five possible ways of interleaving
memory modules, assign numbers to modules, define for
each unit whether it is the one with the single word or the
block access, assign identifiers to units, etc.

The next step in the initialization of the HMS is the
loading of the appropriate register and memory locations
with initial values. In the case of the virtual memory it
includes the initialization of the table of the simulated
processor, some registers in the TLB, and parts of the main
memory containing the page or/and segment tables. In the
case of the cache memory it includes the initialization of
the table of the simulated processor, some registers in the
cache memory and parts of the main memory accessed by
the cache memory. For the interleaved main memory it
includes the loading of the table of the simulated requester
and the memory module locations accessed by the units.

The initialization of the HMS can be done either
interactively or by invoking a file. The file may be created
by using the Save command either immediately after the
HMS is interactively initialized or at any moment of the
simulation. The interactive initialization is predominantly
used by instructors to carefully prepare laboratory
experiments. The initialization by invoking a file is
normally used by students.

3.2 Running the Simulator
The running of graphical simulators for the virtual

memories, the cache memories, and the interleaved memory
is similar for all three cases. Therefore, the running of a
simulator is demonstrated using the simulator for the
interleaved memory.

The simulator is realized as a hierarchical scheme of
screens. Each screen is made up of two windows. The
larger window in the upper part of the screen, named the
block diagram window, contains either a composition of
combinational and sequential circuits, if this is a leaf block
in the hierarchical scheme, or a composition of subblocks,
that can be further selected, and combinational and
sequential circuits, if this is not a leaf block in the
hierarchical scheme. The smaller window in the lower part
of the screen is divided into the information window at its
left hand side and the command window at the right hand
side. The information window gives the value of the step
counter and the control signals generated for a particular
clock period and a brief explanation of the actions that are
going to take place during that clock period. The command
window contains navigation command buttons Top, Back,

and Up, simulation command button Clk+ , and
miscellaneous command buttons Show, Save, Help, and
End. The information field Clock displays the number of
clock cycles executed.

The Up button allows one to move from the current
screen to the screen one level up in the hierarchy, Back
allows one to go back to the previous screen, and Top
allows one to move directly from the current screen to the
top screen (Fig. 1). The Clk+ button allows one to continue
with the simulation for one clock period. The Show button
opens the window, which allows the interactive
initialization and examination of memory modules and
units or drawing the timing diagram of selected signals
from the beginning of the simulation until the current clock
period. The Reset button clears the current state of
simulation and returns it to the beginning. The Help button
activates the help system where all details concerning the
functioning of the HMS and its simulators are available.
The Save button makes it possible to save the current status
of simulation into a file and use it later for the initialization
of the HMS. The End button allows one to exit the
simulator.

The running of the simulator with the hierarchy of
screens of the HMS is described briefly in the following.
The first screen, with which the simulation begins, shows
the block structure of the system with the interleaved main
memory (Fig. 1). The values for groups of lines, such as for
the data (DBUS) and address bus (ABUS) lines, are given
in the hexadecimal form, while the single lines (WRBUS,
RDBUS, DABUS, ACKBUS) are colored either in blue or
red depending on whether the signal on that line has logical
value zero or one, respectively.

If a more detailed structure of any of the units, the
memory modules or the arbiter from Fig. 1. is needed, one
can move one level down in the hierarchy by positioning
the cursor and clicking the mouse button. As an example of
this, one can assume that the cursor is positioned at
Unit0..3 on the screen given in Fig. 1 which includes four
units (Unit0 to Unit3). After the mouse button is clicked a
pop-up window appears to allow selection of a unit from
this group. What appears is the screen giving the block
structure of the Unit0, which is configured as a single word
unit (Fig. 2). From this screen one can go one level down
and get more detailed structure of the Bus Interface
(Processing Unit and the Control Unit) and Requester. By
positioning the cursor at the Processing Unit and clicking
the mouse button, one goes one level down in the hierarchy
and gets the design of this block at the register transfer level
(Fig. 3). The horizontal navigational boxes (hatched gray
on figures) allow one to follow relevant signals at the same
level of hierarchy. Thus, by positioning the cursor at the
one of the hatched gray boxes labeled as “control unit” and
clicking the mouse button one can move to the Control Unit
screen (Fig 4). Using the Back command button one can
move back to the Processing Unit screen. The same effect
can be achieved if one uses the hatched gray boxes labeled
as “processing unit”. Since the control unit does not fit into
the block diagram window, one can use the scrolling
facility to examine all parts of the control unit (Fig. 4). The
block structure of the requester of the Unit 0 is shown in
Fig. 5. The requester reads the request table, which contains

a sequence of, read and write requests and time intervals
between adjacent requests. The request table can be filled
and examined either during the initialization or at any time
during the simulation using the Show button (Fig. 6).

If the cursor is positioned at the unit configured for the
block access the screen obtained is similar as the one given
in Fig. 2. However, since this processing unit is more
complex than the one for the single word access, it is
divided into three blocks named the input buffer, the output
buffer, and the address and identifier registers. By
positioning the cursor at the one of them and clicking the
mouse each of these blocks can be shown in detail as given
in Fig. 7, Fig. 8, and Fig. 9. It should be noted that the input
buffer and the output buffer blocks can not be fitted on the
screen. Therefore, the scrolling bar facility is being used as
shown in Fig. 7 and Fig. 8.

The same procedure one can use to display either the
processing unit or the control unit of a memory module. If
one selects the processing unit of memory module 0 the
screen displayed is shown in Fig. 10.

The control units for the units with the block access and
the memory modules are similar as the one for Unit 0 with
the single word accesses (Fig. 4.).

The parallel arbiter, made up of the 32 bit priority
encoder, decoder, and register, is shown in Fig. 11.

4 The organization of
laboratory experiments
The practical work with the HMS is organized through

seven laboratory experiments the duration of which is two
hours each. The first three laboratory experiments cover the
TLB with the associative, direct and set associative
mappings for the segmented, paged and segment paged
organizations of virtual memories, respectively. The next
three laboratory experiments cover the cache memory with
the associative, direct, and set associative mappings
combined with the write back and the store through
memory updating policies, the FIFO and LRU block
replacement algorithms, and the techniques such as the
write buffering, the accessing critical word first, the
bypassing and the early processor start. The seventh
laboratory experiment covers the parallel arbitration
between 16 units and 16 memory modules, and the bus
transactions on the split transactions synchronous bus. This
experiment is carried out for each of the five possible ways
of interleaving memory modules.

For each laboratory experiment there are certain number
of carefully chosen problems. They are prepared in an
attempt to cover all typical situations in which the TLBs,
the cache memories and the system with the interleaved
memory can be found. The students are requested to go
through all prepared problems at the clock level. The
control signals that appear in the information box (Fig. 4)
point out at the parts of the particular unit or module where
an action is going to take place. Based on this, the students
should locate relevant parts of the HMS and examine the
values of signals at the register transfer level using the
SPHMS navigation facilities.

At the end of the appropriate laboratory experiment
each student starts program TEST that is devised to assess
his knowledge. For each laboratory experiment there is a
pool of relevant questions. After verification of the student
the TEST randomly generates ten questions from the pool.
The period of time within which the student should answer
the questions is limited to ten minutes. The TEST is
connected with the database of students, which attend the
course. This makes it possible to update the student’s
records.

5 Conclusion
The hierarchical memory system environment used for

the course in Advanced Computer Architecture and
Organization is presented in this paper. It includes the
Hierarchical Memory System, the reference manual for it,
the Software Package of the Hierarchical Memory System,
and a set of laboratory experiments. The Hierarchical
Memory System is made up of the virtual memories and
TLBs, the cache memories, and the system with interleaved
memory. The facilities offered by the Software Package of
the Hierarchical Memory System are illustrated using the
system with the interleaved memory.

The hierarchical memory system environment is based
on the originally developed and already used methodology
for creating educational environments for teaching various
topics in the field of computer architecture and organization
[2]. The first step in the methodology is the logical design
of the appropriate part of a computer system down to the
register transfer level. The next step is the development of
the graphical simulator with accompanying tools. They
allow one to initialize the system and carry out the
simulation during the execution of the prepared problems,
which demonstrate the situations of interest. The simulation
is done at the clock level in a user friendly fashion.

The environments developed with the described
methodology have been used for teaching courses in
computer architecture and organization for several years.
They have been useful aids and favorably accepted by the
students. The authors feel that the students are rigidly lead
in this environment through the predetermined situations
leaving little room for their initiative and creativity.
Therefore, the related ongoing research is directed towards
the development of a user friendly environment that would
allow ones to design their own parts of computer systems
using the library of standard combinational and sequential
modules.

6 References
[1] D. A. Patterson, J. L. Hennessy, Computer

Architecture: A Quantitative Approach, Morgan
Kaufman, San Francisco, California, USA, 1996.

[2] J. Djordjevic, A. Milenkovic, N. Grbanovic, M.
Bojovic, “An Educational Environment for Teaching a
Course in Computer Architecture and Organization,”
Proceedings of the 4th Annual Workshop on Computer
Architecture Education, Las Vegas, NV, January
1998.

[3] J. Djordjevic, “Computer Architecture and
Organization – The reference manual for the
Educational Computer System,” Faculty of Electrical
Engineering, University of Belgrade, 1995.

[4] J. Djordjevic, “Computer Architecture and
Organization – The reference manual for the
Hierarchical Memory System”, Faculty of Electrical
Engineering, University of Belgrade, 1998.

Figure 1. System with memory interleaved organization

Figure 2. Block structure of Unit 0 with single word access

Figure 3. Processing unit of Unit 0

Figure 4. Control unit of Unit 0

Figure 5. Block structure of requester for Unit 0

Figure 6. Request table for Unit 0

Figure 7. Output buffer for Unit 4

Figure 8. Input buffer for Unit 4

Figure 9. Address and identifier registers for Unit 4

Figure 10. Processing Unit of memory module 0

Figure 11. Parallel arbiter

