
d d

The Architecture Curriculum at UC-Davis

Matthew Farrens

Department of Computer Science
1 Shields Avenue

University of California, Davis
Davis, CA 95616-8562

(farrens@cs.ucdavis.edu, http://arch.cs.ucdavis.edu/˜farrens)

Abstract
In this paper an overview of the architecture curri-

culum at UC-Davis will be presented, with an emphasis
on the classes offered through the Computer Science
Department. Each particular class will be described
briefly, and then some personal opinions about one class
in particular and experiences with teaching in general will
be presented.

1. Architecture in the Computer Science Department
The Computer Science Department at the Univer-

sity of California, Davis supports majors in both Com-
puter Science (through the College of Letters and Sci-
ences) and in Computer Science and Engineering
(through the College of Engineering). Our core architec-
ture curriculum consists of 6 classes - 3 at the undergra-
duate level and 3 at the graduate level. Table 1 lists the
classes, each of which will be described in more detail in
the following subsections.

Table 1. Architecture Classesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Type Name Titleiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Computer Organization and
UGrad ECS50

Machine Dependent Programmingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
UGrad 154A Computer Architectureiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
UGrad 154B Computer Architectureiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Grad ECS250A Advanced Computer Architectureiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Grad ECS250B High-performance Uniprocessingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Grad ECS250C Parallel Processingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Davis is on the quarter system, with each quarter
being 10 weeks long, so there is a total of 30 weeks of
architecture instruction at each level.

1.1. ECS50
This is the first architecture class students take, and

uses Assembly Language as a tool to convey basic con-
cepts in computer architecture. The students write pro-
grams on both CISC and RISC architectures, in order to
ensure they are exposed to both types. Basic architectural
concepts such as addressing modes, memory layout,
instruction set design, etc. are covered in this course.
Interrupts are also covered here, since writing interrupt

routines requires an understanding of the architecture and
assembly language of a particular machine. This is
designed to be a very challenging class, with homework
and/or programming assignments due 9 out of the 10
weeks.

1.2. ECS154A
This is something of a transitional class, since stu-

dents who are majoring in Computer Science (CS) have
slightly different degree requirements than those majoring
in Computer Science and Engineering (CSE). In particu-
lar, the CS students are not required to take any digital
design classes, while the CSE students are. Thus, the
major topics covered in 154A are digital design, I/O
(busses, etc.), and an introduction to the memory hierar-
chy (caches and virtual memory). The digital design por-
tion of the course can be a bit tricky - the goal is to give
the CS students enough information to allow them to
understand and work with the material in ECS154B,
without wasting the time of the CSE majors who have
either already had or will soon take a class exclusively
about digital design.

1.3. ECS154B
In 154B, more advanced architecture topics are

covered - hardwired and microprogrammed CPU design,
an introduction to pipelining and multiprocessors,
advanced topics in memory hierarchies, uniprocessor per-
formance analysis under varying program mixes, etc. The
digital design tools introduced in 154A are used here to
actually design different parts of a real CPU.

1.4. ECS250A
In our program, all graduate students are required

to take this class. Thus, it covers a fairly wide range of
topics and has to be accessible to students with a fairly
wide range of backgrounds. Topics covered in this class
include the fundamentals of computer design, instruction
set principles, pipelining, an introduction to instruction
level parallelism, memory-hierarchy design, and some
parallel processing. This class includes a project, which
is often difficult to do in a 10-week course (since the
more interesting material isn’t covered until the second
half of the quarter).



d d

1.5. ECS250B

This class focuses on the architecture and design of
high performance uniprocessors. In this class the students
are exposed to the pioneering work done on supercomput-
ers like the IBM 360/91, the CDC 6600, and the CRAY.
In addition to studying the classics, we look at instruction
level parallelism in detail, and also spend time studying
the memory system bottlenecks and how they might be
circumvented. Students do projects and present results to
the class as a whole, to practice presentation skills.

I try to emphasize to students the reasons for study-
ing the old machines - many (if not most) of the problems
confronting designers today were faced by designers of
these machines as well (processor/memory speed imbal-
ance, pipelining hazards, etc.). I try to convince the stu-
dents that they need to study and be familiar with these
old, dilapidated ideas because as technology changes,
many of the old ideas are rediscovered and become
relevant again. For example, a technique used 30 years
ago may not translate directly into the modern era, but
two old techniques used together in a novel way might.

1.6. ECS250C

This class emphasizes how to do research in and on
parallel architectures, from special-purpose machines to
commodity servers. The class is systems-oriented, cover-
ing a broad range of topics including VLSI, architectures,
operating systems, compilers, and applications. The
course emphasizes critical reading of current research
papers and the final project focuses on written and oral
presentation of original results.

2. Architecture in the Electrical and Computer
Engineering Department

The ECE program differs substantially from the one
in Computer Science. It has more of an emphasis on
hardware, and features a two class sequence (Computer
Structure and Assembly Language and Introduction to
Computer Architecture), augmented by several specialty
classes (Microcomputer-Based System Design, Digital
Systems, etc.) Since I am a member of the Computer Sci-
ence Department and not the Electrical and Computer
Engineering Department, I will not comment further
about their program.

3. The Importance of Fundamentals

I feel very strongly that in many respects the first
architecture class the students are exposed to (ECS50) is
the most important class of the entire sequence. If han-
dled right it can set the tone not only for the rest of their
architecture classes, but also for many of their other
classes as well.

When teaching this class, I have three goals for the
students:

1. To gain a solid understanding of the fundamentals of
Computer Architecture,

2. To learn how much alike all Von Neumann machines
are, and

3. To be able to program any machine with a minimum
of effort (in essence, to be able to read a manual).

I explain to the students that even though people
rarely get jobs these days writing programs in assembly
language, what they will learn in this class will still be of
use to them in the future. The analogy I generally use is
that you don’t have to know how a car works to be able to
drive it, but the more you do know about a car the better
driver you become. Knowing what a car does and how it
works helps you get better gas mileage, makes it last
longer, helps you make smart decisions when driving
(like why to avoid the potholes, why you should change
your oil regularly, how to avoid accidents, why not to ride
the brakes, etc.). Knowledge is power, and my goal is to
fill their knowledge gas tanks.

I believe it is extremely important to introduce and
emphasize concepts and fundamentals. Understanding
the fundamentals is key to a good solid working
knowledge of architecture in general. Personally, I am
opposed to using existing architectures to teach these fun-
damentals, because all commercial products have aspects
that exist purely because of manufacturing restrictions in
place at the time the processor was designed. Unfor-
tunately, students who are seeing this material for the first
time are frequently unable to differentiate between funda-
mental concepts and machine-specific restrictions and
idiosyncrasies.

Because of this, I use a very clean generic machine
as a teaching tool. This allows me to convey what is
important and universal about all Von Neumann
machines. Once this knowledge has been imparted, I can
move on to existing architectures and show that they con-
tain all the basics elements presented using the generic
machine, as well as their own individual warts and
bumps. As technology constantly leads to changes in
implementations and architectures, a solid grounding in
why certain features exist is crucial.

I try to focus on clarity of presentation and clarity
of concepts. I want the students to build a simple mental
model of a machine, which will be refined and expanded
throughout their education. Using a generic teaching
architecture provides a vehicle to convey concepts to stu-
dents clearly and unambiguously. By taking this machine
and morphing it into existing architectures, I am able to
explain how the concepts remain the same - only the
semantics/organization changes. My goal is not to teach
the student how to program commercial product X, but
rather to enable the student to (with a little work) program
any commercial product. I think this is particularly
important at UC-Davis, given that we are a University.
Trade schools exist for those who only want to learn how
to write programs for one particular architecture.



d d

I do not use a 32-bit load/store architecture as the
teaching architecture because its sheer size can be very
intimidating to students not well versed in the ins and outs
of computer architecture. Such an architecture also has
several features (again due to implementational con-
siderations) that the naive student cannot distinguish from
necessary features. Using a load/store machine
exclusively, for example, prevents students from learning
about and experiencing the various addressing modes that
exist in many architectures. I use a nice simple generic
architecture that allows me to convey the underlying prin-
ciples directly without having them obscured by particular
implementations.

I try to have an explanation for everything that I
present. As a student, I was never satisfied with the
answer "Trust me for now, it will become clear later on".
My goal is to ask the students to "trust me" as infre-
quently as possible. I begin the class by pointing out how
fascinating computers actually are - they are nothing more
than millions of on/off switches, arranged in groups of
various sizes, with somewhat arbitrary meanings assigned
to these groups. The magic is not in the silicon, but in the
way humans have assigned meanings to these groups.

We then talk about what is necessary to do a com-
putation (data, instructions), the subgroups within these
(integers, characters, floating point), and how many
switches (bits) should be allocated to a given group and
why. After we get through the different possible number
systems, character representations and ways to encode
instructions, we then talk about Memory (a linear array of
storage cells) and introduce a 3-operand instruction set
that uses only direct addressing (the address of the storage
cell is right there in the instruction). Doing this motivates
the need for some local Memory (storage cells that are
close and have their own special names, called registers).
It also provides an excellent mechanism for getting across
multiple addressing modes (immediate, direct, register,
etc.).

This approach helps the instructor answer the stan-
dard student question, "why did they do it this way?" If
the job of explaining the fundamentals is done
sufficiently, the student will be able to answer this ques-
tion for him/herself. Or, alternatively, the professor can
ask the students this question, and actually expect to get a
meaningful answer!

4. My General Philosophy on Teaching

Since you are reading this, you are most likely
interested in improving as an educator. In this section I
will share some of my experiences and opinions on how
to become a better teacher.

4.1. Find your own voice
This one takes a while, but everyone needs to find a

style that works best for them. If you try to teach "just
like Bob", chances are you will not be happy with the

results (nor will your students). We happen to have 3
faculty members in our department who have won
campus-wide teaching awards, and it took me a long time
to stop trying to be just like them. I eventually realized
that you have to do what works for you.

What matters most is enthusiasm for the topic.
Whatever style works best for you, do that thing. But
never underestimate importance of enthusiasm - if you
don’t care about the subject, why should the students?

4.2. Talk to other Educators
Assuming you are in this business to figure out how

best to convey information to our students, make sure you
take the time to talk about teaching with other educators.
Even after you have established your "voice", you can
always learn new things from others in the same business.
I go out of my way to spend time talking to other profes-
sors about teaching techniques, and I almost invariably
leave the discussions with some new ideas on how to
approach or present a topic. Even when you are talking to
someone who has a completely different opinion of how
to do things, the exercise of explaining and defending
your position can often reveal weaknesses that need
improving.

4.3. Get students involved!
It’s their money. Tell them that. Try to make them

participate as much as possible in their own education.
Personally, I don’t call on people because I hated that
when I was a student, but I do ask questions of the class
as a whole and stop until I get a response. Sometimes
there are long, uncomfortable silences, but eventually
someone will gather the gumption to throw out a
response.

Also, Make sure to explain to the students why you
are doing certain things. For example, I give closed-book
exams, but let them bring 1 page of hand-written notes. I
discovered that when I explained my reasons for doing
this - that I don’t feel I can write as fair an exam when it
is open book, and that the process of writing down on a
sheet of paper the important stuff helps them organize and
remember the material - the students were much more
comfortable with the situation.

4.4. Identify Your Audience
Are you teaching to the top third? To everybody?

To the middle? Deciding this can make a big difference
in your approach. After attending this workshop a couple
of years ago, and learning about the importance of having
students working in groups, I realized that I had been
avoiding groups because I was afraid students would be
able to ride the coattails of their partners. I was more
worried about students getting away with stuff than I was
interested in maximizing the opportunities of the students
who really wanted to learn. I have since modified my
approach.



d d

5. Tricks of the trade
In this section I will list a few gotchas I have

learned over the years. Most people probably know all
these things already, but I didn’t. So in case you are as
thick as I was ...

5.1. Exams

g Avoid redundant questions on exams. Make a list of
the topics you want to test the students on, and then
select questions from each topic. Otherwise, you can
unintentionally have one topic carry a dispropor-
tionate amount of weight.

g Open-book tests are tricky - I find it very difficult to
write a fair open-book exam. If the book is open, I
tend to ask less general and more specific nit-picky
kinds of questions. Personally, I don’t want to know
how well students can read a book, I want to know
how well they know the material.

What works best for me is a closed-book exam, with
the students able to bring in one (or more) sheets of
hand-written notes. I do this because I think the pro-
cess of creating this sheet is more important than the
end product - the student is forced to go through the
material and identify the important topics, and the act
of writing down this information helps drive home
the material. (However, make sure you insist on a
single sheet of hand-written notes - I discovered the
hard way that enterprising students were photo-
reducing entire sections of the book, which clearly
defeats the entire purpose of the exercise.)

g Short answer questions are the best way to find out
what a student knows, but be careful - on a timed
test, long word problems are unfair to slow readers
and to non-native english speakers. Such questions
are also much harder to grade. If you have a question
that you really think is important (like asking the stu-
dents to work with a made-up architecture to see how
well they understand certain topics) you can post the
set-up part of the question the evening before, so
everyone has time to read and digest the new infor-
mation.

g I always give lots of partial credit. I have even given
points for answers that were erased (not full credit,
but they did have it right at one point!). Doing so
helps convince the students that you really want them
to succeed.

g If you decide to give partial credit, be very careful
with questions that build upon previous answers. If
they happened to get the first step wrong, you may
have to use their incorrect answer to see if they got
the following steps correct. This can lead to some
very long grading sessions.

g Consider selling partial answers. I tell my students
that if they get stuck on some part of a problem,

particularly if it is a long, high-point problem, I am
willing to "sell" them hints and/or partial answers for
some number of points. This can often help a student
get "over the hump" on a problem and prevent them
from getting completely shut out.

g My graduate student has used this one - make the
exam worth a million points. Then, when a student
comes in to complain about not getting enough credit
on a problem, you can give them a couple of
thousand points and they leave happy!

g If you experiment a lot with various test formats,
questions, etc. you almost certainly will need to grade
on a curve. It is not fair to the students to penalize
them for a test question that didn’t work out the way
you expected.

5.2. Other Tidbits

g The question of what late policy to use is always a
tricky one. I use the following: Each student gets a
total of seven late days (one week) during the entire
quarter. They are responsible for managing these as
they see fit. If they want to use them all up on the
first homework, then when Grandma dies in week six
they have a tough decision to make (because they are
not getting any extra days). It is not difficult to keep
track of this number, and this policy seems to work
well. The problem comes when students work in
teams - the solution to this problem is left to the
reader.

g I learned about the value of student teams at the
Teaching workshop a few years ago. One problem
arises - if you are teaching a lower-division course,
you need to decide how to help students find partners.
It tends not to be much of a problem once the stu-
dents have been on campus a while, but entering stu-
dents can find hooking up with somebody very daunt-
ing.

g We grade all lab assignments interactively in the
introductory class. The students schedule a time with
the TA, and then sit down and the TA goes through
the assignment asking questions about how and why
the student did various things. This seems to be a
very effective approach - the TA doesn’t have to try
and figure out what was going on with somebody
else’s program when it doesn’t work, and it helps
identify the students who have tried to pass off last
quarters assignment as their own.

g One way to cut down on cheating is to use a seating
chart. This way, the students may not know who
they are sitting next to and therefore may be reluctant
to copy off of them. However, seating charts add a
level of complication that isn’t always necessary. A
simpler way is to have the students leave the tests on
the desk when they finish. If you then pick up the
tests in order and keep them that way, it is possible to



d d

tell if matching answers were on neighboring tests.
This has saved me on several occasions from sending
exams over to our Student Judicial Affairs office.
(Two tests had identical incorrect answers, for exam-
ple, but the students were sitting in opposite corners
of the room.)

g A colleague of mine rolls a pair of dice, and the stu-
dent matching that number is called to the front of the
room to give a 5-minute overview of the material
presented during the previous class. This can be a
very effective way of ensuring students are keeping
up.

g Should you use overheads or the board? This is a
difficult question. If you use overheads, you have to
worry about going to fast. In addition, I am a firm
believer in the value of writing things down (helps
drive the material further into the brain). On the
other hand, if students are spending all their time
writing stuff down, they often are not able to follow
the lecture material as closely. Personally I use the
board and only use overheads for things like sample
programs, but there are strong arguments on both
sides of this one.

g Try innovative approaches - in 154B, I have the stu-
dents design a machine from scratch interactively.
After going over all the necessary background stuff, I
tell them that I am now nothing but a scribe and tour
guide and they are to propose an architecture that we
will implement. Over the course of several lectures
they select the wordsize, the number of registers, the
instructions, instruction formats, etc. I point out the
potential problems with various choices, but do not
tell them they can or cannot do anything. I think it is
valuable for the students, who get to see how deci-
sions made at one point in the design cycle come
back to haunt them later on. It does make life
interesting for the professor, since it is not possible to
prepare handouts in advance. However, overall I
think the approach is worth all the extra work.

g On the other hand, engineers often don’t "go with the
flow" well - sometimes they don’t take well to inno-
vative (half-baked) ideas. Many engineers don’t like
discord and ambiguity, so you may have to steel
yourself for some complaints on your teaching
reviews.

g Cell-phones can be handy - I was sitting in my office
one afternoon and got a call from my colleague (Fred
Chong) who was giving a midterm. Turns out he had
not printed enough exams, so I cranked out a few
more for him, rushed them over, and the problem was
quickly resolved. Slick!

g If you do not have a cell-phone (like me), the car can
be a great place to read and grade. Nice soft chair,
good sound system, no phones, great view...

d d


