Introducing computer architecture education in the
first course of computer science career

Jose R. Arias, Daniel F. Garcia

Abstract— The introduction of computer architecture in computer sci-
ence studies has created a demand for a highly simplified architecture and
graphical tools to illustrate its operation. This paper presents the approach
followed at the University of Oviedo. The main concepts introduced to the
students are relative to RISC instruction sets, data-path architecture, con-
trol steps within instructions and microinstructions.

Keywords—Computer architecture education, data-path control signals,
CPU operation simulation

I. INTRODUCTION

O introduce the basic concepts concerning the internal ar-

chitecture and operation of a CPU to first-year students of
computer science, the utilization of asimplified model of a CPU,
jointly with proper simulation and visualization tools is essen-
tial. In thisway, students master the basic concepts of computer
architecture easily.

The approach to introduce computer architecture education
presented in this paper is conditioned by the prior knowledge
of the students. When the students are faced with computer ar-
chitecture in the first year, they have only received a 14-hour
elementary course on digital systems. So, the complexity of the
internal architecture of the CPU must be simplified to a maxi-
mum in order to concentrate the efforts of teachers and students
on the aspects relative to the operation of the architecture. The
Smple CPU and its simulator are used in the first term in the
course caled "Computer Structure” in the Computer Science
Degree of the University of Oviedo.

To fulfill the global or general objective of teaching the ar-
chitecture and operation of a CPU, several stages are followed.
Firstly, the students study the very simpleinstruction set of Sim-
ple CPU, of RISC type. The concept of binary codification of
the instructionsis also illustrated. The introduction of the con-
cepts related to codification is facilitated using a fixed-length
instruction format, each instruction occupying one word in the
memory. Of particular importanceto the studentsisthe codifica-
tion of thejump instructions. Inthisfirst stage the studentslearn
the external vision of the architecture, that is, from the point of
view of alow-level programmer or acompiler designer.

In the second stage the simplest architecture capable of sup-
porting the instruction set is presented. In this stage the students
learn the internal view of the architecture, in particular a static
internal view. Thisis the focus of the designer of the CPU.

The third stage is devoted to illustrating the global opera-
tion of the architecture, with special emphasis on internal op-
eration. The break-down of instructions into several steps, as
conditioned by the internal architecture selected, is explained.
This introduces the students to the concept of clock-cycle and

Both authors are with the Universidad de Oviedo - Departamento de
Informéatica Campus de Viesques, 33205 Gijon SPAIN email: arias,
daniel @atc0l.etsiig.uniovi.es

TABLEI
REGISTER SET OF THE Smple CPU

Reg. Type | Description

RO-R7 | A General Purpose Registers

PC NA Program Counter

SR NA | Status Register

TMPI | NA | ALU Tempora Input Register
TMPO | NA | ALU Tempora Output Register
MDR | NA Memory Data Register

MAR | NA Memory Address Register

IR NA Instruction Register

the sequences of control signalsfor each instruction. The objec-
tiveisto show the operation of the data-path, without explaining
the construction of related elements such as the arithmetic-logic
operators, the registers or the control unit. At this stage stu-
dents learn about the operation of the architecture, obtaining a
dynamic internal view.

SPIM and XPIM for MIPS [1] and Simplez/Algoritmez [2]
can be considered as good examples of simulators, but these
kinds of simulators only simulate the operation of the CPU at
an external level. The simulation of the sequence of control sig-
nals for each instruction is accomplished by only some of the
tools, and then in avery restricted manner [3]; or by focusing on
the implementation of the control unit using microprogramming
techniques [4]. Other software packages have been designed to
explain the behavior of computer architecture from both internal
and external points of view, but they use specific microproces-
sors, such as Z80 [5] or 68000 [6] and require specific graphic
libraries. Thislack of simulation tools of the internal operation
of a CPU using a windows environment has motivated the con-
struction of the CPU simulator presented in this work.

Il. THE Smple CPU

The Smple CPU isaCPU of 16 bits (for dataand addresses).
This format allows the operation of a complete CPU to be fully
illustrated, while maintai ning the manageability of the length of
the numbers. It is based on a single internal bus which connects
8 general purpose registers (R0O-R7) to the arithmetic-logic unit
(ALU). The registers of the Smple CPU are classified as being
available (A) or not available (NA) to the low-level programmer
and are summarized in table .

The Smple CPU is seen to lack elemental instructions, such
as multiply or divide, as well as all the mechanisms relative
to subroutines and stack management. These instructions have
been deliberately omitted in order to maximize the simplicity

TABLEII
CONTROL SIGNALSFOR INSTRUCTION FETCHING AND PC UPDATING

Step | Control signals
1 | PC-IB, IB-MAR, READ, TMPI_CLR,
CARRY_IN, ADD, ALU-TMPO
2 | TMPO-IB, IB-PC
3 | MDR-IB, IB-IR

TABLEII
SPECIFIC CONTROL SIGNALSFOR INSTRUCTION ADD RO,R1,R2

Step | Control signals
4 | R1-IB, IB-TMPI
5 | R2-1B, ADD, ALU-TMPO
6 | TMPO-IB, IB-R0, END

of the CPU. Furthermore, in the first term of the course, the
students do not have the concept of subroutinein high-level lan-
guage, so there is little point in explaining how the architec-
ture supports the subroutines. The Smple CPU uses only three
addressing modes: the immediate mode, which allows an 8-hit
constant to beloaded in aregister, the register mode and the indi-
rect memory addressing through a register. The immediate and
memory addressing are supported only by the MOV instruction.

To execute each instruction, the Smple CPU requires severa
steps, using one clock cycle per step. The first three steps are
devoted to fetching the instruction from memory and updating
the PC. They are identical for al the instructions. The fourth
and successive steps are devoted to carrying out the operations
defined by theinstructions, so they are different for each instruc-
tion. In table I, the control signals of the first three steps are
presented, and in the table |11 the specific control signalsfor the
ADD RO, R1,R2 instruction is shown. In the tables of control
signalsfor each instruction, only the signals that are activated in
each step appear. The following nomenclatureis used:

« Thesignalsthat control the actions to be carried out by one
element of the CPU, or by an external device have a sin-
gle name. For example, ALU_OP to define the operation
to perform in the ALU, TMPI_CLR to clear the register
TMPI, or READ to start a memory access cycle to read
data

« Thesignalsthat control the input and output of datain reg-
isters have a name composed of two parts separated by a
hyphen. The first part indicates the name of the element
that provides the data, and the second part the element that
receivesit. For example, PC-1B enables the connection of
the register PC to the internal bus, whereas when IB-MAR
is activated, the register MAR captures the data present in
theinternal bus.

The reduced number of instructions of the Smple CPU makes
the design of a hardwired or microprogrammed control unit to

TABLE IV
TRANSLATION AND CODIFICATION PHASES

Code | Assembly Language | High-level Language
5800 CLRRO Tot:=0
2106 MOVL R1, 06 Nitems:= 6
2900 MOVH R1, 00
OF40 | M: MOV R7,[R2] REPEAT
4007 ADD RO, RO, R7 | Tot:=Tot + List[l]
5280 INC R2 [=1+1
5440 DECR1 Nitems:= Nltems- 1
EFFB BR.NZM UNTIL (NItems=0)
1300 MOV [R3], RO Result := Tot
= =
Codification Translation

implement the sequences of control signalsfor each instruction,
an affordable educational project.

The Smple CPU follows the "|oad-store” operation principle
and never operates directly with memory operands. The data
must be loaded in registers, operate within them and store the
results in the memory. This operational design of the Smple
CPU has been selected to introduce the students to modern ar-
chitectures. Another concept introduced with the Smple CPU
is the orthogonality of the architecture, in which all the registers
can be used with any instruction and for any purpose.

[Il. TYPICAL PRACTICE USING A SIMULATOR OF
THE Smple CPU

In order that the students learn the operation of the Smple
CPU, the design and execution of a small program is proposed.
The proposed program accumulates the sum of a list of values
storing the result in one word of memory.

A. Compilation or Trandation Phase

The students start the practice by representing the solution to
the problem in a high-level structured language, such as PAS-
CAL. Next, they trandlate the algorithm into a program in as-
sembler language using the instruction set of the Smple CPU.
The objective of thistask isthat the students perceive the seman-
tic gap between the language used to describe the problems to
the CPU and the native language used by the CPU itself. In this
phase of the practice the students operate as human compilers.

B. Assembly or Codification Phase

At this point the codification phase starts. In this phase the
students work manually in the same way an assembler program
would perform automatically. One of the main objectivesduring
this phase is the consolidation of the concept of symbol, mainly
used as address labels, working on their manual resolution when
they are used in branch and jump instructions. Translation and
codification phases are shown in table V.

C. Load Phase

After the program has been codified as hexadecimal numbers,
the students write it in a text file, specifying the initial address
in which to store the program in memory and the address of the
first executableinstruction in the header of thefile.

In the Smple CPU all the jumps and branches are relative to
the program counter. Furthermore, all the references to the data
stored in the memory are carried out through registers. There
is no absolute addressing, neither for instructions nor for data.
Thisalowsthe direct loading of dataand codein any part of the
memory without recalculating addresses. This simplicity in the
design of the Simple CPU avoids the introduction of complex
concepts, such as code relocation, which would be incompre-
hensible in an introductory course in computer architecture.

D. Execution Phase

At this point of the practice the students start the execution
phase of the program, learning how the architecture executes
theinstructions.

The execution can be traced in two ways: instruction to in-
struction, or step to step within each instruction. In Figures 1 to
4, the sequence of steps carried out by the Smple CPU to exe-
cute the instruction MOV R2, R5 isshown. The main goal of
this phase is to introduce the students to the concepts of control
step and microinstruction.

Thefirst three steps are the samefor all the instructions of the
Smple CPU. They implement the tasks of instruction fetch and
update the program counter. The next steps are specific for each
instruction. In the simulator, the active elements or modified
datain each step are remarked with a black background and the
signals activated by the Control Unit (CU) of the Smple CPU
in each step are presented in the white box of the CU.

IV. CONCLUSIONS

In this paper a simple but effective approach with its support-
ing tool to introducethe students of computer scienceto the area
of computer architecture has been presented.

The method is highly effective, because it alows students to
assimilate the concepts of instruction set, addressing modes, the
internal architecture of a CPU, the sequence of steps of the in-
structions, etc., in only 14 hours of theory and 6 of practice.

REFERENCES

[1] D. A. Patterson and J. L. Hennessy, Computer Organization and Design.
The Hardware/Software Interface, Morgan Kaufmann, 1994.

[2] G. Fernandez, Conceptos basicos de Arquitectura y Sstemas Operativos,
Sistemasy Servicios de Telecomunicacion, 1994.

[3] S. Scott, “Tisc, tiny instruction set computer,” Tech. Rep., University of
Arkansas, 1995.

[4] H.B.Gumm and M. Perner, “Microcode simulator,” ASK (Akademische
Software Kooperation) of the University of Karlsruhe, 1995.

[5] H. B. Diab and I. Demashkieh, “A computer-aided teaching package for
microprocessor systems education,” |EEE Transactions on Education, vol.
34, no. 2, 1991.

[6] W.D. Henderson, “Animated models for teaching aspects of computer sys-
tems organization,” |EEE Transactions on Education, vol. 37, no. 3, 1994.

N e

PCE

IE-HAR cu

THMPLCLR

CARRY_IN

il ST1EP IR
ALUTMPO

RERD oo

HOW RO, AD

D
ZF CF OF sF TMPOUIE,
22 er o [0 (00 | feurwec.| NEHEM THPO

Fesut

IE-MDE:

L
-C
worae || 0000 | MOR.

0100 o

MEIH MAR el

&

e MEMORY

B I
IEFE
[EfvEah
Bl
BB
IERE
[EfFn
BlRE
R

i
B

o

(=23
BPC

|MODE: NORM&L | Next Insiruction : CLR RO

Fig. 1. Step 1: Addressthe new instruction

cue [
=L TR ViR A IO R i
’_mp IR [L2 R i
2 R2IE
[oono || D4E3 R2 i
e
= 00 R3 EitEon
e 2F CF OF 5F Y ‘:“'T;‘
SR 00100 | |atmre] | 007 THPD [o0 Ra [
i
e — s
Feesult | 0101 [7722 RS Eren
ADD o0 e
cHRRT_IN ALY Operand 2 EFFE&“
Lol g
P L RE
TEEE{ [o000 TMPI .
Ll FC -
- i | oo | B-Pe
e
wore || 0000 MOR. 0100 MAR |-°0
& T
e
FEAD MEMORY
| MODE : NORMAL [Hext Instruction : CLR RO [
Fig. 2. Step 2: Increment the PC
o
=L WDR-B Wiy Ri2, A5 000 RO B Fon
s cu DY 2. A5 B
o
ep IR (=00 RE
3 R2dE
| [DIES s
oo | IoeEstRR f— i
e
i [B
P T o
SR [0[0[0[0 | |surwec | 0107 TMPD [T R4 B
P — i

Feesult | 0220

P2

7]
e

0000

I

oo R

I

ol PC

o
G|

[MODE :NORMAL | Nest Instuction : CLA A0

[I load

Fig. 3. Step 3: Load new instruction in register IR

E ik

IR
[

MOY R2_RS

o[oo TP

IETHPL
THPLSET
THWPLCLE

0000 TMPI

&R

wome | | 02507 MOR. 0100 MAR [-otu
& I

wee

[MEMORY

RoE
IERE
EirFioh
R

BHE
R
[EEh
B
e
E-Re
[Eirfizn
BIRE

IR

PoiE
[

[MODE :NORMAL | Nest Instuction : CLA A0

Fig. 4. Step 4: Transfer R2 content to register RS

