
CPU Design Kit: An Instructional Prototyping Platform
for Teaching Processor Design

Anujan Varma, Lampros Kalampoukas,
Dimitrios Stiliadis, and Quinn Jacobson

Computer Engineering Department
University of California
Santa Cruz, CA 95064

E-mail: varma@cse.ucsc.edu
World-Wide Web: http://www.cse.ucsc.edu/

research/hsnlab/projects/CPUkit.html

Abstract

The CPU Design Kit is a prototyping platform designed at Uni-
versity of California, Santa Cruz, for teaching the Processor Design
class. The prototyping platform allows the design and implemen-
tation of a 32-bit pipelined CPU. The prototyping hardware con-
sists of an ISA-bus-based printed-circuit board containing six Al-
tera FLEX EPF81500 programmable logic chips providing a total
of 80,000 usable gates, static RAM chips to implement register file
and caches, and hardware support for monitoring and debugging.
A Windows-based user interface provides access to the necessary
software tools for downloading designs into the board, debugging,
and control of the CPU.

I. I NTRODUCTION

Many universities now offer a course onprocessor designor
computer designas part of the computer engineering curriculum.
The objective of this course is to teach the fundamental concepts
involved in the design of a Central Processing Unit (CPU) by
means of a hands-on project. Typically, the project involves the
design, fabrication, and testing of a small CPU within a semester-
or quarter-long class. Until a few years ago, these CPU designs
were prototyped using bit-slice ALU chips, in combination with
microprogrammed control units. This approach limited the scope
and flexibility of the project; key concepts such as pipelining, com-
mon among modern RISC processors, could not be explored.

With the availability of dense programmable logic chips such
as the Altera FLEX series, it has now become possible to construct
more complex designs reflecting the state-of-the-art in CPUdesign
within a short time. Because of the complexity of the chips, how-
ever, it is still difficult to prototype and debug a CPU designem-
ploying multiple FPGA chips within the classroom environment.
The CPU Design Kit is a prototyping platform, consisting of both
hardware and software, designed to facilitate the construction of
such projects within a limited period of time, such as an academic
quarter or semester.

The CPU Design Kit is designed to allow implementation of a
pipelined 32-bit processor with minimal effort on fabrication and
testing. The prototyping hardware consists of an ISA-bus-based
printed-circuit board containing six Altera FLEX EPF81500pro-
grammable logic chips, static RAM chips to implement register
file and caches, and hardware support for monitoring and debug-
ging. Software available with the platform include tools toload
compiled designs into the FLEX devices, set and display contents

of the register file and caches, monitor the state of signals on the
board, and control execution of the CPU.

II. B OARD ARCHITECTURE AND HARDWARE

Figure 1 shows the devices on the prototyping board and Fig-
ure 2 illustrates the data and control paths on the board while imple-
menting a 32-bit pipelined processor similar to the DLX described
by Hennessy and Patterson [1]. The hardware consists of five Al-
tera FLEX EPF81500 chips, each intended for implementing spe-
cific functional blocks of the CPU design. A sixth FLEX deviceis
used to implement the ISA bus interface of the board to the host
PC and to control and monitor the execution of a program on the
prototype CPU.

Each of the FLEX devices provides approximately 16,000 us-
able gates and 200 I/O pins. Thus, the board provides a total of
80,000 usable gates for implementing the CPU design. The archi-
tecture of the board has been designed to allow implementation of a
32-bit pipelined RISC CPU similar to the DLX, but the board may
also be used for other styles of instruction sets.

The functional blocks of the CPU design are intended to be par-
titioned among the five FLEX devices as follows:

1. Instruction Fetch, Decode, and Branch Unit:These func-
tions are implemented by FPGA-1 in Figure 2. This module
maintains the program counter, handles fetching of instruc-
tions from the instruction cache, and implements conditional
branches and jumps.

2. Arithmetic Logic Unit: The ALU module is implemented by
two FLEX devices, FPGAs 2 and 3 in Figure 2. FPGA-2 is
meant to be the primary ALU chip, with FPGA-3 providing
additional logic for implementation of logic-intensive func-
tions such as a barrel shifter.

3. Data Memory Interface:FPGA-5 provides the interface to
the data cache, and allows routing of data between the
ALU/register file and the data cache.

4. Control/Forwarding Unit: The logic needed for forwarding
and control of the pipeline is intended to be placed in FPGA-
4.

Program execution and debugging of the CPU are controlled
by logic within the sixth FPGA, which also implements the ISA
bus interface. This FPGA can be programmed to control execution
of programs by single-stepping, setting up breakpoints, etc. This
FPGA also generates the clocks that control all system timing from
a 40 MHz master clock fed to it. The clocks are distributed to all
the FPGAs via four dedicated lines.



Fig. 1. The CPU Design Kit prototyping board.

Instruction
Fetch/Branch

Unit

Execution UnitExecution Unit Control/
Forwarding

Unit

In
st

ru
ct

io
n 

C
ac

he

R
eg

is
te

r 
F

ile

D
at

a 
C

ac
he

Memory/
Write Back

Unit

address(13:0)

data(31:0)

portB_data(31:0)

portC_data(31:0)

ex_control(31:0) frwd_control(31:0)

address(13:0)
data(31:0)

data_out(31:0)

mem_data_out(31:0)

write_back_data(31:0)

po
rt

D
_d

at
a(

31
:0

)

portB_address(4:0)
portC_address(4:0)
portD_address(4:0)

address(13:0)

code(15:0)

po
rt

D
_a

dd
re

ss
(4

:0
)FPGA−3 FPGA−4

FPGA−5

FPGA−1

FPGA−2

Fig. 2. Block diagram of the prototyping board. The five FPGAsshown are used to implement the CPU design. The sixth FPGA, used to implement the ISA-bus interface, as
well as control and debugging of the CPU design, is not shown.



Fig. 3. Windows-based user interface.

In addition to the FPGAs, the board also contains a register file.
The register file is a 4-port 4K�32-bit static RAM module. Three
of the four ports of the register file are connected to the ALU;in
a three-address register architecture such as the DLX, two of the
ports are used as read ports and the third as a write port. The unused
fourth port is used by the system monitor software to access the
register file so that register contents can be set and displayed during
debugging.

The memory system of the board consists of separate instruc-
tion and data caches. Each cache has a capacity of 16K words
(64K bytes). The instruction cache is directly connected toFPGA-
1 implementing the instruction-fetch function, and the data cache
is interfaced to the ALU/register-file via FPGA-5. The address for
data cache is driven by the ALU output; data may be stored into
the cache from any of the two register ports feeding the ALU, or
loaded from the cache into the third (write) port of the register file.

In addition to the logic resources needed to prototype the CPU,
the board also contains hardware to facilitate debugging and bench-
marking. The sixth EPF81500 FLEX device forms the core of the
monitoring hardware and provides the following facilities:

1. Facility to access internal registers and signals withinthe FP-
GAs through a dedicated debug bus. The user may define
accessible registers within the design for debugging, which
can then be monitored or set via the debug bus. Software
tools allow symbolic names to be attached to these registers
for convenience.

2. Facility to allow monitoring the state of signals on the board
from the PC. This is achieved by implementing a multiplex-
ing function that receives some of the on-board signals on its
input and multiplexes them to the ISA-bus interface. This
allows “probing” all signals on the board during debugging
without accessing them physically.

3. Monitoring of logic events, similar to a logic analyzer, is also
achieved by programming the FLEX device to watch for the
signal states of interest. Events can be signaled to the inter-

face FPGA by any of the other devices via the global bus.
4. Performance monitoring can also be implemented within this

FPGA by implementing counters to keep track of perfor-
mance metrics such as total cycles of program execution,
number of pipeline stall cycles, etc.

III. SOFTWARE TOOLS

Using the CPU Design Kit to prototype a CPU design efficiently
requires a variety of software tools. As part of this project, we are
currently developing software to provide a complete environment
for processor design. Altera’s MaxPlus tools already provide an
intergated environment for design entry, synthesis, and simulation
of the system from a high-level language description of the target
hardware. We are supplementing them with tools that are specific
to the CPU Design Kit environment. The following are the key
tools currently under development:

1. Tools to download the compiled designs into the FLEX de-
vices on the board.

2. Tools to control clocking — enable single-stepping, break-
point execution, etc.

3. Tools to monitor on-board signals and set up event monitors.
This provides a logic analyzer-like function. Software will
allow attaching labels to signals and displaying them in a va-
riety of formats.

4. Software to read and modify the register file, instruction
cache, and data cache.

5. Performance-monitoring tools to set up counters and gener-
ate statistics of interest to the user.

6. A Meta-Assembler that allows generation of code for custom
instruction sets with minimal effort. Many public-domain
tools are already available for this purpose.

The user-interface of the software is currently based on Mi-
crosoft Windows. Figure 3 shows a snapshot of the user interface
being developed. The tools may be ported to the Unix/X Windows
platform in the future.



IV. COURSEORGANIZATION

Because of the tight time constraints in the quarter system at
UCSC, we have found it important to organize the project so that
students can complete the design task in a sequence of well-defined
stages. The CPU Design Kit allows the processor design project to
be carried out in phases, each phase implementing a part of the de-
sign. For example, assuming a 5-stage pipeline as in the example
implementation of Hennessy and Patterson [1], the entire design of
the pipelined CPU can be structured into four phases as follows:
The instruction fetch and branch logic is implemented and tested
in the first phase. This requires design and programming of only
one of the five FPGAs. Only the first two stages of the pipeline are
implemented in this phase. The second phase adds the ALU and
register file to the design and expands the pipeline to five stages.
All the ALU instructions are implemented and tested in this phase.
Note that all the data hazards introduced by the pipeline areignored
in this phase. Phase 3 involves adding the data memory interface
to the design so that load and store instructions can be tested. Fi-
nally, the logic necessary to implement all the forwarding require-
ments is incorporated in Phase 4, thus completing the design. We
have found that this organization allows students to accomplish the
entire design and implementation within the limited time ofone
academic quarter.

V. CONCLUSIONS AND STATUS

The CPU Design Kit was first introduced in the Processor De-
sign class at UCSC in the Fall of 1995, where it was used to design
a complete 5-stage pipelined RISC processor similar to the DLX
as described by Hennessy and Patterson [1]. The entire instruction
set of DLX was implemented, except for instructions dealingwith
floating point and exceptions. The logic needed for the design was
well below the capacity of the FPGAs. Thus, the board leaves room
for attempting substantially more complex designs in the future.

We are currently working on the next generation of CPU De-
sign Kit, based on Altera’s FLEX 10K family. This family includes
single-chip devices with up to 100,000 usable gates and clock
speeds as high as 70 MHz, allowing much more complex CPU de-
signs to be attempted. An additional advantage of the FLEX 10K
family is the availability of on-chip SRAM, thus allowing multi-
port register files to be implemented on-chip.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,”
Morgan Kaufmann, 1995.

[2] Altera Corporation, FLEX 8000 Handbook, 1995.


