CPU Design Kit: An Instructional Prototyping Platform
for Teaching Processor Design

Anujan Varma, Lampros K alampoukas,
Dimitrios Stiliadis, and Quinn Jacobson

Computer Engineering Department
University of California
Santa Cruz, CA 95064
E-mail: varma@cse.ucsc.edu
World-Wide Web: http://www.cse.ucsc.edu/
research/hsnlab/projects/CPUkit.html

Abstract of the register file and caches, monitor the state of signalthe

The CPU Design Kit is a prototyping platform designed at Uml_aoard, and control execution of the CPU.

versity of California, Santa Cruz, for teaching the Prooe&esign 1. BOARD ARCHITECTURE AND HARDWARE
class. The prototyping platform allows the design and immae-
tation of a 32-bit pipelined CPU. The prototyping hardwaoa-c
sists of an ISA-bus-based printed-circuit board contajrsix Al-
tera FLEX EPF81500 programmable logic chips providing alto
of 80,000 usable gates, static RAM chips to implement regige
and caches, and hardware support for monitoring and dehgigg
A Windows-based user interface provides access to the sages
software tools for downloading designs into the board, dging,
and control of the CPU.

Figure 1 shows the devices on the prototyping board and Fig-
ure 2 illustrates the data and control paths on the boardwrhipple-
tmenting a 32-bit pipelined processor similar to the DLX alitosxd
by Hennessy and Patterson [1]. The hardware consists of five A
jtera FLEX EPF81500 chips, each intended for implementireg sp
cific functional blocks of the CPU design. A sixth FLEX devise
used to implement the ISA bus interface of the board to thé hos
PC and to control and monitor the execution of a program on the
prototype CPU.

Each of the FLEX devices provides approximately 16,000 us-
able gates and 200 1/O pins. Thus, the board provides a tbtal o
Many universities now offer a course qmocessor desigr 80,000 usable gates for implementing the CPU design. Thw-arc

computer desigras part of the computer engineering curriculuntecture of the board has been designed to allow implementafia
The objective of this course is to teach the fundamental €otsc 32-bit pipelined RISC CPU similar to the DLX, but the boardyma
involved in the design of a Central Processing Unit (CPU) bylso be used for other styles of instruction sets.

means of a hands-on project. Typically, the project inveltiee The functional blocks of the CPU design are intended to be par
design, fabrication, and testing of a small CPU within a sstare titioned among the five FLEX devices as follows:

or quarter-long class. Until a few years ago, these CPU dssig 1. Instruction Fetch, Decode, and Branch Unithese func-

|. INTRODUCTION

were prototyped using bit-slice ALU chips, in combinatiofithw
microprogrammed control units. This approach limited tbepe
and flexibility of the project; key concepts such as pipeliicom-
mon among modern RISC processors, could not be explored.

With the availability of dense programmable logic chipstsuc 2.
as the Altera FLEX series, it has now become possible to narist

more complex designs reflecting the state-of-the-art in @Btign
within a short time. Because of the complexity of the chipsyh
ever, it is still difficult to prototype and debug a CPU des&n-

ploying multiple FPGA chips within the classroom enviromme

The CPU Design Kit is a prototyping platform, consisting oftb
hardware and software, designed to facilitate the consbruof
such projects within a limited period of time, such as an aoad
quarter or semester.

The CPU Design Kit is designed to allow implementation of a

pipelined 32-bit processor with minimal effort on fabricet and

tions are implemented by FPGA-1 in Figure 2. This module
maintains the program counter, handles fetching of instruc
tions from the instruction cache, and implements condition
branches and jumps.

Arithmetic Logic Unit: The ALU module is implemented by
two FLEX devices, FPGAs 2 and 3 in Figure 2. FPGA-2 is
meant to be the primary ALU chip, with FPGA-3 providing
additional logic for implementation of logic-intensivenfcr
tions such as a barrel shifter.

. Data Memory InterfacelFPGA-5 provides the interface to

the data cache, and allows routing of data between the
ALU/register file and the data cache.

. Control/Forwarding Unit: The logic needed for forwarding

and control of the pipeline is intended to be placed in FPGA-
4.

Program execution and debugging of the CPU are controlled

testing. The prototyping hardware consists of an ISA-baseld by logic within the sixth FPGA, which also implements the ISA

printed-circuit board containing six Altera FLEX EPF8150®-

bus interface. This FPGA can be programmed to control eb@cut

grammable logic chips, static RAM chips to implement regist of programs by single-stepping, setting up breakpoints, &his
file and caches, and hardware support for monitoring andgieblrPGA also generates the clocks that control all system grfiom
ging. Software available with the platform include toolsléad a 40 MHz master clock fed to it. The clocks are distributedlto a
compiled designs into the FLEX devices, set and displayestiat the FPGAs via four dedicated lines.

FaBBABSaE s e
FaR@@aanadnsnr . *

"
"
=
"
w
]
L]
()
]
-
L

Fig. 1. The CPU Design Kit prototyping board.

% FPGA-1 portB_address(4:0
@ . portC_address(4:0) 2
dd 13:0 .
g address(13:0) Instruction portD_address(4:0 w
S Fetch/Branch i
g data(31:0) Unit E
7 04
=
Iy
A
portB_data(31:0)
[
portC_data(31:0) o
ex_control(31:0) frwd | control(31:0)
| A A
FPGA-2 FPGA-3 _ " FPGA-4
o
g
2 Control/
. . . . @
Execution Unit Execution Unit § Forwarding
© Unit
a
£
o
ol

Data Cache

address(13:0)

code(15:0)

data_out(31:0)

Fig. 2. Block diagram of the prototyping board. The five FPGAswn are used to implement the CPU design. The sixth FPGal tasimplement the ISA-bus interface, as

|
FPGA-5
Memory/
Write Back
address(13:0) Unit
L data(31:0)

mem_data_out(31:0)

well as control and debugging of the CPU design, is not shown.

write_back_data(31:0)

portD_data(31:0)

File CPU View
CMPE124 CPU Interface
RO = FFFF IF_PC = FFFF
R1 = FFFF ID_PC = FFFF
R2 = FFFF ID_IR = FFFF
R3 = FFFF NEXT PC = FFFF
Status = FFFF

Instruction Memory
CPU
FF FF
FF FF
FF FF
FF FF
FF FF

File
caae
ca18
ca28

ca3ag
rann

CPU

FF FF
FF FF
FF FF

FF FF
FE Fr

FF
FF
FF
FF
FF

FF
FF
FF
FF
FF

FF
FF
FF
FF
FF

FF
FF
FF
FF
FF

FF
FF
FF
FF
FF

FF
FF
FF
FF
FF

FF
FF
FF

FF
(= =

FF
FF
FF

FF
(==

FF
FF
FF

FF
(=1

FF
FF
FF

FF
(=1 =

FF
FF
FF

FF
(= =

FF
FF
FF

FF
(==

FF
FF
FF

FF
(=

Fig. 3. Windows-based user interface.

In addition to the FPGAs, the board also contains a regideer fi
The register file is a 4-port 4k 32-bit static RAM module. Three
of the four ports of the register file are connected to the AlrlJ;
a three-address register architecture such as the DLX, fwleo
ports are used as read ports and the third as a write port. fittsed
fourth port is used by the system monitor software to acdass t
register file so that register contents can be set and disgpldyring

debugging. Using the CPU Design Kit to prototype a CPU design efficiently
The memory system of the board consists of separate instrggquires a variety of software tools. As part of this projeet are
tion and data caches. Each cache has a capacity of 16K wogggrently developing software to provide a complete emvinent
(64K bytes). The instruction cache is directly connecteBRGA- for processor design. Altera’s MaxPlus tools already pfewin
1 implementing the instruction-fetch function, and theade&che intergated environment for design entry, synthesis, amdilsition
is interfaced to the ALU/register-file via FPGA-5. The addréor of the system from a high-level language description of #iget
data cache is driven by the ALU output; data may be stored inf@yrdware. We are supplementing them with tools that areifspec
the cache from any of the two register ports feeding the ALU, @ the CPU Design Kit environment. The following are the key
loaded from the cache into the third (write) port of the regyifile. tgols currently under development:
In addition to the logic resources needed to prototype the,CP 1. Tools to download the compiled designs into the FLEX de-
the board also contains hardware to facilitate debuggiddanch- vices on the board.
marking. The sixth EPF81500 FLEX device forms the core of the 2. Tools to control clocking — enable single-stepping, krea
monitoring hardware and provides the following facilities point execution, etc.

face FPGA by any of the other devices via the global bus.

4. Performance monitoring can also be implemented with@ th
FPGA by implementing counters to keep track of perfor-
mance metrics such as total cycles of program execution,
number of pipeline stall cycles, etc.

IIl. SOFTWARETOOLS

1. Facility to access internal registers and signals witténFP- 3.

GAs through a dedicated debug bus. The user may define
accessible registers within the design for debugging, whic
can then be monitored or set via the debug bus. Software

tools allow symbolic names to be attached to these registers4.

for convenience.

. Facility to allow monitoring the state of signals on thetb 5.

from the PC. This is achieved by implementing a multiplex-

ing function that receives some of the on-board signalson it 6.

input and multiplexes them to the ISA-bus interface. This
allows “probing” all signals on the board during debugging
without accessing them physically.

Tools to monitor on-board signals and set up event manitor
This provides a logic analyzer-like function. Software lwil
allow attaching labels to signals and displaying them in-a va
riety of formats.

Software to read and modify the register file, instruction
cache, and data cache.

Performance-monitoring tools to set up counters andrgene
ate statistics of interest to the user.

A Meta-Assembler that allows generation of code for austo
instruction sets with minimal effort. Many public-domain
tools are already available for this purpose.

The user-interface of the software is currently based on Mi-

. Monitoring of logic events, similar to a logic analyzerailso crosoft Windows. Figure 3 shows a snapshot of the user aterf
achieved by programming the FLEX device to watch for thbeing developed. The tools may be ported to the Unix/X Wirglow
signal states of interest. Events can be signaled to the intplatform in the future.

IV. COURSEORGANIZATION V. CONCLUSIONS AND STATUS

Because of the tight time constraints in the quarter system a The CPU Design Kit was first introduced in the Processor De-
UCSC, we have found it important to organize the project s thsign class at UCSC in the Fall of 1995, where it was used t@desi
students can complete the design task in a sequence of efeled a complete 5-stage pipelined RISC processor similar to th¥ D
stages. The CPU Design Kit allows the processor designgirije as described by Hennessy and Patterson [1]. The entiredtisin
be carried out in phases, each phase implementing a pae deth set of DLX was implemented, except for instructions dealiritp
sign. For example, assuming a 5-stage pipeline as in themganfloating point and exceptions. The logic needed for the desias
implementation of Hennessy and Patterson [1], the entsgydef well below the capacity of the FPGAs. Thus, the board leavesr
the pipelined CPU can be structured into four phases asafsilo for attempting substantially more complex designs in thartu
The instruction fetch and branch logic is implemented astete We are currently working on the next generation of CPU De-
in the first phase. This requires design and programming byf orsign Kit, based on Altera’s FLEX 10K family. This family inales
one of the five FPGAs. Only the first two stages of the pipeliee asingle-chip devices with up to 100,000 usable gates andkcloc
implemented in this phase. The second phase adds the ALU apeeds as high as 70 MHz, allowing much more complex CPU de-
register file to the design and expands the pipeline to fivgesta signs to be attempted. An additional advantage of the FLBX 10
All the ALU instructions are implemented and tested in thiage. family is the availability of on-chip SRAM, thus allowing riid
Note that all the data hazards introduced by the pipelinegacred port register files to be implemented on-chip.
in this phase. Phase 3 involves adding the data memory acterf

to the design so that load and store instructions can bedteBie REFERENCES
nally, the logic necessary to implement all the forwardiaguire- (1] J. L. Hennessy and D. A. Patterson, Computer Architectér Quantitative Approach,”
ments is incorporated in Phase 4, thus completing the de¥ign Morgan Kaufmann, 1995.

. . K . [2] Altera Corporation, FLEX 8000 Handbook, 1995.
have found that this organization allows students to actismthe

entire design and implementation within the limited timeoofe
academic quarter.

