
A Database of Course Materials
in Computer Architecture

Edward F. Gehringer
Department of Electrical and Computer Engineering

and Department of Computer Science

North Carolina State University

Raleigh, NC 27695-7911

efg@ncsu.edu

Abstract

Teaching computer architecture, like any
course at the college level, requires the instructor
to spend much time in preparation outside class.
This time is spent in writing lectures, making up
homework problems and labs, and devising and
grading exams. This involves much duplication
of effort, since the same problems and labs are,
in principle, usable in courses at different univer-
sities. Although a small amount of sharing has
gone on an ad hoc basis, until now, there has
been no way to search for and retrieve a very wide
variety of course materials.

Instructors teaching computer architecture
have been surveyed, and several dozen have ex-
pressed interest in participating in this project.
Contributors to the database will be asked to
supply a pathname(s) for the location of their
course materials. For security’s sake, problem
solutions will be kept in encrypted archives. The
unencrypted portion of the database will be man-
aged very similar to the technical-report databases
now available for browsing over the World-Wide
Web. It will be possible to search for problems,
lectures, or other material, containing arbitrary
keywords. The encrypted portion of the database
will require new interfaces, or possibly new
browser software to be written. Development of
this database will encourage reuse, and aid in im-
proving the quality of courses and decreasing the
time required to teach them well.

1. Teaching Productivity

Productivity is a basic measure of perfor-
mance in most industries. Manufacturing com-
panies measure it by output per unit of labor. In
the academic community, we have derived mea-

sures for research productivity, such as number of
publications, number of refereed papers, and
amount of research funding. To be sure, consid-
erable controversy surrounds these measurements;
although they may be easy to compute, they are
often seen as inappropriate measures of quantity
rather than quality. But the fact remains that the
question of productivity is at least being ad-
dressed.

In teaching, the opposite problem seems to
prevail. At the university level, teaching evalua-
tions by students are widely used as a measure of
quality. Controversy besieges this metric too,
but it at least exists, and a considerable literature
has developed around it. Quality, however, is
very different than productivity; a straightforward
application of the manufacturing definition would
imply that high productivity is synonymous
with large classes, and almost everyone “knows”
this to be false. To the extent that a notion of
teaching productivity exists, it seems to be asso-
ciated with the time that students and faculty are
in personal contact. The public (and many legis-
lators), at least, seem to view teaching this way,
and this leads to persistent demands for faculty to
spend more hours “in the classroom.”

Now, anyone who has ever taught at the uni-
versity level, particularly in technical fields, real-
izes that behind every hour of lecture there stand
many hours of preparation—in my case, six to
ten for every new lecture assembled, and eight to
twelve for every exam. The fact, however, that
this effort is so little appreciated suggests that we
look for ways to reduce it. Not only would this
improve our profession’s public image; it would
also free more time for research, which would al-
low faculty to spend more time on new ideas, and
thereby achieve promotion and advance in their
careers.

–2–

Much of the routine activity associated with
teaching is susceptible to optimization via shar-
ing and cooperation. Not every instructor who
teaches a course need write a new lecture from
scratch; chances are that the lecture of another in-
structor with a similar teaching style could be
adapted more quickly than a new lecture could be
written. Faculty spend enormous amounts of
time designing tests, homework problems, and
(especially) labs, and these are even more
reusable. Instructors get little credit for repetitive
activity like creating yet another problem on a
familiar topic, and they do not particularly like to
do them. More enjoyable are tasks that pique
student interest, like synthesizing course material
and presenting lectures. It is not particularly in-
teresting to do this “from the ground up.” It is
better to do this by assembling parts that some-
one else has written, just as it is more rewarding
to program with high-level libraries than in
assembly language. Indeed, by cutting the time
needed to integrate new material into a course,
reuse makes it possible to incorporate new topics
more quickly, enhancing the students’ educational
experience.

This author is aware of only one experiment
in reusing course materials—the University of
California at Berkeley/University Video
Communication Pilot Program to Aid New
Faculty in Lecture Preparation. Announced by
Dave Patterson in 1993, this program made
videotapes and notes for all lectures by outstand-
ing Berkeley instructors available at a modest fee
to faculty teaching similar courses at other
schools. What is most surprising is the unique-
ness of this effort; a search of two on-line
databases turned up no references to articles on
teaching productivity, where “productivity” was
defined in a manner even remotely similar to that
described above. Most of what has been written
focuses on teaching vs. research productivity. In
fact, among the articles with the word
“productivity” in the abstract, there were no arti-
cles at all on saving faculty time in course prepa-
ration. The Berkeley/UVC program is a laudable
beginning, but it focuses solely on lectures.
This is an important foray in improving produc-
tivity, but by no means the whole battle.

2. Barriers to Sharing and
Cooperative Work

Instructors in a course rarely share many ma-
terials with others in similar courses. Often this
is because problems are not completely written
up, existing in bare outline form that is not in-
telligible without access to a complete

(unpublished) lecture. Even when such lectures
are published completely (as in several cases
where instructors have put their lectures on the
World-Wide Web), they may consist only of an
electronic version of transparencies, or some sim-
ilar outline form, and be understandable only
when the instructor orally explains the topics and
fills in the gaps. Beyond that, there are differ-
ences in teaching styles. Some instructors ap-
proach a topic in a much more mathematical way
than others, even when using the same textbook.
Others emphasize the practical knowledge that
comes from writing or modifying programs to il-
lustrate a concept. Still others choose to give
design problems, which challenge the student’s
analytic skills. To a great degree, these choices
reflect the instructor’s own knowledge and back-
ground, and cannot be effectively used by an in-
structor whose background and therefore style is
different. Even when styles are similar, a good
problem may require familiarity with several
concepts, some of which another instructor may
not have covered. Or a prerequisite, such as a
course in probability, may be required at one
school but not another.

Cooperation is meant to save time, but it has
a high overhead itself. It is necessary for an in-
structor to locate another instructor with similar
a similar background and style. Sharing must be
with someone from a different school, because at
the same school, many students would have ac-
cess to files of problems from previous terms. It
takes time to gather together a whole set of mate-
rials, package them, and mail them. Then the re-
cipient must manually search for problems that
are appropriate to his/her course.

3. Advantages of Exploiting the
World-Wide Web

Enter the Internet and the World-Wide Web.
The widespread use of wordprocessing has re-
sulted in a wealth of machine-readable course ma-
terials, and the availability of networked comput-
ers for instruction has led to many of these mate-
rials being placed on line. Our survey reported
below shows that dozens of instructors have
most or all of their materials on line. Enough
material in computer architecture is now on the
Internet to make up a database of gratifyingly
comprehensive proportions. With the creation of
the necessary indexes and links, it will be possi-
ble to search quickly for materials matching a
given style. One will be able to do a keyword
search, and then eliminate materials that do not
appear to be the right style. Cooperation is facil-
itated: it is nearly as easy to share with instruc-

–3–

tors across the world as to share with one other
site. Transmission is nearly instantaneous, and
searching for and selecting problems will not
take much longer.

4. Feasibility of the Database

To determine the interest in a database of
course materials, 144 computer architects at uni-
versities throughout the world were surveyed by
e-mail. The list was drawn from previous ISCA
attendees, attendees at computer-architecture edu-
cation workshops, and people to whom the au-
thor was referred by members of the above
groups. Results of the survey are shown in
Table 1. Response was very gratifying. Fifty-
eight instructors at 39 schools have agreed to par-
ticipate. Only one declined (he cited lack of
time). Many of the others responded that they
were not teaching computer architecture; some of
these were students (although an attempt had
been made to filter out students by fingering

people before sending mail, and removing those
whose .plan file mentioned a thesis topic or

whose home directory was on a suspicious struc-
ture like /students or /grad). Some of

the others were research faculty, or teaching fac-
ulty teaching courses in other areas. Several of
the 58 participants had already put their lectures
on the Web, and two-thirds of the 58 have more
than half their material in machine-readable for-
mat. Of the 20 who have no more than half in
electronic form, what is on the computer is usu-
ally homework and exams—just what we are
most interested in sharing.

A few formats predominate. LaTeX is most
common, followed by FrameMaker and
Microsoft Word. Seventy-one of 103 responses
mention one of these three (there are more than
58 responses because many instructors use more
than one wordprocessor). If PowerPoint is in-
cluded, the top four formats comprise more than
80% of total responses. The decline of older
formatters is not unexpected; only three re-
sponses mention troff or its derivatives.

More surprisingly, WordPerfect and Interleaf were
mentioned only once each.

Other observations on the survey results are
that courses are about equally divided between
computer organization and architecture. If you
count the parallel-architecture courses, the bal-
ance shifts in favor of computer architecture.
Some respondents noted that there doesn’t seem
to be a clear dividing line between organization
and architecture, but most had no trouble classi-
fying the focus of their course as one or another.

Among the courses that fell in category e
(“other”) were a course on interconnection net-
works and a general electronics lab that included
interfacing and assembly-language programming.
The courses are about half undergraduate and half
graduate. The most popular texts are the two by
Hennessy and Patterson, with Hamacher,
Vranesic, and Zaky coming in in third place (or
fourth place, if you count “no text” or “own
notes,” which would have come in second). For
labs, programming assignments were about twice
as common as hardware-oriented labs; fewer than
half the courses included the latter. Those who
assigned programs tended to use C and/or C++.
VHDL appeared to be the most popular hardware-
description language (but the responses were very
sparse; this was not a digital-design survey). For
parallel programming, the ANL macros were
used at four schools. Surprisingly, PVM was
used in only three schools (but remember, the
survey focused on architecture, not parallel pro-
gramming).

5. How the Database Will Work

With respect to the software involved, the
computer-architecture database is very similar to
computer-science technical report databases avail-
able currently on the Web [Fox 95]. Information
is maintained at sites around the Web. Directory
information (abstracts, etc.) is gathered at one
site where it is inserted into a database which can
then be searched.

Construction. Participants will furnish a list
of directories where their course materials are lo-
cated. Information will be ftped from these di-

rectories. One way would be to make the directo-
ries available via anonymous ftp (except for

sensitive material like solutions, which would
have to be protected). The simplest way to pro-
tect sensitive material would be to encrypt it us-
ing the public key of the database program. The
database program will periodically ftp all the

files that have changed since they were last
ftped. We will devise scripts that will parse

the files, discovering the boundaries between
problems. A database entry will be created for
each problem (lecture, etc.).

Retrieval. A Web page will be provided, with a
form that can search for entries (e.g., problems,
lectures) that include certain keywords. Only
problems will be displayed; to fetch solutions
will require authorization, as described below.
The user will be able to scroll through the list of
problems in the browser, and ftp any that are

desired.

–4–

Table 1: Answers to Survey Questions

1. What is the main topic of your course? 2. What level is your course taught at?

a. Computer organization 33 a. Sophomore-junior 22

b. Computer architecture 34 b. Senior 22

c. Parallel computer architecture 18 c. Beginning graduate 34

d. Parallel architecture and programming . 13 d. Graduate, research oriented 12

e. Other ... 8

3. What textbook(s) do you use?

Hennessy & Patterson, Computer Architecture: A Quantitative Approach 22

Own notes and/or papers ... 15

Hennessy & Patterson, Computer Organization & Design: The Hardware/Software Interface . 7

 Hamacher, Vranesic, and Zaky, Computer Architecture and Organization 5

 Kai Hwang, Advanced Computer Architecture ... 3

 Mike Johnson, Superscalar Microprocessor Design .. 3

 Andrew Tanenbaum, Structured Computer Organization .. 3

 21 other books received one mention each.

4. What kind of homework do you assign? (“Check” all that apply.)

a. Labs (hardware oriented) 22

b. Non-mathematical problems to be solved ... 47

c. Mathematical problems to be solved 38

d. Design problems 48

e. Programming assignments 42

5. What programming languages and/or software packages are used in your course?

C 28 VHDL 5 C/C++ 3 C-Linda 1

C++ 11 ANL macros. 4 PVM 3 FabricFactory . . 1

M68000 7 DLX 4 MIPS 3 Occam 1

Dinero 6 Pascal 4

6. How many of your course materials (e.g., lecture notes, handouts, problems, exams) are in machine-
readable format?

None 4

Less than half 14

Half 2

More than half (but < 99%) .. 32

At least 99% 15

7. Which wordprocessor or document formatter was used to produce the (e.g., LaTeX, Scribe,

FrameMaker, Interleaf, WordPerfect, Microsoft Word)?

 Latex 32 troff, ditroff 3

 FrameMaker 20 ASCII 2

 Word 19 Interleaf 1

 PowerPoint 11 Postscript 1

 HTML 5 WordPerfect 1

–5–

6. Options for Access Control

A database that contains problems and solu-
tions will be much more useful than one that
contains problems alone. This is not only be-
cause it saves the instructor the trouble of solv-
ing the problems that he assigns, but also be-
cause it is sometimes not possible to judge the
suitability of the problem unless one knows
what the solution entails. So, without solu-
tions, one might have to solve, say, ten prob-
lems in order to assign five.

However, the presence of solutions in a
database requires access control, to prevent stu-
dents from “doing” their homework via ftp.

There are two options:

1. Do not incorporate privileged materi-
als into the database; requests to re-
trieve them must be directed to the
server on which they are stored.

2. Store privileged materials locally to
the database; requests to retrieve them
are directed to the database server.

Option 1 requires secure communications be-
tween database users and various sites. All sites
will have to “know” about all authorized users,
and authenticate all requests to retrieve solutions.
This seems to be a less viable option than the
following one.

Option 2 requires more space on the database
server, but only the database server ever needs to
authenticate a request. Authentication can be per-
formed with secure Netscape Navigator, which is
free to nonprofit organizations. Secure Netscape
Navigator uses the Secure Sockets Layer (SSL).
A reference implementation, Netscape SSLRef,
is also freely available. It is designed to aid ef-
forts to provide secure communications in appli-
cations that use SSL. Use of secure Netscape
Navigator would limit retrieval of privileged ma-
terials to those who can run Netscape. Netscape,
however, is freely available for most platforms.

While security software for the clients is
freely available, the same is not true of the
server. To operate using security features, the
Netscape Commerce Server requires a digitally
signed certificate, which is available for a fee,
probably $5,000–$10,000. In essence, the secu-
rity problem posed by this database is the oppo-
site of the problem faced by commercial transac-
tions on the Internet. Commercial applications
require information (e.g., credit-card numbers) to
be sent securely to the server. The user does not

normally care if the confirmation returned by the
server is sent securely. The database, on the
other hand, requires information to be returned
securely from the server. It would not be much
of a problem if the request for privileged material
were intercepted. (It would only inform a student
that the instructor had requested certain prob-
lems.) However, the information needs to be
sent back securely. It is not clear at present
whether everyone who needs to receive secure in-
formation has to be running on a secure server.
If so, a significant cost would be imposed on ev-
eryone. In this case, a viable alternative would
be to return solutions via e-mail using PGP en-
cryption.

7. Responsibilities of the
Participant

The responsibilities of the participant in the
database depend on whether privileged or unprivi-
leged access is requested, and whether information
is to be made available (“published”) or just re-
trieved.

• For unprivileged retrieve access, no work
is necessary beyond running the database
browser.

• To publish on the database, the participant
will have to tell the administrator where
the relevant files are located. The adminis-
trator will also need ftp access to this

site (anonymous ftp will be sufficient).

If privileged information (e.g., solutions)
is to be published, it must be encrypted
with the public key of the database admin-
istrator before being put in a public place.

• To retrieve privileged information, the par-
ticipant must have in place software to de-
crypt the information. This could either
be incorporated into a secure Web browser
or be PGP decryption software used on
privileged information returned encrypted
in e-mail.

8. Plan of Action

The first phase in constructing the database
will be to bring up the unprivileged part. The
software is very similar to that used in tech-re-
port browsers; one of these is currently under
construction at NCSU. If privileged information
is desired during this first phase, it will have to
be obtained by sending e-mail directly to the au-
thor of the problem in question.

–6–

In this first phase, students will be retained to
program “stanzas” to parse the published files
into problems (and later, solutions), and insert
them into the database. These stanzas are short
scripts that can identify the beginning of a prob-
lem, and the beginning of a solution.

The second phase will involve secure trans-
mission of privileged information. Funding will
be obtained to acquire commercial security mech-
anisms, if necessary. Software to send encrypted
e-mail will be written. A “secure client” will
also be written, if necessary.

9. Benefits of the Database

Availability of the database will provide a
host of benefits and opportunities for further re-
search. First, it will save time for instructors,
allowing more time for research and contact with
students. It will tend to raise the quality of
homework and exams, since instructors will be
able to obtain access to good problems developed
by others. Instructors will be able to concentrate
on making up just a few good problems in their
area of expertise, rather than devise all of the
homework for a course every time it is taught.
Problems within the database could serve as
source material for textbook authors; the contrib-
utor of a problem should, however, control the
usage of that problem for commercial purposes,
possibly negotiating royalties for its inclusion in
a text.

This project opens several new vistas for fu-
ture work. Instructors can keep track of whose
materials they reuse most frequently; eventually,
software may even be devised to keep such tallies
automatically. This may suggest possible col-
laborators for work on developing future courses
or course materials. Also, instructors can be en-
couraged to report which problems or other mate-
rials they have actually reused. Counts can be
kept, presumably automatically, and in the not-
too-distant future, awards could be given to the
most-reused materials. This could be one ap-
proach to the problem of devising quantitative
measures for accomplishment in teaching.

One might characterize the “style” of an in-
structor by the problems (s)he reuses. Do teach-
ing styles tend to fall into certain categories? Do
certain styles receive higher student evaluations
than others? Is it possible to predict what prob-
lems an instructor will be most interested in
from the problems he has used in the past? If so,
such problems could be displayed first in the
browser.

The tenet of reuse has long been respected in
hardware and software architectures alike, even
when honored in the breach. The time is ripe to
apply this principle not only in what we are
teaching about, but also in how we go about
teaching.

References

[Fox 95] Fox, Edward A., “World-Wide Web
and computer science reports,”
Comm. ACM 38:4, April 1995,
pp. 43–44.

