
A simulated system for teaching computerarchitecturePaolo Corsini and Luigi RizzoDipartimento di Ingegneria dell'Informazione, Universit�a di Pisavia Diotisalvi 2, 56126 Pisa�Phone +39-50-568533 { FAX +39-50-568522email fp.corsini,l.rizzog@iet.unipi.itAbstractThe evolution of computers has led to the current generation of powerful, RISC-basedworkstations. These systems are often rich of interesting architectural features andperipheral devices. Very often, they also run multitasking,multiuser operating systemswhich make almost complete use of the available hardware.This makes it very hard to use these systems for the lab classes of a computerarchitecture course, to show how to deal with peripherals and mechanisms such asinterrupt and memory protection. In fact, working on these subjects almost unavoid-ably means breaking, thus loosing, a lot of the support provided by the operatingsystem, not to mention the possibility of wiping out data from the storage devices.In order to overcome these di�culties, and to be able to support the teaching ofcomputer architecture with signi�cant experiments in a controlled environment, wehave developed a simulated computer system running under Unix. The simulatedsystem consists of CPU, memory and its peripherals, and has a complete interruptmechanism which permits the study of advanced techniques for peripheral manage-ment and other operating system's issues. The simulator runs on a variety of Unixplatforms, both with and without a windowing system. The paper describes the ar-chitecture of the system and shows some examples of its use.1 IntroductionAn important part in a course on computer architecture deals with the various mecha-nisms which are present in a computer for handling peripherals, such as I/O instructions,interrupts, privilege levels. In order to support the teaching of these subjects, it is usefulto make experiments and show in practice the correct way of using these mechanisms.�This work has been developed as part of a joint didactical program between the \Dipartimento diIngegneria dell'Informazione dell'Universit�a di Pisa" and IBM Italia1



The hardware platforms to be used for these experiments should be the workstationswith RISC processor and Unix operating system that are and will be increasingly availablein the nineties. However, the variety of di�erent models, the general lack of documentationon their architecture, the low visibility, from the user point of view, of base mechanisms(I/O instructions, interrupt and protection) which are in use by the operating system,make it hard to use these systems in lab classes, without having to interact too much withthe details of the operating system. This is undesirable, as a lab session is usually moreproductive if the following conditions are satis�ed:� the student should concentrate himself on the problem under study, rather thanbeing distracted by implementation details;� the experiment should be easy to monitor;� the experiment should be non trivial, whenever possible, in order to be more inter-esting. This means, for example, that we should not limit ourselves to turn on alight or exchange a few character strings with a terminal.To this purpose, we have developed a simulated environment that runs on common Unixworkstations, and allows the student to experiment on signi�cant aspects of computerarchitecture, up to the writing of a complete multitasking kernel, without incurring in allthe problems indicated above.Our approach, i.e. using a simulated environment, has several advantages over the useof bare hardware. We have already cited the problem that usually exist in getting detaileddocumentation on the hardware structure of a modern workstation. Even if these detailsare known, we must keep in mind that computers are generally made with very 
exiblecomponents, whose capabilities are only partially exploited in a given experiment (not tomention the fact that sometimes it is even necessary to use special care in order to getaround bugs or \undocumented features" of the hardware).Even from the software point of view, the knowledge required to put hands on an ex-isting operating system kernel is well beyond the one available to the average user, and theintricacies which are present in a real system are not suited to didactical purposes. Oursystem explicitly hides all the programming details that are not relevant to the experimentbeing carried on, giving a simpli�ed view of the machine and allowing the user to concen-trate on the signi�cant parts of the problem. Besides, an important advantage of using asimulated system is the ease with which peripherals can be added/removed/modi�ed tomake new experiments.The ability to monitor the experiments plays an important role in lab sessions. Playingwith low level features of the hardware reduces our control over both the system and theprogram, while the chance of software crashes grows considerably. With our system, all2



the experiments actually occur in a simulated environment, so that it is much easier tomonitor their evolution, and the system is much more robust to programming errors.An important aspect we want to emphasize is to show that all the architectural as-pects of a system can be explored without recurring to the Assembler language, powerfulbut too low level and very cryptic in modern RISC processor [3, 7]. Rather, the samethings can be done by using a high level language such as C, together with a very smalllibrary of functions (just seven in our example) which encapsulate the instructions thatcannot be written directly in C and deal with I/O interfaces and interrupt and protectionmechanisms.A �nal consideration should be done about performance. Our simulator is programmedin C; user programs are compiled using the system's compiler, and are run at full speedby the system's processor. Thus, the penalty of simulation is only incurred when dealingwith I/O devices: other activities can fully exploit the speed of the system, making thesimulator useful even for building larger experiments.The environment described in this paper is part of a series of didactical tools devel-oped by the authors and used to support the teaching of digital circuits and computerarchitecture. These include SYNCONET [2], a graphic program which shows the synthesisof combinational circuits using Karnaugh maps and prime implicant charts; SSCSSC [1], atool for the simulation and synthesis of combinatorial and sequential synchronous circuits;POPC, to supports the synthesis of microprogrammed systems; and EBx86, a shell whicheases the use of assembly language on MSDOS PCs.The software described in this paper has been tested on several architectures and Unix-like operating systems, including AIX, Ultrix, FreeBSD, Linux. The user interface in thegraphic version of the program is based on the Tk/Tcl toolkit [8].2 System ArchitectureStudents are presented a system with the structure shown in Figure 1. As can be seenfrom the �gure, the user's workstation is logically split in two parts: the host system andthe target system. The host system inherits all the features (hardware, software) of theworkstation; the target system is a nude computer fully available to the user. Host andtarget are connected by means of a special (simulated) piece of hardware called host-targetinterface.The target is made of a processor with interrupt capabilities, a memory space and anI/O space where a set of peripheral interfaces have been mounted; these include a timer,some serial communication peripherals and a disk subsystem. The simulated hardwarecan be con�gured at run time to include a number of interfaces of each kind, and withlittle programming e�ort other interface types can be added to the simulator.3
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Function Description Privilegedcli() disable interrupts Yessti() enable interrupts Yestrap(interrupt type) invoke software interrupt Noiret() returns from interrupt Yesclp() enter user state Yesout(io addr, expr) out to I/O space Yesvariable=in(io addr) input from I/O space YesTable 1: The C interface of the extended instructionscurrent privilege level is determined by the state of a privilege 
ag. In privileged state, allinstructions can be executed; in user state, only a subset of the instructions (non privilegedinstructions) can be executed. The processor can also accept asynchronous interrupts, ifthe interrupt 
ag is set. The instructions that manage the interrupt and protectionmechanisms, and the two I/O instructions, are not directly accessible to the programmer,but are encapsulated into library functions included in the development system. The Cinterface of these functions is listed in Table 1, and their use will be illustrated in the restof this paper.At system startup, the processor starts in privileged state and remains in this stateuntil the clear privilege flag instruction is executed. The clp() function encapsulatesthe clear privilege flag instruction. There is no explicit way to raise the privilege 
ag(and thus enter the privileged state): the only possibility is to execute the trap instruction,encapsulated in the trap() function, which will enter privileged state and transfer controlto an appropriate handler.2.1.1 InterruptsThe normal 
ow of execution can be interrupted by external events coming from peripheralinterfaces. We assume that the processor has a su�cient number of interrupt lines, whichcan be globally enabled or disabled depending on the status of an interrupt 
ag. Also,we assume that each I/O interface which generates interrupts is labeled with an 8 bitidenti�er (interrupt type), which is used to choose an appropriate handler to be executed.The interrupt type is held in a register of the interface, which sends its content to theprocessor when the interrupt request is accepted. The interrupt type is used by theprocessor itself as an index in a table (interrupt table) containing the handlers' entrypoints. The interrupt table is mapped in memory and can be accessed and modi�ed inprivileged state only. Accesses to the interrupt table are unde�ned in user mode.5



Software interrupts of any type, and some hardware exceptions (generated internallyby the processor) are also possible; in these cases the execution proceeds as with exter-nal interrupt processing, i.e. the processor switches to privileged state before startingexecution of the pertinent handler. A typical hardware exception is generated when theexecution of a privileged instruction is attempted while the processor is in user state.The sti() and the cli() functions presented in Table 1 encapsulate the privilegedinstructions for setting/clearing the interrupt 
ag (thus enabling/disabling the processor toaccept interrupt requests). The trap() function encapsulates the instruction for softwareinterrupt.2.2 MemoryMemory is seen as a single, linear space, with no management mechanisms such as pagingor segmentation, and almost no protection: the only exception is the interrupt table, whichis accessible only in privileged state1 Being inherited from the real memory system of theworkstation, the size and location of memory in the addressing space is not at a �xedaddress. This does not constitute a problem, however, because the compiler allows theuser to access memory with symbolic names. A special portion of the memory space isdedicated to the interrupt table; it resides in a memory area which can be accessed onlyin privileged state, and is disabled in user state. This is the only kind of protection whichexists in the memory subsystem.2.3 InterfacesPeripheral interfaces are mapped into a private addressing space (I/O space) and accessedby invoking the in() and out() functions (that encapsulate the homonymous instruc-tions). The in() function reads a byte from the speci�ed I/O address, while the out()function writes the speci�ed byte expression to the speci�ed I/O address.Each interface consists in a set of registers, whose number and functions depend on theparticular interface. In our system, all interface are able to generate interrupts, and thushave a TYPE register which identi�es the actual handler to be executed upon interrupt.Accessing the registers of the interface may causes the latter to react accordingly to itsspeci�cations.Several interfaces can be con�gured in the system, depending on the user's needs. Inthe following, we will describe the interfaces which are supported by the current versionof the simulator.1Depending on the CPU and OS of the workstation where the simulator is run, certain memory areas(such as code and constant data) can be write protected.6
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RxINT_ENABLEFigure 3: Serial interface registers2.3.3 Disk interfaceIn the earlier days of computing, interfacing to disk drives and other mass-storage deviceswas complicated by the need of using the main processor to control all the details of theoperation of the device. The most time critical functions were performed in hardware(e.g. serial/parallel conversion), but other functions, such as seeking to the right cylinder,waiting for the appropriate sector to come under the head, and checking for the correcttransfer of data were performed, in part or completely, by the main processor. In recentyears, however, all the details of dealing with the hardware have been masked o� by thecontroller embedded on disk drives [4], so that the main processor has little more to dothan asking the drive to read/write to a given cylinder/head/sector and waiting for theoperation to complete.Our model of the disk subsystem re
ects this way of operating; thus the registers ofthe disk interface are those shown in Figure 4: a few registers are used to select the activecylinder/head/sector, while an additional register is used to ask the interface to performa speci�c command (write or read a sector).Writing a sector involves �lling the registers (CYLINDER L, CYLINDER H, HEAD, SECTOR)with the appropriate values, issuing the WRITE command via the CONTROL register, andtransferring 512 bytes (the new content for the sector) to a bu�er internal to the diskcontroller. This data transfer is achieved by outputting every byte into the DATA registerof the disk interface. The controller will then start writing on the media and signal thecompletion of the operation to the interface, which in turn sets the READY bit in the statusregister, and possibly sends an interrupt request.In order to read a sector, registers must be initialized as above, and a READ command8
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Figure 4: Disk interface registersmust be issued via the CONTROL register. The disk controller will then read the desiredsector from the media into an internal bu�er, and signal the completion of the operationto the interface, which in turn sets the READY bit in the status register, and possibly sendsan interrupt request. At this time, the content of the sector can be transferred to memoryby inputting 512 bytes from the DATA register.3 Using the simulatorStudents start using the tool presented in this paper with little knowledge about comput-ers. As a consequence, our software has a menu driven interface which assists the user inall phases. There are two version of the simulator, one aimed to alphanumeric terminals,the other which can be used from a graphic terminal running X. In both cases, the user ispresented with a main menu which shows di�erent options such as editing and compilinga program on the host, and loading, running and debugging the program on the target.System programs (editor, compiler, debugger) are invoked, when necessary, to execute thedesired functions. Care has been taken to make the system easy to use even to the �rsttime user. Thus, a variety of help screens is available during all phases of the operation,giving information on the architecture of the system, the language syntax, the availableprimitives, etc. (see Figure 5).After the simulator has been started, a lab session typically consists of the followingphases:Edit One of the system editors is invoked for the editing of an existing or a new �le. Incase of a new �le, the user is supplied a template �le in order to ease the writing ofthe new code. 9



Figure 5: The main window of the simulator on the host console while editing a �le. Pop-up menus in the main window (in background) allow the selections of various commands.A help screen is shown in foreground.Compile The system compiler is invoked to this purpose, and the user program is linkedwith all the required libraries in a transparent way.Load and execute The user program is loaded onto the target, and started on it. Whenthe program is running on the target, the host console remains active, constitutingan additional I/O device. The program on the target can communicate with thisdevice by using some library routines such as printf() and getchar().When run on a windowing system, the screen of the user workstation will show onewindow for each serial line in the target, plus one acting as the host console (Fig-ure 6). An additional window can optionally be created to show the contents ofthe internal registers of all the target's interfaces, and the status of the interruptand privilege 
ags of the target processor. The presence of this window shouldconsiderably help the user during the debugging of the program (at the expense ofa considerable slowdown in the execution of programs, because of the amount ofactivity which is done on every single I/O operation). When even this is insu�cient,a system debugger can be used for a more in-depth analysis of the user program.In order to carry on special experiments, the user might want to con�gure the targetin some special way, e.g. by rede�ning the size of the disk, or by hardwiring some of the10



Figure 6: A screen dump of a the system while running a user program on four serialports. The additional debugging window is not shown.
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serial lines of the target to physical or logical devices. To this purpose, a con�gurationmenu can be invoked which asks the disk size and geometry (cylinders, heads and sectors),the number of serial interfaces (1 to 9) and, for each serial interface, the type of deviceit must be connected to. Possible devices include a real serial line (e.g. /dev/tty01), apseudo tty which in turn is automatically connected with an xterm (e.g. xterm -displaysomehost:0), or a TCP virtual circuit on a user-speci�ed TCP port (e.g. tcp-6590).3.1 Programming examplesOne of the main purposes of our system is to emphasize that a high level language suchas C is well suited to the development of system software. User programs are thus writtenin C language. They must include a header �le (emu.h) which de�nes symbolic constantswith the base addresses of all interfaces in I/O space, and the o�set of the internal registerslocally to each interface. As an example, the address of the status register of the thirdserial interface can be expressed as SERIAL3+STATUS. The entry point of the user programmust be called boot(). The user program is started by invoking this function with thetarget in privileged state and with interrupts disabled.In the Appendix we present a couple of sample programs which show how to programour system. Program 1 shows the concurrent use of four serial interfaces and the timer.More precisely, the timer is initialized to interrupt cyclically every 10 seconds; on everyinterrupt, the handler will write the character 'x' to the �rst serial interface. Serialinterfaces 2 and 3 are programmed to interrupt on each received character: the pertinenthandler will read the character from the interface and echo it to the other interface.All of the above activities are completely interrupt driven and run concurrently on theprocessor. The main program, after initializing the interfaces, will lower the privilege andstarts sending lowercase letters to the fourth serial interface (this is done via a trap(),as direct access to peripherals is not allowed in user state). As the main program runsin user state, it has no direct access to the I/O instructions: thus it must use a softwareinterrupt to perform the I/O activities involved in sending a character.The second program shows a couple of trap handlers that can be used to read andwrite a sector on the disk subsystem. The two handlers can be invoked as trap(0x12) andtrap(0x13) from some library routines which perform disk I/O. They read the parametersfrom a common data area, initialize the I/O registers of the disk interface, then wait foran interrupt from the disk to signal the completion of the operation.4 Implementation detailsOur simulator is completely written in C language, and it is designed to run on Unix sys-tems. It requires interprocess communication capabilities (we use Unix or TCP sockets [6])12



and a mechanism for the noti�cation of asynchronous events (we use Unix signals). Nographic capabilities or a windowing system are required for the alphanumeric version ofthe program2. The availability of an X terminal, however, makes both the software devel-opment phase and the running of the program much more friendly, as multiple windowscan be shown on the screen at once.The simulator is actually made of two separate components, shown in Figure 7: a userprocess, which executes user code, and a system process, which simulates I/O peripheralsand the interrupt and privilege 
ags, and protects accesses to privileged resources. Thetwo processes are well separated and communicate by means of a pair of Unix virtualcircuits, which guarantee a clean interface between the two parts and allow for an easymonitoring of the evolution of the system.User programs running on the target are executed by the user process, as far as \nor-mal" instructions are concerned. Extended instructions (those shown in Table 1), areexecuted by the system process via an RPC mechanism: a message is sent to the systemprocess with the indication of the operation to be performed, and a reply is possibly re-ceived when necessary. Note that, while extended instructions are executed synchronously,they might also trigger the start of some asynchronous activity on the system process. Thisis the case, as an example, for I/O instructions, whose execution might also cause someperipheral to perform actual I/O: this is accomplished by the system process which, de-pending on the contents of the status registers, will simulate the evolution of the peripheraland execute the appropriate actions. Whenever an interface needs to generate an inter-rupt, the system process is informed, and dispatches a signal() to the user process. Thelatter receives the request and, if interrupts are enabled, requests the type to the systemprocess, and executes the correct handler for the interrupt. The performance of the systemis quite good, as there is no penalty in running programs in this system except when oneof the instructions in Table 1 is involved.5 ConclusionsWe have described the structure of a simulated computer which can be used to supportteaching of computer architecture. Our system simulates a complete computer consistingin a CPU with interrupt and protection mechanisms, and a set of common peripheralssuch as serial interfaces, a disk unit and a timer. The system can be programmed in ahigh level language such as C, while still providing full access to the low level features ofthe processor. The simulator described in this paper eases the exploration of importantareas in computer architecture, such as peripheral handling and the interrupt mechanism,and allows students to concentrate on the real problems instead of being distracted by2Of course, in this case it becomes harder to interact with the various serial lines of the system.13
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AppendixHere we present the listing of the two sample programs described in the paper.Program 1#include <emu.h>void timer_handler() {out(SERIAL1+TxDATA, 'x');iret();}void serial2_handler() {byte c;c=in(SERIAL2+RxDATA);out(SERIAL3+TxDATA, c);iret();}void serial3_handler() {byte c;c=in(SERIAL3+RxDATA);out(SERIAL2+TxDATA, c);iret();}byte data_out;void trap_handler() {sti();while ( (in(SERIAL4+STATUS) & 0x2) == 0) ;out(SERIAL4+TxDATA, data_out);iret();}boot() {cli();interrupt_vector[0x09] = timer_handler;out(TIMER+TYPE, 0x09 );out(TIMER+ TIME_L, 1000 % 256 );out(TIMER+ TIME_H, 1000 / 256 );out(TIMER+ CONTROL, 0x07); 16



out(SERIAL1+SPEED, 0x0D); /* serial1: 9600 baud */out(SERIAL1+LINE_CONTROL, 0x13); /* no par, 1stop, 8 bit data */out(SERIAL1+CONTROL, 0 ); /* no interrupts */interrupt_vector[0x02] = serial2_handler;out(SERIAL2+TYPE, 0x02 );out(SERIAL2+SPEED, 0x0D); /* serial 2: 9600 baud */out(SERIAL2+LINE_CONTROL, 0x13); /* no par, 1stop, 8 bit data */out(SERIAL2+CONTROL, 0x01); /* rx interrupt */interrupt_vector[0x03] = serial3_handler;out(SERIAL3+TYPE, 0x03 );out(SERIAL3+SPEED, 0x0D); /* serial 3: 9600 baud */out(SERIAL3+LINE_CONTROL, 0x13); /* no par, 1stop, 8 bit data */out(SERIAL3+CONTROL, 0x01); /* rx interrupt */interrupt_vector[0x60] = trap_handler;sti();clp();for(i='a';; i= (i=='z' ? 'a' : i++ ) {data_out=i;trap(0x60);}}Program 2byte buffer[512];byte head;byte sect;byte cyl_h;byte cyl_l;void disk_handler(){ sync=1;iret();}void trap_12_handler() /* disk read */{ int i;sync=0; 17



out(DISK+HEAD, head);out(DISK+SECTOR, sect);out(DISK+CYLINDER_L, cyl_l);out(DISK+CYLINDER_H, cyl_h);out(DISK+COMMAND, 0x11); /* read + int.enable */sti();while (sync == 0) ;cli();for(i=0; i<512; i++) buffer[i]=in(DISK+DATA);iret();}void trap_13_handler() / * disk write */{ int i;sync=0;out(DISK+HEAD, head);out(DISK+SECT, sect);out(DISK+CYLINDER_L, cyl_l);out(DISK+CYLINDER_H, cyl_h);out(DISK+COMMAND, 0x11); /* write + int.enable */for(i=0; i<512; i++) out(DISK+DATA, buffer[i]);sti();while (sync == 0) ;iret();}boot(){ cli();interrupt_vector[0x0A]=disk_handler;out(DISK+TYPE,0x0A);interrupt_vector[0x12]=trap_12_handler;interrupt_vector[0x13]=trap_13_handler;sti();clp();...} 18


