Use of Architectural Simulation Toolsin
Education

Pradip Bose
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
Tel: (914) 945-3478, E—mail: bose@watson.ibm.com

ABSTRACT

Thispaper presentsthe author’sexperiencein using architectural simulationtoolsintheinstruc-
tion of computer architecture courses. In particular, we devel op the notion of incrementally building
aprogrammable, trace-driven “timer” tool, for use as alearning vehicle. We show how the cycle-
by—cycle simulation output of such timers can be used to illustrate performance bottlenecks, and
how thisand other output statistics can beinterpreted to convey key design tuning issues. As part of
the overall simulationtoolkit, we also use avail able cache simulators, trace generators and other uti-
lities in illustrating key performance determinants and architectural trade—off issues.

I. Introduction:

Undergraduate or beginning graduate courses in computer architecture, such as those based on
thewell-known textsby Hennessey and Patterson [1, 2] often useasimpleprocessor, e.g. DLX [1] as
arunning exampleto develop and illustrate key machine design concepts. Projects and assignments
centered around the exampl e processor, are crafted to enabl e the student to grasp al ternate design and
optimization strategies. These assignmentsare often paper exercises; thus, for example, ahardwired
or microprogrammed control unit may be designed on paper, whichismanually checked for correct-
ness by the instructor and hisaides. Even if software simulation aids are adopted, most of the class
examples and home assignments stress|ogic design and minimization skills. Higher— evel machine
organization design and trade—off analysis methods are often not stressed adequately. Advanced
computer architecture (graduate) courses, on the other hand, deal mostly with highly technical re-
search papers, which usually examine specific, design issues and often employ complex analytical
model—based reasoning. Consequently, students are often left with agap in their understanding of

fundamental pipeline—stage level design trade—off issues. Until very recently, use of architectural
simulation tools (e.g. SPIM [2]) was not prevalent.

Thisauthor hasfound it extremely useful to use such simulation toolsin generating creative en-
lightenment among students. In this paper, we first describe (in section I1), TRISC, asimple load/
store instruction set architecture, implemented using a basic super scalar machine organization [3].
We have used this simple machine and its associated trace—driven “timer” quite successfully asan
instructional aid. Infact, for some courses, we have encouraged afew studentsto develop the timer
itself from scratch, astheir course project. Other studentshave used atimer provided by theauthor, to
study fundamental design trade—offs. In section 111, we explain the basic software structure of the
simple, parametrized timer used to study cycle-by—cycle pipelined execution states of the TRISC
machine. In section IV, weillustrate the use of timer and other related simulation toolsin explaining
fundamental design trade—off issues. We conclude, in section V, by summarizing our experiencein
timer toolkit based instruction, and speculate on future trends.

[l. The TRISC Architecture and Machine

The Instruction Set:

The TRISC architecture[3] isasimple, but extendableload/storeinstruction set, with 32 integer
and floating point registers. It has fixed fields for opcode, register specifiers and immediate or dis-
placement operands. The core | SA (instruction set architecture) consists of the following opcodes:

(A). Load instructions:

[, lu: integer LOAD, w/o update and w/ update.

Ifd, Ifd(u): floating point LOAD, w/o update and w/update
Only the integer loads are described below; the floating point |oads are the same, except that they
load a target floating point register, FRT.

Syntax:
I(u) RT, D(RA)

Semantics:

Thel(u) instruction loadsaword (32 bits) in storage from aspecified location in memory addressed
by the effective address (EA) into thetarget fixed point register, RT. For lu, the EA isstored into RA,
if RA 7~ 0. EA = sum of thecontentsof RA and D, if RA 4 0.1f RA =0, EA =D.Disal6-hitsigned
two’s complement integer, sign extended to 32 bits.

Notation:

EA =c(RA|0) + D;

RT <— M(EA);

RA <—EA; /*ifluandif RA £ 0*/

(B) Store instructions:

st, stu: integer STORE, w/o update and w/update.

stf, stfu: floating point STORE, w/o update and w/update.
Only the integer stores are described below; the floating point stores are the same, except that they
store a source floating point register, FRS.

Syntax
st(u) RS, D(RA)

Semantics:
Thest(u) instruction storesthe contents of fixed point register RSinto theword of storage addressed
by the EA. For stu, if RA 5~ 0, the EA isplaced in RA.

Notation:

EA = c(RA|0) + D;

M(EA) <— c¢(RS);

RA <—EA; /* if sstuand RA £ 0*/

(C) Functional instructions:

add, sub, mul, div: integer functional instructions, register—to—register.

fa, fs, fm, fd: floating point functional instructions, register—to—register.
Only the integer add instruction is described below; other integer functional instructions are the
sameexcept for the particular arithmetic operation. Thefloating point functional instructionsarethe
same, except that they use floating point register operands, and imply floating point arithmetic op-
erations..

Syntax:
add RT, RA, RB

Semantics:
Theinteger addinstruction addstheinteger operandsin register specifiersRA and RB, and placesthe
sum in the target register, specified by RT.

Notation:
RT <— c(RA) + c(RB) /* integer addition */

(D) Branch instructions:
b, bc: unconditional and conditional branch instructions.

Syntax:
b D

bc RC, D

Semantics:

The unconditional branch instruction (b) causesachange in program sequence by unconditionally
jumping to the target address (TA). The conditional branch (bc) tests the value of the fixed point
register specified by RC, whichisused asa count register; thebranch occursif thevalueisnon-zero,
after pre—decrementing RC. Thetarget addressis computed by adding the branch displacement D to
the program counter, i.e., the address of this branch instruction.

Notation for unconditional branch, b:
TA <— PC+ D
PC <—TA [* PCisthe program counter */

Notation for conditional branch, bc:
TA <—PC+D

RC <—RC-1

if RC#0) PC<—TA

Other instructions, like logical operations, and branches based on condition registers, are not de-
scribed here. The | SA depicted here was used to study floating—point intensive, loop—oriented ap-
plications, where conditional branchesare primarily loop—ending branches. Thecorel SA caneasily
beextended, if desired. However, wefound thisto beavery adequate corefor beginning undergradu-
ate courses, which did not go into elaborate branch prediction and resol ution schemes, for example.

The Machine Organization:

We usually use asimple, super scalar processor model. Initssimplest form (see Figure 1), in-
tended for abeginning course in computer architecture, we assume a centralized, in—order instruc-
tion fetch/dispatch process, with three functional units; a branch unit (BRU), a fixed point unit
(FXU), which processes integer arithmetic, aswell as all load/store operations and a floating point
unit (FPU). Initially, a perfect (infinite) cache model is assumed. (Later in the course, time permit-
ting, finite cache models may be used). Re—order (compl etion) buffer mechanismsto enforcein—or-
der completions (for precise interrupt support) is frequently omitted in an introductory course.
Similarly, the concept of register renaming to eliminate certain kinds of data dependencies at run—
time, isnotintroducedinitially. Wherever possible, aparticular hardwareresourceisparametrizedin
the simulation model (see next section) to enable trade—off and bottleneck analysis, which is the
main intention in using or developing such atool for class use.

| CACHE i

| Fetch/Dispatch | l/sq's
[| REG
FILE

BRU FIX FLT

Figure 1. Simple, high-level super scalar machine organization

lll. The TRISC Parametrized Timer

We usually use a classical, trace—driven, cycle-by—cycle simulation approach [5, 7] in imple-
menting a class tool, or in using one for analysis purposes. We shall not go into the details of such
timer implementation methods in this paper. The key steps and elements will be iluustrated in the
actual talk. Here, we simply show (Figure 2) a sample cycle-by—cycle output for an input trace to
illustrate the benefit of using such atool for understanding pipeline stage level cycle-by—cycle be-
havior of such machines. For example, the degree of “dlip” [6] between loads and their consuming
operations in floating point loop kernels, and its sensitivity to overall performance, can be under-
stood quite clearly from such “timeling” output.

TRISC timer cycle-by—cycle results

FIX FLT
CY-| | PROGRAM
CLE | D COUNTER _INSTRUCTION DSP|D AEPR | D EP
0 |A 00001000 L 01 00 0004
B 00001004 LF 02 01 5000 A B
1 | C 00001008 LF 03 00 0008 B C A
2 | D 00001012 FA 04 01 03 cpoBA
3 c DB A
4 |E 00001016 L 05 00 0004
F 00001020 STF04 05 7000 EFl cB D
5 |G 00001024 L 06 00 0004 FG EC B| D
6 |H 00001028 LF 07 06 5000 GH FE c| b
7 GHF E D
8 G HF
9 | I 00001032 LF 08 00 0008 HI|G F
10 | J 00001036 FA 09 06 08 I JH G F
11 | J|H G
12 |K 00001040 L 01 00 0004
L 00001044 STF09 01 7000 KL{l H J
13 L [K | H| 3
14 L K 1| J
15 L K J
16 L
17 L
18 L

STATISTICS FOR THE TIMING RESULTS SHOWN
CPl = 1.462, CPF = 9.500, FIX utilization = 1.000, FLT utilization = 0.421

Figure 2. TRISC cycle-by—cycle output

Intheabovetimer output, 'L’ standsfor aninteger |load; LF standsfor afloating point load; ' FA’
standsfor afloating point add; ’ STF standsfor afloating point store. Thetimeline output illustrates
the pipelineflow of instructions (indicated by al pahebetic|abels) through the shown functional units
(dispatcher, fixed point unit (al so theload—store unit), and floating point unit. For the parameter set-
tingsused for thisexamplerun, we show a2—i ssuemachine, with two shown positionsin thedispatch
buffer; a 3—stage load/store—cache pipe (D: decode, A: address generate; R: cache request); and a
2—stage floating point operation execution pipe (D: decode, E/P: execute/putaway). For the case
shown we seethat the effect of data dependenciesin the context of the hardware parameters chosen,
resultsin stalling of the floating point pipe.

The TRISC timer isinvoked in association with the following inputs: (a) aparameter filewhich
specifies settings of modifiable hardware parameters; (b) a program trace, generated by an instruc-
tion set simulator or some other trace generation mechanism (e.g. hand—tracing for ssmpleloop ker-
nels). It generates at least one output file, with cycle-by—cycle listing of the program execution
timeline and various processor statistics. The main timer loop looks asfollows (using aPascal nota-
tion):

BEGIN /* main program */
init_system; /* set up filesand initialize variables*/
REPEAT
print_summary;
cur_cycle=cur_cycle + 1,
cache access,
fix;
flt;
dsp;
compute_system idle; /* sets Boolean variable system_idle */
UNTIL end _of trace AND system idle;
total_cycles:=cur_cycle—1;
printstats,
close files;
END. /* main program */

Initially, the parameter fileisread in, and the systemisinitialized; The main timer loop then ser-
vices each functional pipeline unit once every cycle, and also updates the timeline output file. The
loop terminates after theinput trace has been consumed and all instructions have been emptied from
al the unit pipelines.

IV. Fundamental Issues: Tools—based Analysis

The primary use of such simulation toolsin class, is clearly in studying the fundamental trade—
offs which exist between machine organization parameters, in optimizing instructions—per—cycle
(IPC) performance. In this section we mention asimpleexampleto illustrate such use. In our experi-
ence, it is useful to encourage the students to first use analytical reasoning or “intuition” [5, 6] in
answering a“what—f” question posed in class. They arethen told to validate their reasoning viade-
tailled simulation—based analysis.

Test kernel for testing overlapped (decoupled) access—execute: The additional test case[7].

doi=1,n
c(i) = a(i) + b(i)
enddo

The corresponding TRISC machine code sequenceis:
LFU 0, 6,0x8 /* floating load of ftlt reg 0, with update of the baseint reg 6 */
LFU 1,5, 0x8

FA 0,01 /* floating add of target flt reg O; operands: flt reg 0 and 1 */
STFU 0, 4, 0x8 [* storeflt reg O, with update of the baseint reg 4 */
BC * conditionally branch back to top of loop */

L et usconsider acase, wherewe assume presence of full register renaming. L et usalso consider a
3-issue execution model, with an n—stage floating point execute pipe. In pipelined mode, the
throughput of compl eted adds shoul d be determined solely by thethreeload/storeinstructions. Since
we are dealing with asingle—ported (infinite) cache, the number of steady—state cycles per iteration
should be 3; hence, with adequate number of queue resources, cycles—per—instruction (CPl) ex-
pectedis: 3/5=0.6 and cycles—per—flop (CPF) is3.0. Unrolling theloop will not further improvethe
CPF because of thelimitationimposed by thesingle cacheport. Inadetailed timer model, thevarious
resources, such asreservation station sizes, compl etion (reorder) buffer size, renamebuffers, etc can
be varied to measure variation of cpi and cpf. If, under large extensions of buffer size ranges, the
student isunabl eto achievethe expected CPI bound of 0.6, hemay have either exposed atimer model
bug, or alimitation of some piece of the design logic, which is causing an unexpected stall in some
unit. The cycle-by—cycle output can then be used to isolate the cause of the bottleneck. Table 1,
shows an example summary of experimental timer—aided resultsfor the above loop (with and with-
out unrolling), which would be indicative of aperformance bug in the machine. In thetable, CBUF
sizerefersto the size of the compl etion (reorder) buffer and FRBF sizerefersto the number of float-
ing point rename buffers.

In addition to trace—driven timer models, other related tools useful ininstruction are: trace gen-
eration and analysis programs, and cache simulators (e.g. [4]). The former are useful in computing
various dynamic workload (i.e. application) statistics, such asinstruction frequency mix or average
basic block size. These statistics can be used by the students to correlate timer—generated perfor-
mance numbers agai nst expectationsor boundscomputed from those statistics. Cachesimulatorsare
used to compute average miss ratios and miss rates (misses per instruction) for given applications
and cache geometries. From the missrate and average miss penalty (in processor cycles), thefinite
cache effect (or cpi penalty) can be estimated by taking their product. In afull-blown timer model,
the detailed cache access pipeline is modeled as part of the timer model, along with the effects of
reload time, leading and trailing edge effects, etc. Such amodel is able to compute the overall CPI
performance much more accurately than the “averaging” method referred to above.

Table 1: CPI/CPF Variations: Addition Test Case

Vanilla Loop Unrolled Unrolled Unrolled
(once) (twice) (thrice)
CBUF CPI CPF CPI CPF CPI CPF CPI CPF
SIZE
2| 2.60 13.0 2.78 12.5 2.77 12.0
41 1.80 9.0 1.77 8.0 1.78 7.66 1.71 7.24
6| 1.20 6.0 1.44 6.5 1.38 6.0
8| 1.10 5.5 1.11 5.0 1.31 5.66 1.17 5.0
10| 1.00 5.0 1.11 5.0 1.08 4.66
12| 1.00 5.0 1.11 5.0 1.00 4.34 1.00 4.25
16| 1.00 5.0 1.11 5.0 0.923 | 4.0 0.88 3.74
20| 1.00 5.0 1.11 5.0 0.77 3.26
24| 1.00 5.0 1.11 5.0 0.923 | 4.0 0.77 3.26
32| 1.00 5.0 1.11 5.0 0.77 3.26
FRBF | CPI CPF CPI CPF CPI CPF CPI CPF
SIZE
1.20 6.0 1.44 6.5 1.54 6.66 1.47 6.22
8| 1.00 5.0 1.11 5.0 1.04 4.50 1.12 4.75
12| 1.00 5.0 1.11 5.0 0.923 | 4.0 0.88 3.74
16| 1.00 5.0 1.11 5.0 0.923 | 4.0 0.88 3.74

V. Conclusion

We have described the use of simple architectural simulation models in class instruction. We
haveillustrated how suchtool s can be used to visualize pipeline-stagelevel concurrency and perfor-
mance bottlenecks. Also, we have shown how such models may be used to validate or correct intu-
tive student reasonings about fundamental organizational trade—offs. For advanced architecture
courses, in which state-of—the-art vendor microprocessors may be studied, an available or
constructed timer tool should preferably be instrumented to mark up the cycle-by—cycle timeline
output by “stall codes’: symbols to classify various types of pipeline stall conditions. Such an
instrumented tool minimizesdiagnosistimefor isolating amodel defect or aperformance buginthe
design itself.

REFERENCES

. David A. Patterson and John L. Hennessy, “ Computer Architecture: A Quantitative Approach,” Mor-
gan Kaufmann Publishers, Inc., 1990.

. John L. Hennessy and David A. Patterson, Computer Organization and Design, Morgan Kaufmann
Publishers, 1994.

. P.Bose, “The TRISC architecture, super scalar organization and its timer,” IBM internal unpublished
document, Nov. 1991.

. K. Soetd, “The KSIM hierarchical, multi—configuration cache simulatoe,” IBM internal software;
also, Wen—Hann Wang and Jean—Loup Baer, “Efficient trace—driven simulation methods for cache per-
formance analysis,” ACM Trans. on Computer Systems, vol. 9, no. 3, pp. 222—241, August 1991.

. P.Bose, “Early performance estimation of super scalar machines,” Proc. Int’l. Conf. on Computer De-
sign (ICCD), pp. 388-392, Oct. 1991.

. W. Mangione-Smith, T.—P. Shieh, S. G. Abraham and E. S. Davidson, “ Approaching a machine ap-
plication-bound in delivered performance on scientific code,” Proc. |EEE, 81, 1166-1178, Aug. 1993.

. P.Boseand S. Surya, “Architectural timing verification of CMOS RISC processors,” IBM Journ. of
Res. and Develop., vol. 39, no. 1/2, pp. 113129, January/March 1995.

