
1

Modeling and measuring a software engineering

course software process

V. Ambriola♠  and M.L. Jaccheri♣

5/22/95

Workshop on Undergraduate Computer Architecture Education

June 19, 1995, Santa Margherita Ligure, Italy

Abstract

This paper is about software engineering teaching experiences, held at both University of Pisa and

Polytechnic of Torino. We have defined a software process model that prescribes activity, document, tool,

role, and metric issues. Following this process, students learn software engineering practices in a realistic

working context.

1. Introduction

Software engineering background material can be classified in two main categories: the

methodological part including tool support (e.g., [2] can be used as textbook) and the theoretical

mathematical based one (e.g., [1] can be used as textbook). The need of organizing a software engineering

course around a practical project stems from the following requirements: software engineering methods,

such as object oriented analysis and design, are easy to learn as they rely on few principles, but they can

be applied and consequently appreciated only if used to  manage software (and related documentation)

complexity.  The most difficult part of software engineering is the analysis phase, i.e., understanding user

                                                       

♠  Dipartimento di Informatica, Università degli Studi di Pisa, Corso Italia 40, 56100 Pisa, e-mail: ambriola@di.unipi.it, tel: 050-
887251.

♣  Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino. e-mail:
letizia.polito.it, tel: 011-5647079, fax: 011-5647099.

2

requirements and associated technical documentation. Furthermore, it is difficult and time consuming to

learn the mathematical based foundations, e.g., formal specification languages, and above all it is difficult

to motivate their application to real projects without real example application. Finally,  it is required to

relate methodological software engineering parts to theoretical mathematical based ones and vice versa.

The idea of this work is that of merging software process modeling, software metrics, and group

theories to define a working environment that is as real as possible.

This paper is structured as follows: section 2 describes the evolution of process experiments at

University of Pisa, also by assessing the various maturity levels. Section 3 is about process experiments

held at Polytechnic of Torino that have been derived from the Pisa ones. Some conclusions are given in

section 4.

2. Defining sofware engineering course software process model: University of Pisa

experience

Six  years ago, in 1989, at University of Pisa, one of the authors started the first experiment of

implementing the software engineering course as a semi-real project run. Since the first experiment,

students were asked to work in groups of five (four if total number is not compatible) persons to develop

the best requirement and design document for a toy problem. We classify the problem as toy because there

was no real customer, but the problem was thought by the teacher himself. Work was sub-divided into

requirement and design phases and at the end of each phase a winner document was chosen among those

produced by the groups. The software life cycle resembles the classical waterfall model, but without

coding and integration phase because systems must be large, so that students deal with problems of

modularization and abstraction and systems of this size cannot be coded in full details by small groups in

five months. Furthermore, programming experiences are already included in other courses in the students

curricula.

3

The software process followed by the students can be classified as initial in the CMM classification

(see Figure 1), as it was not the repetition of a previously run project, it was not defined, nor formally

measured. Competition among groups was the stimulating factor for project success.

year: 1989-90
customer: None

year: 1994-95
customer:
Cultural
Heritage
Preservation
Office

year: 1990-91
customer: Intecs

year: 1991-92
customer: Enel

year: 1992-93
customer: Bank of
Italy

year: 1993-94
customer:
Al enia

 Initial

Repeata-
ble

 Defined

Managed

Optimi-
 zing

Figure 1 Maturity levels of University of Pisa Software process model.

The evolution step from the first to the second experiment was the introduction of a real customer and

a real problem. The software process of the second experiment can be classified as repeatable as

experiences of the first experiment were reused, when possible. As displayed in Figure 1, the customer of

this process run was Intecs Sistemi. The problem consisted in specifying and designing a system for the

remote control of a robot in a satellite.

Before the third experiment was run, a process model was defined by the teacher with the help of two

master students on the basis of the experiences of the first two experiments.  The process model was given

to the students in written form as a manual. The software process model was defined by a notation derived

from data flow diagram as the process modeling languages developed by the research community (see for

example [4] ) were considered too difficult to be used by the students. The developed process model

consists of three sub-models: activity, role, and document ones, and describes both group level technical

process and project level managerial process. Documents prescribed by the model were: user requirement,

formal specification, user interface design, and architectural design document. The process model

describes which metrics have to be collected during process enaction. Metrics consist of both process and

4

product related ones. Process metrics, i.e., student work load, are not used in the process of evaluating

students. Product metrics can be divided into objective and subjective ones. Objective characteristics are

those that can be measured without human intervention, i.e., number of code lines. Subjective

characteristics, e.g., semantics inconsistencies with respect to the problem domain, require the

intervention of a human judge. Product metrics are used for student evaluation. Therefore, the resulting

process model prescribes cooperation, rather than competition, as a mean to build quality into the

developed artifacts. There are many different role types; the most important are: software engineers, that

are in charge of producing software engineering documents, e.g., design documents, a committee, that is

in charge of standardization among groups of product related issues, e.g., glossary definition, and a

council, that is responsible for standardization of process related issues, e.g., process changes.

The customer of the third experiment was Enel (the Italian electric company) and the domain problem

was an hydroelectric plant. Starting from this third experiment the process maturity level can be classified

as managed, as the process model is defined and metrics are collected with the purpose of improving the

process itself. From the fourth to the fifth experiment the defined model has been used and modified

according to the feedback received during and after process enaction. The sixth experiment is now active.

The process maturity level of this last experiment can be considered optimizing as the process model itself

also describes how, when, and by which roles the process model can be changed, also on the fly, if

particular conditions arise.

Concerning the sixth experiment it is worth mentioning that it is implemented on top of world wide

web in the sense that the process model and the related documentation is available at [5] . This is to

improve the interaction among teacher and students and to provide a constant updating of documentation.

3. Reusing sofware engineering course software process model: Polytechnic of

Torino experience

In 1993, two software engineering courses were started at Polytechnic of Torino, a basic and an

advanced one. One of the author, the teacher of the advanced course, decided to implement it as a

5

practical project on the basis of the experiments held at University of Pisa. The motivations for this choice

were the same extended with the attempt of validating the process model developed in Pisa by reusing it in

a different environment. Figure 2 shows the maturity levels of Polytechnic of Torino software process

model. Since the first process run, the maturity level can be classified as managed because the same

process model defined at University of Pisa was reused and this process model prescribes metrics

collection. For the first process run, there was no real customer and Olivetti was the customer of second

process run. We classify as optimizing  the maturity level of next process run because the process model

will also prescribe how, when, and by which roles, process change can take place. The customer will be

CSELT.

Some adjustments were done. These changes were triggered mainly by the different student

background: the Polytechnic of Torino is an engineering school and students are more used to work with

tools rather than with computer science mathematics such as the Z or Lotos formal languages.

year: 1993-94
customer: None

year: 1994-95
customer: Olivetti

year: 1995-96
customer:
CSELT

Managed

Optimi-
 zing

Figure 2 Maturity levels of Polytechnic of Torino software process model.

The software process inherited from University of Pisa was translated into the E3 [6]  notation that is a

process modeling language developed at Polytechnic of Torino for which there is automatic tool support.

Other tools that are prescribed by the Torino process model are the upper CASE Easy Case, Microsoft

Project for project management, Excel for metrics collection, Microsoft Word (with ad hoc templates), and

Power Point for presentations.

Figure 3 displays the Task Decomposition View  of the entire process model, called SeProcess that

shows, at a high abstraction level, activity breakdown and sequencing. Figure 4 gives, for the same task

SeProcess, the Task View, that describes which task input, output, responsible roles, and tools. Each

element appearing in a view, e.g., RequirementAnalysis, Merge, Design, can be further inspected by

6

opening an appropriate view. We observe that the process model, as described in E3 is generic, as it does

not include project specific information as start dates, and physical persons. Project specific information

are described by Microsoft project plans.

SeProcess

DesignMerge
Requirement

Analysis

path: SeProcess

Figure 3 The Task Decomposition View of task SeProcess in E3 .

SeProcess

RequirementDefinition
SpecificationandDesign

SeRoles
Documentation
FromUser

path: SeProcess

SeTools

Figure 4 The Task View of task SeProcess

Figure 5, 6, and 7 show the use of Excel for metrics management.

7

Product metrics: glossary usage in requirement definition and specification fo

Definition Specification

Glossary #  ref Usability
#  ref Software Bundled 3 0 U

# ref Installation Program 5 1 SB

# ref On Line help 1 0 IP

#  ref User Satisfaction 13 6 OLH

# ref Modularity 1 1 US

# ref User Protection 1 4 M

# ref Experience Level 2 0 UP

# ref Interactivity 3 21 EL

# Information Availability 1 0 I

% of terms used 0 0 IA

90% 50%

Glossary usage in Requirement Definition

U
10% SB

17%

IP
3%

OLH
44%

US
3%

M
3%

UP
7%

EL
10%

I
3%0%

Glossary Usage in Requirement Specification

0%
SB
3%0%

OLH
18%

US
3%

M
12%

0%

EL
64%

0%0%

Figure 5 Managing product metrics with Excel: glossary usage for a given group.

Requirement Definition Document

Use of
Group Glossary

A 90%
B 60%
C 30%
D 50%

Requirement Specification Document

Use of
Gruppo Glossary

A 50%
B 40%
C 40%
D 50%

Glossary Usage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

A B C D

Groups

P
er

ce
n

ta
g

e 
o

f 
te

rm
s 

u
se

d

Definition

Specification

 Figure 6 Managing product metrics with Excel: glossary usage for all groups

8

Process Metrics Ingegneria

group A

Requirement Analysis Proge

Definition Specification

# Week 1 2 3 4 5 6 7 8 9

Initial Date 16/10/94 23/10/94 30/10/94 06/11/94 13/11/94 20/11/94 27/11/94 04/12/94 11/12/94

S

M 2 5 5 5 5 10 10 23

T 5 2 5 5 8 10 15 12 24

W 5 2 5 5 9 5 5 10 25

TH 5 4 10 12 10 5 15 10

F 32 2 8 10 10

S 1 5

WL 10 11 19 57 36 38 46 62 82

WL

0
10
20
30
40
50
60

16/10

/94

23/10

/94

30/10

/94

06/11

/94

WL

0

20

40

60

80

100

1
3

/1

1
/9

4

2
0

/1

1
/9

4

2
7

/1

1
/9

4

0
4

/1

2
/9

4

1
1

/1

2
/9

4

Figure 7 Managing process  metrics with Excel: work load of a given group.

4. Conclusions

The primary aim of this work was that to improve the quality of teaching. As a side effects of this

research, software process modeling and metrics theories have been validated by applying them to student

projects. Such experiments are significant as we have computed that a process run involving

approximately one hundred students would cost almost one million dollars if students had to be paid

according to an average salary rate.

From these experiments we have learned that:

• Process modeling technologies are useful to describe software processes, but they are not mature

enough to provide support for process model enaction, nor they are integrated with CASE technology.

One future direction of this work is to improve process support.

• Metrics collection help in process model improvement, but objective metrics for student evaluation

have not yet completely been developed. Moreover, students tend to cheat when providing their own

process measurements. Product metrics are used for student evaluation. The usual subjective ways of

grading the students are not adequate to evaluate systems designed by teams of students. The search

9

for more objective ways of evaluating product quality is one of the reasons that has encouraged and is

encouraging a combined use of software process modeling, metrics, and teaching.

• Group theories help in managing projects. We have observed that competition, the dominant factor of

first project runs, is not a good software process model ingredient because students are generally prone

to competition but not to cooperation. In fact, competition is an encouraging factor, but it does not

encourage cooperation.

Bibiography

[1] Software Engineering Mathematics, J. Woodcock and M. Loomes, Pitman

Publishing.

[2] Software Engineering, I. Sommerville, Addison-Wesley, IV ed, 1993.

[3] Applying a Metric Framework to the Software Process: an Experiment, V. Ambriola et. al., Proc.

of the European Workshop on Software Process Technology, Grenoble (France), 1994,  LNCS 772.

[4] Software Process Modeling and Technology, ed. A.Finkelstein et. al., Research Studies Press LTD.,

1994.

[5] http://www.cli.di.unipi.it/Corsi/TSE

[6] E3: Object-Oriented Software Process Model Design, M.Baldi, S. Gai, M.L. Jaccheri, P. Lago, in

[4].

[7] M.C. Paulk and B. Curtis and M.B. Chrissis and C.V. Weber, Capability Maturity Model, Version

1.1, IEEE Software, July 1993, pages 18-28.


