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More than 98% of all microprocessors are found
within embedded systems. The British Department of
Trade and Industry predicts, that by the year 2010 more
than 90% of all program code will be implemented for
embedded applications. But the qualification of our
„typical“ CS (and CIT) graduates is torpedoed by
deficits of our current computer architecture education
limiting the horizon to procedural programming in the
time domain. However, meanwhile the fundamental
machine model is no more just the „von Neumann“
paradigm merely supporting an instruction-stream-
based mind set. For embedded systems the basic model
is a symbiosis between CPU and primarily data-
stream-based accelerator co-processors. Implementing
applications for embedded systems also requires
hardware / software partitioning decisions. Since
meanwhile morphware [1] [2] and Reconfigurable
Computing (RC) has become mainstream, also the
accelerators are programmable by loading configware
code downto their hidden RAM [3]. What is urgently
needed is the qualification for programming in time
(programming software) and programming in space
(programming configware). But currently the software
for the CPU is mainly implemented by software
people, whereas the accelerators are implemented by
EEs or other hardware people.

Communication problems between these two
groups of experts having different backgrounds are the
reason for the deep chasm between RC and the way,
how "classical" CS people look at parallelism [4]. The
situation is comparable to the well-known hardware /
software chasm. In education until recently RC has
been mainly the subject of embedded systems or SoC
design within EE departments, whereas most classical
CS departments have ignored the enormous additional
speed-up opportunities which can be obtained from this
field. Only a few departments provide special courses
mostly attended by a small percentage of graduate
students. Conferences like ISCA have stubbornly
refused to include RC and related areas in their scope.
Also many major players in the IT market have mainly
ignored this area. 

More recently this situation is beginning to change.
An increasing number of colleagues from the area of
computer architecture as well as from classical parallel
computing or supercomputing communities is going to
be ready to discuss fundamental issues with us [5] [6]
[7]. Last year, Intel Research at Hillsboro, Oregon, held
a major internal workshop on RC. It has been told, that
also Microsoft has held an internal workshop on this
area. Other major players already joined this
movement, like Hewlett Packard, IBM, infineon,
Motorola, Sony, ST microelectronics, Texas
Instruments, Toshiba, and many others. Accordingly a
major break-through also in CS education and CAE is
overdue. All scientific know-how ingredients needed
are available - ready to be integrated in CS curricula:
software / configware co-compilation [8] [9], software
to configware migration [10] [11], mapping
applications onto morphware [10] [11] [12] [13],
architectural resources for data-stream-based anti
machines [14] [15], and many others. Not only FPGAs,
but also coarse grain data path array platforms are
available commercially, along with application
development tools [16].

It is time to take these promising opportunities to
upgrade our CS curricula by converting programming
and software engineering into a duality of software
engineering and configware engineering, based on the
co-existence of two machine paradigms, the classical
instruction-stream-centered model of the CPU, and, the
data-stream-based anti machine model, being the direct
counterpart of von Neumann. Because of this duality of
basic models the configware / software chasm can be
easily bridged without requiring hardware and circuit
expertise from our CS graduates.

This new road map is based on the duality of an
instruction-stream-based mind set, and a data-stream-
based mind set [1] [4] [15] [17]. Not only the HPC
community urgently needs to benefit from a curricular
revision, but also the rapidly increasing percentage of
programmers implementing code for embedded
systems. However, most CS graduates are not qualified
for this changing labour market. With their procedural-
only mind set they cannot cope with hardware /
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configware / software partitioning. To avoid a disaster
for future CS graduates looking for their first job, CS
departments have to wake up. Here we have a good
chance to become successful trailblazers by forming a
RC old boys' network together with colleagues from
"classical CS", organized like the Mead & Conway
movement more than 20 years ago [18].
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Abstract

In this paper, we present the new curriculum of the pro-
cessor laboratory of the Department of Computer Sci-
ence at the University of Tokyo. This laboratory is a
part of the computer architecture education curricu-
lum. In this laboratory, students design and imple-
ment their own processors using field-programmable
gate arrays (FPGAs), and write the necessary software.
In 2003, the curriculum of the laboratory was changed,
the main change being that the FPGA was changed to
a large one to increase the range of design trade-offs.
As a result, students have been enabled to implement
the techniques used in modern processors such as FPU,
cache, branch prediction, and superscalar architecture.
In this paper, we detail the new curriculum and note the
educational results of the year following the changes.
Especially, we focus on the educational advantages of
the large FPGA size.

1 Introduction

In architecture education, understanding existing archi-
tectures and acquiring skills to design new architec-
tures are important goals for the students. Typical ar-
chitecture education curriculums include both lectures
and laboratories to achieve the goals. Concerning the
lectures, architecture educations based on quantitative
approaches are established using popular text books
such as one written by Hennessy and Patterson [1].
However, students cannot acquire skills to design new
architectures from just lectures. Laboratories are nec-
essary to train students how to design new architec-
tures.

For that reason, the processor laboratory [2] was in-
troduced in the Department of Computer Science at the
University of Tokyo. The laboratory started in 1992 as
a part of the computer architecture education curricu-
lum. In the laboratory, junior students design and im-
plement processor systems using FPGAs. They build
entire computer systems including processor architec-
ture and software. The laboratory’s main goals for the

students are:

1. To precisely and concretely learn the internal
structure and behavior of processors

2. To acquire a sense of trade-offs in processor archi-
tecture design

3. To experience the trade-offs involved in an entire
system including software and hardware

The first goal is important because being familiar
with basic processor structure is important for a good
understanding of architecture techniques. The second
goal is important because selecting an optimal architec-
ture under a given condition is the most important topic
in designing computer architecture. The third goal is
important for understanding how the performance of a
computer system is affected by each of its various parts.

The first goal cannot be completely achieved from
just lectures because omitted structures of processors
are explained in typical cases. Even when all the sig-
nals in a processor are shown, it is hard to explain
changes of signals when each instruction is executed.
On the other hand, when students implement their own
processors in the laboratory, they can more precisely
and concretely understand the behavior of all the inter-
nal signals of processors.

In lectures, a limited part of the second goal is
achieved when the targets of trade-offs are detailed by
the lectures. Furthermore, some parts of the trade-off
conditions are often ignored to simplify the problem.
However, when the students design their own archi-
tectures in the laboratory, they can experience a wide
range of real trade-offs.

The third goal is not achieved in lectures because it
is hard to precisely model the trade-offs of an entire
system. On the other hand, when students build whole
systems of their own including software and hardware,
they experience real trade-offs in respect to entire sys-
tems. Especially, they can learn how to divide functions
between hardware and software.

Because FPGAs are used in the laboratory, students
can immediately run the processors they have designed.



Therefore, students can try many design alternatives to
experience trade-offs of the architecture and of the en-
tire system.

The curriculum of the processor laboratory was
changed in 2003, the main purpose being to increase
the range of architecture design trade-offs students can
experience. Therefore, we changed the FPGA used in
the laboratory to a large one.

In the previous curriculum, 5K-gates FPGAs were
used. Therefore, though students learnt many archi-
tecture techniques in lectures, most of the techniques
could not be implemented in the laboratory because of
the FPGA size limitation. For example, it was impossi-
ble to implement techniques used in modern processors
such as FPU, cache, branch prediction and superscalar
architecture. 1M-gates FPGAs are used in the new
curriculum; therefore, students can implement most of
the techniques learnt in lectures as long as they have
enough development power. In this paper, we present
the details of the new processor laboratory curriculum
and the educational results of year following the intro-
duction of the changes. Especially, we focus on the
educational advantages of the large FPGA size.

In Section 2, we explain both the previous and the
new curriculum in the processor laboratory of our de-
partment. Section 3 shows the educational results of
the past year in the laboratory. In Section 4, we present
related works, and Section 5 concludes the paper.

2 The Processor Laboratory Cur-
riculum

2.1 Previous Curriculum

Until 2002, Xilinx XC4005, a 5K-gate FPGA, was used
in the processor laboratory. Students were divided into
groups of five or six members. The goal of the labora-
tory was to run a ray tracer on students’ original pro-
cessor systems as fast as possible.

Each group builds a processor system board, an ex-
ample is shown in Figure 1. Wrapping wires are used
for connecting the components. The processor was
implemented on an XC4005 FPGA. Total of 256KB
SRAMs and 128KB ROMs were available to imple-
ment the memory system. The processor board could
communicate with workstations via uPD71051 serial
I/F. This serial I/F was used for scene data input and
image data output of the ray tracer running on the pro-
cessor board. The students were entirely responsible
for the design of the architecture of their processor, the
memory system, and the I/O system on the board.

The software tools were also made by the students
themselves. Each group developed a runtime library,
a cross assembler, a simulator, and a cross compiler
for the processor system. The runtime library included
communication routines of the serial I/F and floating
point calculation primitives.

Figure 1: Example of a processor board used in the
previous curriculum

The main advantages of the previous curriculum
were (1) students could build and understand the entire
system, and (2) they could learn what functions should
be implemented using hardware when hardware size is
limited. However, because of the FPGA size limitation,
students could not implement most of the architecture
techniques they learnt in lectures.

2.2 New Curriculum

The curriculum of the processor laboratory was
changed in 2003; the main purpose being to enable
students to implement most of the architectures they
learnt in the lectures, something that was not achieved
in the previous curriculum. The main change was to
increase the FPGA size; thus, the Xilinx XC2V1000, a
1M-gates FPGA was introduced.

However, the change of the FPGA meant that build-
ing “a whole system” was no longer possible. This is
because dedicated system boards are used for the lab-
oratory and students are not required to wire compo-
nents. When the components are wired using wrap-
ping wires, the resulting circuit cannot operate at
enough clock speed for the new FPGA. Furthermore,
pin pitches of modern chips are too fine to be wired by
hand. Therefore, we gave up making the students wire
the boards by themselves.

The new system board is shown in Figure 2. The
FPGA board includes an XC2V1000 FPGA, total 4MB
of synchronous SRAMs, 128MB PC100 SDRAM, and
USB I/F. An extension board is used for implementing
additional I/O circuits by hand. In the laboratory last
year, most groups implemented 7-segment LED arrays
on the extension boards for debugging.

In a contest at the end of the semester, students
present the processors they have made in the labora-
tory, and the performances of the processors are evalu-



Figure 2: The new curriculum processor board

Figure 3: Output image of the new ray tracer

ated using a benchmark program. The benchmark pro-
gram is an extended version of the ray tracer used in
the previous curriculum. The output image of the new
ray tracer is shown in Figure 3. Xilinx ISE6.1i tools are
used for processor design. Table 1 shows comparisons
between the previous and new curriculums.

previous new
FPGA XC4005 XC2V1000

(5K gates) (1M gates)
memory SRAM SSRAM

(256KB, 100ns), (4MB, 100MHz),
ROM SDRAM
(128KB, 100ns) (128MB, PC100)

I/O uPD71051 FTDI245(USB),
etc.

Table 1: Comparisons between the previous and new
curriculums

3 Educational Results

3.1 Design Result

In 2003 in the processor laboratory, the first year of the
new curriculum, 6 groups designed processor systems.
Table 2 shows the results of each group. The score is
the execution time of the ray tracer measured in the end
of semester contest.

As shown in Table 2, all groups implemented float-
ing point units, and two groups implemented caches,
important for the performance of modern processors.
Implementing these techniques would have been im-
possible in the previous curriculum. Figure 4 shows a
block diagram of the processor designed by group 1 [3]
in Table 2.



group Clock score features
No. (MHz) (sec.)
1 50 35 FPU, pipeline

I-cache, D-cache
2 50 45 FPU, pipeline

I-cache, D-cache
3 40 178 FPU
4 12.5 548 FPU
5 50 641 FPU
6 50 N/A FPU, pipeline

Table 2: Contest results of each group
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Figure 4: Block diagram of group 1’s processor

In addition, 2 senior students voluntarily designed
processors during the past year. One student imple-
mented a processor with dynamic instruction schedul-
ing using Tomasulo’s algorithm. The other student de-
signed a 2-way chip multiprocessor architecture. Fur-
thermore, another two students are now voluntarily de-
signing 4-way superscalar, and SIMD architectures, re-
spectively, by extending processors they designed in
the laboratory. Since these processors require many re-
sources, they could not have been implemented using
the FPGA of the previous curriculum.

3.2 Achievement of Educational Goals

Understanding Processor Structure In both the
previous and the new curriculums, most of the students
succeeded in implementing complete processors. This
result shows that they gained an understanding of the
structure of operational processors. Therefore, both
curriculums successfully achieved this goal.

Acquiring a Sense of Architecture Trade-offs As
detailed in Table 2, students successfully implemented
FPUs and caches under the new curriculum. Further,
the large FPGA enabled some eager students to im-
plement more challenging techniques such as Toma-
sulo’s algorithm, chip multiprocessor architecture, su-
perscalar architecture, and SIMD architecture. None

of these techniques could have been implemented us-
ing the FPGA used in the previous curriculum. There-
fore, the new curriculum enabled students to experi-
ence wider ranges of trade-offs than in the regime of
the previous curriculum.

Learning Trade-offs of Entire System As described
in Section 2, board wiring is unnecessary in the new
curriculum because a dedicated system board is used.
Therefore, in the new curriculum, some of the trade-off
conditions of the processor system are fixed; whereas
in the previous curriculum, the processor board was
fully designed and wired by students. In this respect,
the previous curriculum was better than the new one.

4 Related Works

To the best of our knowledge, the processor labora-
tory of our department [2] has instituted the first cur-
riculum in which students design and implement their
own processors using FPGAs. Though there are many
ideas using FPGAs for computer architecture educa-
tion, most curriculums fully or partially specify the ar-
chitecture that the students learn [4][5][6]. Our cur-
riculum, though, allows students themselves to decide
the architecture they will implement. Because all the
necessary software is also made by the students them-
selves, instruction sets and execution models are not
restricted. Therefore, students can experience a wider
range of design trade-offs than usually possible.

In an idea described by Gray [7], students learn ar-
chitecture trade-offs through modifying a given proces-
sor to improve the performance. However, because the
baseline architecture is specified in this situation, the
range of trade-offs is limited.

The CITY-1 framework [8] is similar to our curricu-
lum in that students design their own processor archi-
tecture. However, some reference implementations are
presented to induce students’ ones. On the other hand,
our curriculum encourages students to construct their
own architecture without any guiding model.

5 Concluding Remarks

In this paper, we presented our department’s newly in-
troduced processor laboratory curriculum. The labo-
ratory is a part of students’ computer architecture ed-
ucation; whereby in the processor laboratory they de-
sign and implement their own processors using FPGAs.
Students also write the software necessary for the pro-
cessors.

The main purpose of the curriculum change was to
enable students to implement most of the architecture
techniques they learned in lectures; thus the increased
FPGA size. In the new curriculum, 1M-gates FPGAs
are now used, compared to the 5K-gates FPGAs used



previously. The result is that students can now expe-
rience a wide range of trade-offs. In the laboratory,
students really implemented modern techniques such
as caches and FPUs which could not have been im-
plemented under the previous curriculum. The large
FPGA size is certainly useful for teaching architecture
design trade-offs.

The main drawback in the new curriculum is that stu-
dents cannot design the whole system because the sys-
tem board has been pre-wired. In this respect, the pre-
vious curriculum was better; though to improve this sit-
uation, from this year, we will have students construct
serial I/O circuits.
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Abstract

Although embedded systems have been around for
quite a long time, just in recent years they have at-
tracted major industry and academic interest. There
is a perception that a computing paradigm shift is tak-
ing place, and so the need to provide computer science
students with the required expertise in the field. In
this paper we describe our experience of using a recon-
figurable computing platform throughout a number of
courses. By doing so we allow students to get acquired
to embedded systems concepts and practices under dif-
ferent contexts in the normal curriculum. The applica-
tion of this strategy have allowed considerable gains
for students taking embedded system courses, research
projects in the field, and also professional activities.

1 Introduction

In recent years embedded computing has emerged as
the new paradigm for the design and implementation of
modern computer systems. They consist in the fastest
growing market share for computing products, already
accounting for the largest number of systems being de-
ployed [15]. In terms of total revenue, they should also
overtake desktop-based systems in just a few years.
Typical examples of embedded systems include digital
cameras, mobile phones, automotive control devices,
and medical equipment, among others.

As it happens during any technology shift period,
skills shortage can be a problem as the current curricu-
lum may not address the whole set of issues involved.
The range of skills required for embedded systems de-
sign encompass knowledge about hardware devices,
computer architecture, microprocessor, and high-level
language programming, among others [17]. Although
these topics are adequately taught in Computer Science

and Engineering courses, students tend to see them as
isolated units, with little relation to embedded systems.
We believe that reconfigurable computing [6] can be
used as a platform for teaching all of those subjects,
and also to expose students to some of the main con-
cepts and practices in that field.

In this paper we describe our experience on how
teaching computer architecture and related courses us-
ing reconfigurable computing allows students for a bet-
ter understanding of key concepts involved in embed-
ded systems design and implementation. The remain-
ing sections discuss related technologies and concepts
(2), the platform and tools employed by our courses
(3), and how key concepts related to embedded sys-
tems are inferred from those disciplines (4). That sec-
tion also describes how this strategy paves the way for
research projects based on embedded systems. Finally,
the last section (5) brings the conclusions of our expe-
rience and future directions.

2 Embedded Systems and Recon-
figurable Computing

An embedded system can be described in general terms
as an application specific system implemented using a
programmable processor, usually integrated with other
hardware devices such as sensors and actuators [4]. As
opposed to desktop-based systems, embedded systems
are designed to deliver the expected functionality and
performance for one (or just a few) task, usually be-
ing part of a larger system. Key characteristics often
required in such systems include real-time constraints,
low-power consumption, and low-production cost. An
important design decision is the so called hardware-
software partitioning, defining the tasks that will be
executed by an ASIC (Application Specific Integrated
Circuit), or a software programmable microprocessor.



The latter approach can be done using off-the-shelf
devices, typically a microcontroller, or developing a
SoC (System-on-Chip), with reusable IP (Intellectual
Property) components. It should be noticed that the
semiconductor industry is shifitting towards SoCs, as
pointed out by the latest version of the International
Technology Roadmap for Semiconductors [9].

An alternative to those approaches is to use recon-
figurable computing [6], a technology based on repro-
grammable integrated circuits, nowadays commonly
known as FPGAs (Field Programmable Gate Arrays).
FPGA based systems allow performance levels compa-
rable to those based on ASICs, but with advantages of
on-site reprogrammabilty, and a shorter development
cycle. Those are key attributes to deal with changing
requirements, and time-to-market pressures, respec-
tively.

In the addition, there are some evidences that the
transistor count for FPGAs may be experiencing a
higher growth rate than microprocessors, being com-
parable to the one observed for memory logic. As a
result, at some point it may be possible to build FPGA
based systems that are more complex than micropro-
cessors. An evidence of this trend has been recently
produced by Xilinx, with the announcement that in
the near future it will make available devices topping
the one billion transistor mark [19]. It should also be
noticed, however, that FPGAs are still considerably
slower and consume more power than ASICs, which
still prevent their use in some scenarios.

3 Teaching Platform

.
As already said, key concepts and practices for em-

bedded systems design are often taught in a number
of courses with little relation, at least from the stu-
dent’s perspective. For this reason, we have adopted
an FPGA based platform as a core component for those
disciplines, in a attempt to encourage a ”think embed-
ded” attitude among students. The use of an FPGA
platform to teach computer architecture and related
disciplines has been adopted by many courses, some-
times employing supporting tools specially designed
for that (e.g. [16]). However, to the best of our knowl-
edge, it has not been adopted with the specific goal of
enabling students to practice embedded systems con-
cepts within other courses.

The choice for a reconfigurable computing platform,
as opposed to other alternatives, was mainly due to the
following reasons:

� It does not constrain the student to a particular
microprocessor architecture or simulation tool;

Figure 1: Kit Nios Stratix Edition

� It accommodates a wide range of complexity lev-
els, from simple logic blocks to a complete SoC
implementation;

� It allows students to get acquired with EDA (Elec-
tronic Design Automation) and high level pro-
gramming language tools.

The adopted teaching platform is based on Altera
FPGA development boards, in particular the UP2 and
Nios Stratix Edition. The UP2 [3] is a low cost board
composed of reconfigurable hardware, with a capacity
of 70K gates. It also includes I/O devices and output
monitoring capabilities.

The Nios Stratix Edition [1] is more sophisticated,
consisting of a FPGA with 1M gates, RAM and Flash
memory modules, and support for Ethernet and RS232
communication (Figure 1). The board also comes with
Nios, a 32-bit RISC softcore processor, which can be
easily synthesized into the FPGA. This processor has
has a five-stage pipeline, with independent buses for
data and instructions, respectively. It also allows for
the implementation of custom instructions, a desirable
feature to improve the performance of time critical sec-
tions of code. It is also possible to design logic to gain
access to external resources such as memory and I/O
devices. All these features have proven to be valuable
in the teaching process.

The Quartus-II EDA tool is used during all phases
of an FPGA based project, either with the UP2 or the
Stratix board. In these phases are included design,
compilation, timing analysis, simulation, and chip con-
figuration. Projects are organized as modules, which
facilitates reusing them. Modules can be defined by
a schematic design, or using hardware definition lan-
guages. The languages currently supported are Ver-
ilog, VHDL, and AHDL. Programming the Nios RISC
processor is carried out with an integrated tools chain,
which includes the GnuPro C compiler, an assembler,
and a debugger.



MemoryNios

FPGA

MemoryNios

Hardware
Custom

FPGA

MemoryNios

FPGA

inst B
inst A
modified

a) CPU+ Memory b) CPU + Custom HW + Memory c) CPU w/ custom instructions + Memory

Figure 2: Embedded system architecture scenarios for laboratory practices.

For the students, working on the design of sys-
tems including both hardware and software implemen-
tations have shown to be a key element to tackle em-
bedded system concepts. The teaching projects they
are exposed to are previously designed, implemented
and tested, which allows for the generation of tem-
plate files to be used by students. By doing so, they
are prevented from spending time on repetitive tasks,
common to most practices, and can concentrate on the
important aspects of the work.

4 Main Courses and Activities

In this section we describe the main courses of the
computer science curriculum that have adopted the
reconfigurable computing platform presented in Sec-
tion 3. As seen in Figure 2, during those courses stu-
dents can work with embedded systems under three ba-
sic architecture scenarios: a) the simplest one, consist-
ing of a CPU and memory modules, b) using custom
hardware blocks to improve performance of key sec-
tions of the application, and c) modifying the softcore
CPU to include custom instructions.

Considering that the basic contents of those courses
are homogeneous and well know among academic
staff, we concentrate only on those details that are rel-
evant to teach embedded systems concepts and prac-
tices. Please also notice that, for the sake of general-
ity, the actual name of those courses may differ from
the ones listed in the next section. A particular feature
of some of those courses is the availability of on-line
exams, using the EDA tool they became acquired to.
Students are given a set of requirements and asked to
design a circuit to meet the specification. As an exam-
ple, they are asked to design a circuit to generate the
signals corresponding to a given vector signal. The so-
lutions are then sent electronically to tutors, in order to
be marked. A poll among approximately one hundred
students have shown that over 80% of them thinks the
methodology is better than traditional ones.

4.1 Digital Systems
This topic is taught in two courses, introducing stu-
dents to basic elements of digital system abstractions,
such as gates, flip-flops, building blocks, binary arith-
metic, multiplexing circuits, and so on. The Quartus-II
EDA tool presented in Section 3 is used to implement
simple lab practices to gain insight on the actual struc-
ture, behaviour, and interaction of those components.
More complex assignments include the design and im-
plementation of an ULA (Logic-Arithmetic Unit), and
memory units. All projects are simulated, debugged
and written to an FPGA, making possible for the stu-
dent to understand timing and synchronization issues.

As an example, we have an assignement consisting
in the design of bus-based communication interface to
be implemented as an FPGA SoC. In this project stu-
dents are asked to create a finite state machine for the
implementation of a communication protocol. This has
an appropriate complextiy level for a second course on
digital logic, allowing students to work on structures
such as fifo queues, memory, registers, etc., in order
to build the design shown in Figure 3. Issues related
to communication networks such as bus contention,
priorities, and transmission delay are also introduced,
paving the way for more elaborated projects in com-
puter network courses (Section 4.6).

4.2 Computer Organization

Computer Organization refers to the main units that
compose a Von-Neumann machine, i.e., ALU and con-
trol unit, memory, register file, and buses [14]. The
students can build a basic working system using Ver-
ilog or VHDL, starting from a simple instruction set
architecture, and then expanding the ISA with other
instructions. This is a particularly useful experience as
the use of custom blocks (or instructions, when possi-
ble) is an effective way to execute performance sensi-
tive tasks. Student designs are implemented and tested
into the FPGA platform, which in practice gives them
a feeling of a running embedded system. By doing so
we allow them to practice some key concepts of em-
bedded system design without the overhead of a new
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introductory course on the subject.

4.3 Computer Architecture
The theory part of this course concentrates on the usual
topics such as microprocessor and pipeline organiza-
tion, memory hierarchy, interconnection to I/O de-
vices, etc. During the lab activities, students are asked
to expand the CPU design of the Computer Organi-
zation course, using pipelining techniques to enhance
performance. This helps to give them a better under-
standing on the differences that can be found between
CPUs, even when they implement the same instruc-
tion set. This knowledge can be used to better eval-
uate functionality, performance, and power consump-
tion when choosing a CPU for a given embedded ap-
plication [7].

In this course students have their first experience
with the Nios softcore processor. Simple applications
are implemented in C language, to be executed in the
FPGA CPU implementation (Figure 2a). Then, key
sections of code are implemented with custom logic,
along with the additional code to switch processing
and communicate data between the Nios CPU and the
FPGA hardware blocks (Figure 2b). Comparing the
performance results from both implementations is a
good way for students to learn why hardware-software
partitioning is such an important step of embedded sys-
tems design.

4.4 Compilers

The typical one-semester compiler course tend to
spend more time on front-end concepts, as little time
is left for back-end design and implementation. How-
ever, on a second course (usually at the graduate level)

code generation and optimization techniques are the
main focus, bringing compilers closer to computer ar-
chitecture. We use the rich set of microprocessor
architectures for domain-specific embedded applica-
tions to illustrate how code generation techniques can
take advantage of that to improve performance dra-
matically [11]. We also use the FPGA platform for
some practices aiming to create custom instructions
for the Nios processor (Figure 2c), and then modify
the GnuPro compiler to target those new instructions.
The experience also helps students to have real evi-
dence of a real-world aspect: that useful architecture
feature may be difficult to unlock for the application
code. Evaluating the quality of the tools chain can be
as important as doing so for the architecture itself.

4.5 Operating Systems

Introductory operating systems courses tend to be gen-
eral, not biased towards domain specific concepts.
However, we do try to relate aspects such as interrupts,
concurrency, scheduling, I/O and the device drivers to
the lab platform students are getting used to. Some
simple practices are designed to show the effects of
not having an embedded operating systems running on
the background, which is usually taken for granted on
the desktop environment they are more familiar with.
This experience may help students to understand what
to look in the multitude of embedded operating sys-
tems available [10]. Those practices also help to intro-
duce a new concept to them: code size, which can grow
very quickly with the addition of their custom ”operat-
ing system”. We are currently working on a Nios port
for eCos (embedded Configurable operating system),
an open-source, configurable O.S. for embedded sys-
tems [8]. Once it is done we will be able to work with
more elaborated practices, and also research projects.

4.6 Computer Networks

Computer network courses comes in all shapes and
flavours depending on the course orientation. Some of
them concentrates on high level abstractions, being the
Internet an ubiquitous example. Others concentrate on
fundamental aspects, such as the OSI model or wire-
less protocols. Laboratory practices varies according
to the chosen emphasis, and whenever possible we of-
fer a choice of practices on an embedded system sce-
nario. One example is a project aiming to implement
a network connection between two FPGA based SoCs,
letting for the student the use and customization of the
required protocols. That can be made on top of existing
implementations, such as an Ethernet core described in
VHDL. A related research project under development
refers to the integration of ethMac [13], an Ethernet



Figure 4: SoPC Builder: A tool for SoC design and implementation.

MAC (Media Access Control) core designed for im-
plementation of CSMA/CD LAN in accordance with
the IEEE 802.3 standards. The ethMac Verilog code
can be integrated with a Nios CPU and other softcore
devices, to create a complete SoC with the required
functionality.

4.7 Embedded Systems Design

We offer specefic courses on embedded systems design
at both, undergraduate and graduate level. Students
enrolling in the introductory undergraduate course
clearly benefit from the previous experience of devel-
oping several small projects on a embedded platform.
By doing so we can concentrate on the real issues of
embedded systems design such as CPU architecture,
and coding more sophisticated applications using high
level languages [4]. It should be noticed that some an-
alysts estimate that the software of embedded systems
account for 80% of the total cost of development [9].
We give special attention to the later as there is a clear
shift in embedded system design from low-level as-
sembly implementations to the use of C or C++ lan-
guage. That is not only due to productivity reasons, but
also due to the emergence of complex architectures,
such as VLIW [18], that can only be fully exploited
by using optimizing compilers specifically targeted to
them [11].

The introductory course uses the FPGA platform de-
scribed in Section 3, and also DSP microcontrollers,

such as the Motorola DSP56800 family. The graduate
courses concentrate on SoC design, using the Altera
SoPC Builder (Figure 4), a tool specially aimed at the
design and implementation of SoCs on programmable
chips [2]. Projects are defined according to the appli-
cation areas of our research programs, which includes
robotics, computer architecture, control and automa-
tion, among others.

5 Interaction with Research

As already stated, the increasing capabilities of the
hardware and software currently employed for embed-
ded systems design also results in a growing interest
from academic research initiatives. That can be the
case in either basic research, or applications. In our
department we have projects in both areas. As an ex-
ample of research on basic aspects of embedded sys-
tems, we have a project called Architect-R. Its aim is
to build a tool for automatic generation of hardware
and software components to implement systems for
robotics [12]. Research on specific applications in-
clude implementations of multimodal interfaces, such
as voice and gestures recognition systems. These can
be used in a number of domains such as robotics, vir-
tual reality, etc. As an example, the system shown in
Figure 5 consists of a CMOS camera connected to an
FPGA, which implements a RAM-based neural net-
work to recognize hand gestures [5]. This embedded



system shown to be robust, is able to meet real-time
constraints (processing rate of 30 frames per second),
and has a high efficiency in the recognition process.
In addition, it also has on-chip training capabilities, a
desirable functionality enabled by the reconfigurable
hardware.

 

Figure 5: An embedded gesture recognition system

We have been following a number embedded sys-
tems research projects (Master’s level) in our institu-
tion. Some analysis allow us to conclude that students
that have been through those courses described in Sec-
tion 4 are considerably more comfortable to work in
this area than those that have not (typically coming
from other institutions). Obviously a successful re-
search project depend on other factors as well, but the
learning curve to tackle basic concepts and practices
of embedded systems is clearly reduced by using the
approach described in this paper. We believe that grad-
uates going to industry are also better equipped to start
solving problems in the field. That has been confirmed
to us when receiving some informal feedback from for-
mer students.

6 Conclusions

We have described our experience of teaching embed-
ded systems to undergraduate and graduate students
using a reconfigurable computing platform (FPGAs).
Our goal was to devise a strategy to shift (or at least
balance) the emphasis from desktop based to embed-
ded computing, but without overloading the current
curriculum. After some years of developing and ap-
plying the methodology, we understand that satisfac-
tory results have been achieved. That is based on
the increased interest from students to follow research
projects related to embedded systems, the improved
performance of graduates in this domain, and also
some feedback from former students working in the

industry. We are still working to improve practice as-
signments, and also the coordination with the theoret-
ical contents of those courses, trying to accomodate
teaching priorities.
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Å&��ÈoÄ���Ë¢×°ë9È�Ê}��ÔÕ��Ë����F�fÉ�È õ È��9Ëj�)Ä��9Ê�Èg��îÏÔn��É¾ÙU�h�µ�Ð���Ñ��É¢È
ÔÕË9�fÈ�ÊfË¢Å�ÆFÄ��9ÙUíF��Ë¢È�Ëh�f�y×jÔ©��Å�Ç�ÆnÈR×���Ä�Å�Ë;ÇgÈ¸Ö�í�ÆÕ�9Å�×�Èo×��9Ë9�f�
��É¢ÈÇg�hÅ�Ê}×§�9ÊpÅ�Æn��ÈoÊ�Ë¢Å���ÔÕë�ÈoÆnÚ&�9Ë�ÈÏ���F��É¢È���fÉ�È�Ê���������� �y Ð¡
Ä��9Ê�ÈR�K�FîÏÉ�Ô©Ä}É´É¢Å¤ë9È§ÇFÈ�È�Ë¹ÙU�j×jÔ0�¢ÈR×��³��Ê¸��É¢È ÇF�9Å�Êf×��^Ä�Å�Ë
ÇFÈ)Ö¢��ÈR×Ñð

�ml+k ÆuÇ��1�/��}/tovrÈÉp,~���}��6zc�]�#v�|�p,xMÀ^Â¤���h�
ß1�u��É¢È õ Èo��Ëj�lÄ���ÊfÈpÔ©�Ñ�³Ö�ÆÕÆnÚ&Ã   ß¸ô � ë þ Ä���Ù°í�ÆÕÔÕÈ�Ëh�V�R��É¢È�ÊfÈ
Ô©�Å°Ä}É���Ô©Ä�È����D��È�ë�ÈoÊfÅ�ÆÑ×jÔ��^È�ÊfÈ�Ëh��9ígÈoÊfÅ���ÔÕË�éU��Új�µ�fÈ�Ù��l�³�9Ê
��É¢È¹ÇF�9Å�Ê}×Ñð
ôJè ö Ø¹ÃÝîÏÔÕÆÕÆ1ÇFÈ¹Ö¢��Èo×(îÏÉ�ÈoÊ�È¹Ôk�;Ô©�²Ë¢ÈoÄ[�
Ä�ÈR���fÅ�ÊfÚÒ�f�ÒÉ¢Å¤ë�È�Å�É¢Å�Êf×��cÊfÈoÅ�Æn�@��ÔÕÙUÈ+��íFÈ�Ê}ÅB�fÔnË¢é���Új�µ�fÈ�Ù
Å�Ëg× õ ÔÕË�ÖjìÒîÏÔnÆÕÆÐÇFÈ+Ö¢��ÈR×-Å��UÅ�Ù°��ÊfÈ;é9È�Ë�ÈoÊfÅ�Æ�í�Ö¢Ê�íF�9��È
��íFÈ�Ê}ÅB�fÔnË¢é´��Új����È�Ù�ð´ôJè ö ØLÃ%ÔÕ� Å�ËÒ��íFÈ�Ë-����Ö¢ÊfÄ�È�Ê�ÈRÅ�Æn�
��ÔÕÙ°È��c��íFÈ�Ê}ÅB�fÔnË�é��c��Új�µ�fÈ�Ù Í�ôJè ó Ã�ÎÐ×jÈR��ÔÕé�Ë�ÈR×��³�9ÊyÈoÙ§ÇFÈo×��×jÈR×���Új����ÈoÙ°�Lûk÷ þ ücð Ìc�¾É¢Å9�²Ù Ö�Æk�fÔk�}Å�����ÔnË�éÝÄ�Å�í¢Å�Ç�ÔÕÆÕÔk�fÔnÈR�
Å�Ëg×�ÔÕ�   ó Ã�ÌS¼�÷ ÿ�ÿ ��ðÕ÷�Ç�Ä��9ÙUí¢ÆnÔÕÈ�Ëh�oð�Ìc�°Å�Æ©����ÉgÅ��§��Ö�íj�
íF��Ê��u�³��ÊJè �y  �BÌ   Å�Ë¢×)��É�È * Þ ¡ ������Æ©��È��WÄ}ÉgÅ�ÔÕË;Í³ÔÕË¢Ä�ÆÕÖ¢×��



ÔÕË�é§Ì�Ã ó ��ß1Þ�Ã�Ì � Å�Ë¢×�Ì�Ã ó �Bß1Þ�Ã�Ì �®Ê�Ê Î[ðWÌc�Ï��Ö�í¢íg�9Ê��}���È�ë�ÈoÊfÅ�Æ9×jÔ0�^È�ÊfÈ�Ëh�A�gÆnÈR��Új����È�Ù���ÔnËgÄ�ÆÕÖ¢×jÔÕË�é�)jßDè®���g�!)jßDè�÷ ý
Å�Ëg×&Þr)DÃ)Å�Ë¢×&Ä�Å�Ë&Ä��9Ë�Ë�ÈoÄ��u�f� * Ó��(Í * ËhÖUÓ1ÈoÇ�Ö�é�ÎÑ�Bë�ÈoÊ
È��fÉ�È�ÊfË�È����ÊÏ��ÈoÊ�Ô©Å�ÆÑíF��Ê��oð
Ã�È�ë9È�Ê}Å�Æ¢×jÔ0�^È�ÊfÈ�Ëh�ÐíF��Ê��f����� õ ÔÕË�Öjì°îÐÈoÊ�ÈÙ�Å9×jÈ�³�9Êp��É¢È

õ Èo��Ëj��Ä���ÊfÈÅ�Ë¢×���É�ÈR��È1Å�Ê�ÈÏË¢�BîÝÇFÈ�ÔÕË�é&Ù°ÈoÊ�é9Èo×°ÔÕË9�f�)��É¢È
Ù�Å�ÔÕË²ÆÕÔnË�Öjì¡��ÈoÊ�Ë�ÈoÆ��fÊ�ÈoÈ ûn÷Vf¤ücðDß1�y��Ö¢Ä}É6�9Ôn�ÐÔ©��íF�9�f��ÔnÇ�ÆÕÈÏ�f�
Ä��9Ë��¢é9Ö�Ê�È¸Å�Ë¢×²Ä���Ù°í�ÔÕÆnÈ�Å)ÆÕÔnË�Öjì���ÈoÊ�Ë¢È�Æ^��Ö�Ôn�fÅ�Ç�ÆÕÈ�³��ÊÐÖ¢��È
��ËL��É¢È²Çg�hÅ�Ê}×Ñð°Ìc�§Å�Æ©����É¢Å9���³Ö�ÆÕÆÐ��Ö�í�íF��Ê������Ð�fÉ�È * Þ ¡
�����9Æk�¨Ä}É¢Å�ÔÕËãð

�ml+� Ë©|rÌ��U�A}/toxIv��#�[pm�UxMÇ��
èlÉ�È#��ÈoÅ9Ä}É�ÔÕË�é�ÇF�9Å�Ê}×��¹í�Ê��Bë�Ô©×jÈ#����Ö¢×�È�Ëh�f�LîÏÔk�fÉ
��É¢Ê�ÈoÈ
¼ �n��¥����f~B�j�F�B£)�³��Êl�fÉ�È�ÔÕÊÏÈ�ìjíFÈ�ÊfÔnÙ°È�Ëh�}Å�ÆÑîy��Ê^�Fñ

ò   Ê��������µÚ�í�ÔÕË�é°ßÊfÈoÅU�Y)¢��ÊÏîÏÔÕÊ�È��@îÏÊ}Å�í¢í�ÔnË¢éUÌ � Ä��9ÙU�íF��Ë�ÈoËh�f�
�f��ÔÕËh��È�Ê���Å�Ä�È Æn�9é�Ô©Ä ÔÕË ��É�È�£�~�ª}�Y¶ »u¼ ½
  ¼ ¢ · ð

ò ôÏÈRÄ��9Ë��¢é�Ö¢ÊfÅ�Ç�ÆnÈ��¸Å�Ê}×jîlÅ�ÊfÈ �Í)��9Ê ��������� �y Ð¡ �V�
õ ��é�Ô©Ä!�WØ�È�Ù°�9Ê�Ú%Ø´Å�Ë¢Å�é�ÈoÙUÈoËh�V� � Å9Ä}É�È��¨Ä��9É�È�ÊfÈ�ËgÄ�È
  Ê������jÄ��9ÆÕ�lÅ�Ëg×;Ù Ö¢Ä}É¾Ù°�9Ê�È9ð

ò Ì¨Ëh��ÈoÊfÄ���Ë�Ë¢ÈoÄ[�fÔnË¢é��Ð�hÅ�Ê}×��^îÏÔn��É Ã � ÌF�^Ó1Ô0�FÈoÊ�ÈoËh�WÃ � Ì��Å�Ç�Ê�Ô©Ä;Ä���Ë��gé�Ö�Ê}ÅB�fÔn�9Ë¢�)ÔÕË6Ä��9ËBêµÖ�Ë¢Ä���ÔÕ��Ë-îÏÔn��É6Æn�9é�Ô©Ä
ÔÕË+��É�È&ôÏÈRÄ��9Ë��¢é�Ö¢ÊfÅ�Ç�ÆnÈ¨�1Å�Êf×�îyÅ�Ê�È9ð

Ì¨Ë Å�Ë ÈK�F�9Ê��¹���>ÔÕË¢Ä�Ê�ÈRÅ���ÈÒ��É�ÈÝ��Ú�Ë�ÈoÊ�é9Ú>���²ë¤Å�Ê�ÔÕ��Ög�
É¢Å�Êf×jîlÅ�ÊfÈ&ÊfÈ�Æ©ÅB�fÈo×¹��Ö�ÇjêµÈRÄ[�}�¸���p��É¢È � �9ÙUí¢Öj��ÈoÊ)Ã�Ä�ÔÕÈ�Ë¢Ä�È
Å�Ëg× � �9ÙUí¢Öj��ÈoÊ ö Ë�é�ÔÕË�ÈoÈ�ÊfÔnË�é+��Ú�ÆÕÆÕÅ�Ç�ÔJîÐÈ°ÔÕË¢Ä��9Ê�íF��Ê}ÅB�fÈo×
Å���Ù�Å�Ë�Ú��³ÈRÅB��Ö¢Ê�È�Å���Ë�ÈRÄ�ÈR���fÅ�ÊfÚ+����È�Ë¢Å�Ç�ÆÕÈU����Ö¢×�È�Ëh�f���f�
ÔÕË¢Ä�ÊfÈ�Ù°È�Ëh�}Å�ÆÕÆnÚ+Ç�Ö�ÔÕÆÕ×´��Ë´í�ÊfÈ�ë�ÔÕ��Ö¢�È�ìjígÈoÊ�ÔÕÙ°È�Ëh�fÅ�ÆuÈ�ì�íFÈ��
ÊfÔnÈoË¢Ä�È9ðºÌc�;Ê�ÈoÙ�Å�ÔÕË¢�U���ÒÇFÈ´��ÈoÈ�ËÝ���ÒîÏÉgÅB�²È�ì��fÈ�Ë¢×6��É¢È
Å�ÄoÅ�×jÈoÙ°ÔÕÄÐ�µ�}Å���ÔnË ��É¢Èy×jÈoí¢Å�Ê���Ù°ÈoË9�}�WîÏÔnÆÕÆjÅ�×�Å�íj���fÉ�Èy�³ÈoÅ��
��Ö¢Ê�ÈR��í�Ê��Bë�Ô©×jÈo×¹Ç�Ú���ÈRÅ�Ä}É�ÔÕË�é+Çg�hÅ�Ê}×���ÔnËL��É�ÈoÔnÊ&Ä���Ö�Ê}��Èo�oð
èlÉ�È©�gÊf���¾��È��;����í�Êf���f���µÚ�íFÈ  y� �l��îÏÔÕÆnÆ�ÇgÈ¹Ù°Å�Ë�Öj��Å�Ä��
��Ö¢Ê�ÈR×+Å�Ë¢×¾íg�9í�Ö�Æ©ÅB��ÈR×+îÏÔk�fÉ�ÔnËh��Èoé�Ê}ÅB�fÈo×;Ä�ÔnÊ}Ä�Ö¢Ôk�}�ÏÔnË ó Ä�����9ÇgÈoÊ�� ÿ9ÿ úgð²èlÉ�È;��Ö�Ç¢��ÈV�hÖ�È�Ëh�§Å9Ä�Å�×�È�Ù°ÔÕÄUÚ9ÈoÅ�Ê)îÏÔÕÆÕÆ�ÇFÈ
Ö¢��Èo× ����×jÈ�Ç¢Ö�é>�fÉ�È(É¢Å�Ê}×jîlÅ�ÊfÈ6Å�Ë¢× ×jÈoë�ÈoÆn�9í����¸Ó õ
Ù°�j×jÈ�Æ©�U�³��Ê°�fÉ�È�Ê�ÈRÄ���Ë/�¢é�Ö�Ê}Å�Ç¢ÆnÈ¾É¢Å�Ê}×jîlÅ�ÊfÈ�ð6èlÉ¢È�Å9Ä�Å��
×jÈoÙUÔ©Ä�Ú�ÈRÅ�Ê[� ÿ�ÿ ù��!� ÿ�ÿ�ý îÏÔnÆÕÆÔÕË9�fÊ��j×jÖgÄ�È���É¢È�Çg�hÅ�Ê}×-�f�
Ö�Ë¢×�È�Êfé�Ê}Å�×jÖ¢Å���Èl�µ�fÖ¢×jÈoË9�pÔÕËU��É�È��ÈoÄ���Ë¢× Ú�ÈRÅ�Ê � ��Ù°í�Ö���È�Ê
ßÊ}Ä}É�Ôn��ÈRÄ[��Ö¢Ê�È)Ä��9Ö�Ê}��È9ð
èlÉ�ÈD�³��ÆÕÆÕ�BîÏÔnË�élÆÕÔÕ���ué9Ônë9Èo�ÑÅ�Ë)È�ì�Å�Ù°í�ÆÕÈD���h��É�ÈpíF���fÈ�Ëh��Ô©Å�Æ

Å�í¢í�ÆnÔ©Ä�Å���ÔÕ��Ë¢�&���l��É�È;Çg�hÅ�Ê}×LÔÕË���É¢È � ��Ù°í�Öj�fÈ�Ê Ã�Ä�ÔÕÈ�Ë¢Ä�È
Ö�Ë¢×�È�Êfé�Ê}Å�×jÖ¢Å���È�×jÈ�é9Ê�ÈoÈ�ñ

ò Ì¨Ëh��Êf�j×jÖ¢Ä���ÔÕ��Ë¾��� � ��Ù°í�Ö���ÔÕË�é
ò Ó¸Ôné9Ôk�}Å�Æ õ ��é9ÔÕÄ�Ó1ÈR��ÔÕé�Ë
ò Ã�Új����ÈoÙ°�   Êf��é�Ê}Å�Ù°Ù°ÔÕË�é
ò � �9ÙUí¢Öj��ÈoÊßÊ}Ä}É�Ôk�fÈoÄ���Ö�ÊfÈ�Ì���Ø�Ô©Ä�Êf��í¢Ê��jÄ�ÈR������ÊÏÃ�Új����fÈ�Ù��

ò � �9ÙUí¢Öj��ÈoÊßÊ}Ä}É�Ôk�fÈoÄ���Ö�ÊfÈ�Ìp� � �9ÙUí¢Öj��ÈoÊßÊ}Ä}É�Ôk�fÈoÄ���fÖ�Ê�È
ò � �9ÙUí¢Öj��ÈoÊßÊ}Ä}É�Ôk�fÈoÄ���Ö�ÊfÈ�Ì�ÌÐ�I"L�9Ê��j���fÅ���ÔÕ��Ë¢�
ò � �9ÙUí¢Öj��ÈoÊ ö Ë�é9ÔnË�ÈoÈ�ÊfÔnË¢é
ò Ã�Új����ÈoÙ°�¸Ã������µîlÅ�ÊfÈ1� ó íFÈ�Ê}ÅB�fÔnË¢é�ÃjÚ�����ÈoÙ��
ò � �9ÙUí¢ÔnÆÕÈ�ÊÓ¸Èo��Ôné9Ë¾Ì�Ì

Î Ï ä â x�Ðoæ�sWç�ä â s

èlÉ�Ô©�lí¢Å�íFÈ�ÊÅ�Ê�é9Ö�Èo���³��ÊÅ°��ÔnË¢é�ÆÕÈ¸Ù Ö�Æk�fÔk�cí�Ö�ÊfíF�9��È¨)  ,* ß
Ç¢Å9��ÈR×°ÆÕÅ�Çj�@ÇF�9Å�Êf×UîÏÉ�Ô©Ä}É�í�Êf�Bë�ÔÕ×jÈR�J�³ÈoÅ���Ö�ÊfÈo�Ð��Ö¢Ôk�}Å�Ç�ÆÕÈ�³�9Ê
��É¢ÈLÈoË9�fÔnÊfÈ¹ÉgÅ�Ê}×jîyÅ�Ê�È¹Ê�ÈoÆÕÅ���Èo×>��Ö�Ç�êµÈoÄ[�}�+��� � ��Ù°í�Ö���È�Ê
ÃjÄ�ÔnÈoË¢Ä�È¹Å�Ë¢× � ��Ù°í�Ö���È�Ê ö Ë�é9ÔnË¢È�È�ÊfÔÕË�éÒÖ�Ë¢×jÈoÊ�é9ÊfÅ9×jÖ¢Å���È
Å�Ëg×OíF�9����é9ÊfÅ9×jÖ¢Å���È��µ�fÖ¢×jÈ�Ëh�}��ð Ìc�´îlÅ���×jÈoÙ°��Ë¢����Ê}ÅB�fÈo×
��ÉgÅB�LÊfÈoÄ���Ë��gé�Ö�Ê}Å�Ç�ÆÕÈÒÉ¢Å�Êf×jîlÅ�ÊfÈÒË����L��Ë¢ÆnÚ
Å�ÆÕÆÕ�Bî����É¢È
��Ú�����ÈoÙ �f�#�9ígÈoÊfÅ���È�Ö�Ë¢×�È�Ê¾Å#ÊfÅ�Ë�é�È����&��������� �y �¡ �V�ÏÔn�
Å�Æ©���;í�Êf�Bë�ÔÕ×jÈR��fÉ�È°Ù°ÈoÅ�Ëg�1�f��ÆnÈ��)����Ög×jÈ�Ëh�f��È�ì�íFÈ�ÊfÔÕÙUÈoËh�
îÏÔn��É-�fÉ�È�ÔÕÊU�BîÏË-��Ú�Ëh��É�ÈR��Ô©��Èo×u�¸Ó õ Ù°��×�È�Æ©��ð¤)�Ö�Ê���É¢È�Ê��
Ù°��ÊfÈ���É�È§É¢Å�Ê}×jîlÅ�ÊfÈ¸ÔÕÙ°í�ÆnÈoÙ°È�Ëh�fÅ���ÔÕ��Ë����W��É¢È&ÆnÔÕË/�+ÆnÈoë�ÈoÆ
í¢Å�Ê������p�fÉ�È;ÂÑ|}�B�n�9���n{ » ~o��{���{��¢�l¯[�¢�¨{��³ª���|}{��@Â » ¯ � ���fÅ�Ë��
×�Å�Êf×>��É�Êf��Ö¢é�É�Ä���Ù°Ù°�j×jÔn�µÚ>Ä��9ÙUíF��Ë¢È�Ëh�f��ÔÕË
Ä���Ë�êµÖ�Ë¢Ä[�
��ÔÕ��Ë%îÏÔn��ÉÒÅ�Ë¤)  Y* ß ÔnÙ°í�ÆÕÈ�Ù°ÈoË9�}ÅB�fÔn�9ËL���ÐÉ�ÔÕé�É�ÈoÊ)ÆnÈoë�ÈoÆ
í�Êf���f��Ä���Æ�Ù�Å�Ë¢Å�é�ÈoÙUÈoËh�+Å�Ëg×OÄoÅ�Ä}É�È�Ä��9É�È�ÊfÈ�Ë¢Ä�Ú(í�Ê��������
Ä��9ÆÕ�¸È�ËgÅ�Ç�ÆÕÈo������Ö¢×jÈoËh�f�¸���¾Ç�Ö�ÔÕÆÕ×%Å�Ë¢×¹È�ìjíFÈ�ÊfÔnÙ°È�Ëh��îÏÔk�fÉ
X§~��¢¶ ½ �¢� ª�~B�[«�
¹{�«�~B�[¥ · |}|}{[£}£��\X ½ 
 · � Å�Ë¢×º|}��|}��{�¶
|}~o�¢{���{��¢�hX ½ 
 · �¨|}|^X ½ 
 · � Ù§Ö¢Æk�fÔní�Êf�jÄ�ÈR������Êu��Új�µ�fÈ�Ù��oð
èlÉ�È õ Èo��Ë3��������� �y �¡ Å�ÆnÆÕ�Bî�¾��É�ÈÒ��Új�µ�fÈ�Ù ���ÝÈ�ìjÈRÄ�Öj�fÈ
õ ÔÕË�Öjì´Å�Ë¢×¹ôWè ö Ø¹ÃU�F��É¢È�ÊfÈ��³��ÊfÈ&í�Êf�Bë�ÔÕ×�ÔnË�é¾Å ¡ Ë¢Ôkì�ÆÕÔ0�9È
é�ÈoË�È�Ê}Å�Æ�í�Ö�Êfíg�h��È¾��íFÈ�Ê}ÅB��ÔÕË�é¹��Új�µ�fÈ�Ù Å�Ë¢×#Å�É¢Å�Ê}×��cÊ�ÈRÅ�Æn�
��ÔÕÙ°È§�9ígÈoÊfÅ���ÔÕË�é;��Ú�����ÈoÙ�ðßÆÕÆ��fÉ�Èo��È)�fÉ�Ê�ÈoÈ Ä���Ù°íg�9Ë�È�Ëh�}�
õ Èo��Ë1� õ ÔnË�Öjì�Å�Ë¢×+ôJè ö Ø¹Ã+Å�Ê�È���íFÈ�Ë�����Ö�Ê}Ä�È�îÏÉ�Ô©Ä}É�Ê�È��
×jÖ¢Ä�Èo�1��É�ÈUÄ��h�µ�1���D��É�È°��Ú�����ÈoÙ ��ÔÕé�Ë�Ô0�gÄ�Å�Ëh��ÆÕÚ+Å�Ë¢×�Ù°��ÊfÈ
ÔÕÙUíF��Ê��fÅ�Ëh��ÆÕÚÒé�ÔÕë�Èo�°����Ö¢×�È�Ëh�f��Å9Ä�Ä�ÈR���§���%�fÉ�È�É¢Å�Ê}×#Å�Ë¢×
�������U����Ö¢ÊfÄ�È;Ä��j×jÈ9ð õ Å9�µ� Ç�Öj�°Ë����UÆnÈRÅ����U����Ö¢×jÈoËh�f� Ù°Å¤Ú
îÏÔÕÊ�È��@îÏÊ}Å�í°Å�Ù°ÔÕÄ�Ê��9í�Ê��jÄ�Èo�f���9ÊJ��Új�µ�fÈ�ÙÛ��ËU��É�È1í�Ê��������µÚhí��
ÔÕË�é&Å�ÊfÈoÅ�Å�Ëg× �9ígÈoÊfÅ���Èl�fÉ�ÈÏÌ � Ä���Ù°íF��Ë�ÈoËh�f�DîÏÔn��É�Å)���������
�y �¡ ���^��É�ÈoÔnÊ�Ä}É¢��Ô©Ä�ÈÏÇ�Ú ��îÏÔk�}Ä}É�ÔÕË�é���É�È¸��������� �y �¡ ����Új���
��ÈoÙ Ç�Ö¢�pÔnËh��ÈoÊ���Å9Ä�ÈÐ�³Ê��9Ù
��É¢Èm�yÊfÔÕ×�é�È��S)  Y* ß#������É¢Èyí¢Ê����
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Abstract

This paper presents the use of the ArchC Architec-
ture Description Language (ADL) as a support tool
for computer architecture courses. ArchC enables
students to perform several experiments using its au-
tomatically generated SystemC simulators, covering
topics from simple single-cycle (functional) models
to pipeline and memory hierarchy simulation. We
show how instructive may be the process of modeling
a processor using an ADL and suggest several possi-
ble exercises, following the course development struc-
ture presented in the classical Hennessy and Patter-
son’s computer architecture didactical book. More-
over, we report how the experience of assigning stu-
dents to study and to model modern embedded archi-
tectures has provided good results on an undergrad-
uate computer architecture course at IC-UNICAMP.
The simplicity and flexibility of the ADL, along with
its simulation features, proved to be an useful tool not
only for research, but also for computer architecture
education.

1 Introduction

Architecture description languages (ADL) have been
introduced to help designers face the development
challenges that have arisen in the past few years, due
to the increasing complexity of modern architectures.
These difficulties have forced hardware architects and
software engineers to reconsider how designs are spec-
ified, partitioned and verified. As a consequence, de-
signers are starting to move from hardware description
languages (VHDL, Verilog) and also beyond the RTL
level of abstraction toward the so called system level
design, where a tool for evaluating a new designed in-
struction set architecture, which automatically gener-
ates a software toolkit composed of assemblers, sim-
ulators, etc is mandatory. Such tools are commonly
based on an architecture description language.

Besides their application and well known suitabil-
ity for designing and experimenting with new archi-
tectures in the industry, architecture description lan-
guages can be very useful for academic purposes, like
teaching/researching computer architecture at under-
graduate and graduate level. On one hand, at the

undergraduate level, models of well known architec-
tures are appropriate to learn how a pipelined archi-
tecture works, including interlocking, hazard detec-
tion and register forwarding. If allowed by the ADL,
this model can be plugged to different memory hier-
archies in order to illustrate how the performance of
a given application can vary, depending on the choice
made for cache size, policy, associativity, etc. On the
other hand, at the graduate level, researchers can use
ADLs to model modern architectures and experiment
with their ISA and structure with all the flexibility de-
manded in research projects. This paper is focused on
the application of an ADL in a computer architecture
course.

A common structure of an introductory computer
architecture course is presented in the classical com-
puter architecture book by Hennessy and Patterson [5].
The course starts with the instruction set architecture
(ISA), i.e., presenting different instruction formats and
how the processor manage to decode each instruction
during execution. Some knowledge of assembly lan-
guage programming is exercised at this moment. Af-
ter understanding how an ISA is built, the student is
ready to learn how instructions are really executed,
how the data and computation flow inside the proces-
sor. The truth is: it is difficult to students to realize
how all these features are implemented, and how they
really work together inside a micro-processor with-
out a tool to experiment with. This is the point were
a software toolkit based on an ADL becomes very
useful. Students can grab the knowledge about ISAs
and pipelines from books and classes, and then fix it
through the implementation of a processor model us-
ing an ADL, and get a simulator to experiment with
and really see the whole thing running.

ArchC [6, 9] is an open-source ADL that fits very
well in this context. It is being used as a support tool
for computer architecture courses in the Institute of
Computing, at University of Campinas, Brazil. Since
the language, documentation, its parser, and simulator
generator tools are all in public domain on the Internet,
it is easy to students to get and to start using ArchC.
This paper shows how to use ArchC MIPS models
to illustrate computer architecture courses following
exactly the structure presented in [5]. Moreover, we
present how modeling modern computer architectures
may be a good exercise for students.



The remaining of this paper uses the Hennessy and
Patterson’s book as a guide for presenting architecture
concepts were ArchC may be a useful tool for illustra-
tion and experimentation. The text is organized as fol-
lows: Section 2 mentions some related work, Section 3
contains a brief introduction to the ArchC language,
Section 4 shows how the ADL may be a useful tool on
a computer architecture course, covering instruction
set introduction, single-cycle, multi-cycle, pipelined,
and memory hierarchy examples, Section 5 shows that
an ADL enables teachers to introduce modern archi-
tectures even in an introductory course. Finally, we
present our conclusions in Section 6.

2 Related Work

Considering automatic generation of a software toolkit
for architecture exploration, one can find several
ADLs on the literature, like: nML [2], ISDL [3], EX-
PRESSION [4], and LISA [11]. But no work has been
published reporting and/or exploring the didactical ca-
pabilities of these languages. In fact, they have a se-
rious drawback considering their application on com-
puter architecture education, since none of these lan-
guages has all its tools and models published on pub-
lic domain. All ArchC tools mentioned in this work,
along with several architecture models can be freely
obtained from [6].

Architecture simulators like SPIM [7] or Sim-
pleScalar [1] may be used for didactical purposes.
SPIM is a MIPS assembly simulator, compatible with
the R2000/R3000 processors. It reads and executes
assembly language code, but is not capable of exe-
cuting binary files. SimpleScalar offers a MIPS like
ISA, called PISA, for didactical purposes, along with
a GCC port to this target. MASE [10] is a graphical
simulation environment built on top of SimpleScalar.
RaVi [8] comprises a set of multimedia MIPS based-
modules for dynamic visualization of hardware behav-
ior. These approaches do not provide automatic retar-
getability of their simulators and do not offer the flex-
ibility of describing architecture behaviors in several
levels of abstraction, or the easiness to model new ar-
chitectures as provided by C++ based ADLs.

3 The ArchC Architecture De-
scription Language

ArchC is an architecture description language initially
conceived for processor architecture description, aim-
ing to facilitate and accelerate processor description,
combined with enough expression power to model
several classes of architectures (RISC, CISC, DSPs,
etc). ArchC allows users to fast explore a new ISA by
automatically generating software tools, like SystemC
simulators. Nowadays, ArchC is capable of describing

processors as well as a memory subsystem. Memory
hierarchies can be declared, containing several levels
of memories and caches. Caches can be configured
to simulate different set associativities, write polices,
replacement strategies, and line sizes.

A processor architecture description in ArchC
is divided in two parts, making clear the ne-
cessity of both behavioral and structural informa-
tion. The Instruction Set Architecture
(AC ISA) description is where the designer pro-
vides details about instruction formats, size and names
combined with all information necessary to decod-
ing and the behavior of each instruction. In the Ar-
chitecture resources (AC ARCH) descrip-
tion, he/she informs ArchC about storage devices,
pipeline structure, memory hierarchies, etc. Based on
these two descriptions, ArchC will generate a behav-
ioral simulator written in SystemC for the architecture,
that may be purely functional or cycle-accurate, de-
pending on the abstraction level used for instruction
behavior descriptions. One important characteristic is
that instruction behaviors, which are the largest part of
the code in a processor model in ArchC, are described
in pure C++ code. There is no restrictions, so model
designers are capable of declaring their own methods
and variables. C/C++ are largely used and it becomes
very easy to students to start using ArchC. Moreover,
there are complete GCC ports for MIPS and SPARC,
including libraries to generate binary elf files ready to
be loaded on ArchC simulators. This enables users
to experiment with their own programs using ArchC
simulators, and to execute real-world applications, in-
cluding system calls emulation, like JPEG and MPEG
coders.

We are going to use several pieces of ArchC code
to illustrate our examples in this text, explaining some
characteristics of the language as necessary, but read-
ers should refer to the Archc Language Reference
Manual [9] for a complete description of the ArchC’s
syntax and tools.

4 ArchC as a Support Tool for
Teaching Computer Architec-
ture

This section describes how ArchC can be a useful tool
for developing projects and exercises, on a computer
architecture course based on the classical didactical
book from Hennessy and Patterson: “Computer Orga-
nization & Design” [5]. As this reference will be fre-
quently mentioned throughout this text, for the sake of
simplicity, we are going to refer to this book as COD
from this point on.



AC_ISA(mips){

ac_format Type_R = "%op:6 %rs:5 %rt:5 %rd:5 0x00:5 %func:6";
ac_format Type_I = "%op:6 %rs:5 %rt:5 %imm:16:s";
ac_format Type_J = "%op:6 %addr:26";

ac_instr<Type_R> add, addu, subu, multu, divu, sltu;
ac_instr<Type_I> lw, sw, beq, bne;
ac_instr<Type_I> addi, andi, ori, lui, slti;
ac_instr<Type_J> j, jal;

ISA_CTOR(mips){

load.set_asm("lw %rt, %imm(%rs)");
load.set_decoder(op=0x23);

store.set_asm("sw %rt, %imm(%rs)");
store.set_decoder(op=0x2B);

add.set_asm("add %rd, %rs, %rt");
add.set_decoder(op=0x00, func=0x20);

addu.set_asm("addu %rd, %rs, %rt");
addu.set_decoder(op=0x00, func=0x21);

...
};

};

Figure 1: MIPS ISA Description in ArchC

4.1 Instruction Types, Assembly
Mnemonics and Decoding

The use of ArchC in a computer architecture course
can start as early as in the third chapter of COD,
where the authors introduce the instruction represen-
tation inside a computer: the Instruction Set Architec-
ture (ISA).

First, the MIPS assembly language is introduced,
followed by information on how to translate it to the
MIPS machine language. In order to do this transla-
tion students must learn about MIPS instruction for-
mats and binary encoding, and finally how machine
code is decoded by the processor. This is exactly the
information contained inside an AC ISA description,
as illustrated by Figure 1. Students can do an AC ISA
implementation using the knowledge they are gather-
ing from the book on instructions, assembly syntax,
formats, fields and decodification, and also do some
experiments with the decoder generated by ArchC,
issuing some instructions in binary format to see if
they supplied enough decoding information for each
instruction in the ISA.

4.2 The Single-cycle and Multi-cycle
Datapaths

By doing the simple exercises related in the previous
section, the students can have their first contact with
instruction set definitions and with the ArchC tools.
This experience is important to the following tasks.

We call a functional model in ArchC a model that
does not have any timing information, i.e., a model
that executes one instruction per cycle. That is ex-
actly the first example of a datapath construction pre-

sented in the book. Of course, the high abstraction
level of ArchC models does not comprise functional
units and signals, but the exercise of modeling the be-
havior of each instruction in C++ and trying to figure
out which functional units and signals would be nec-
essary to build a single-cycle datapath capable of exe-
cuting such a behavior may be very instructive. COD
authors suggest exercises like: write a functional sim-
ulator for the single-cycle and the multi-cycle versions
of the datapath presented in the book using a hardware
description language, like Verilog or VHDL. Authors
predicted that students would take a week to develop
each one of these simulators. Both of them can be
easily coded in ArchC, for such a short and simple in-
struction set. Figure 2 (A) shows the functional ver-
sion of the MIPS add instruction behavior, and Fig-
ure 2 (B) shows its multi-cycle version, according to
the description given in COD pages 385–388. We es-
timate that a functional model of a fifteen or twenty-
instruction of a MIPS-like ISA could be developed in
three or four hours of work, after going through the
theory presented in the book. Remember that instruc-
tion behaviors are written in C++, which is a language
that most of the students are very familiar with. An-
other three or four hours of work would be enough
to refine this functional model to a multi-cycle model,
which is exactly the process of re-writing instruction
behaviors to make them look like the example in Fig-
ure 2 (B).

4.3 The Multi-cycle Datapath with
Pipeline

After the single and multi-cycle datapath concepts are
sedimented, it is natural to introduce the concept of



void ac_behavior( add ){ void ac_behavior( add, cycle ){

ac_pc += 4; switch( cycle ){
RB.write(rd, RB.read(rs) + case 1:

RB.read(rt)); ac_pc += 4;
}; break;

case 2:
A = RB.read(rs);
B = RB.read(rt);
break;

case 3:
ALUout = A + B;
break;

case 4:
Rb.write(rd, ALUout);
break;

default:
break;

}
};

(A) (B)

Figure 2: Single-cycle and Multi-cycle Behavior Description

pipelining, where multiple instructions are overlapped
in execution. The ArchC language contemplates this
approach by supporting pipelining, in which we evolve
from a functional model to a cycle accurate model, dif-
fering from the first in the timing precision. While
functional models execute all instructions in one clock
cycle, a cycle accurate model has instruction behavior
descriptions reflecting the real number of clock cycles
taken by the instructions. The great benefit brought by
the use of an ADL like ArchC is that students can take
advantage of his previous developed functional model
to, gradually refine it to a new pipelined implementa-
tion, and get it running as a software simulator for the
target architecture.

ArchC provides the necessary constructions for
pipeline simulation but, in order to get a complete
model of the MIPS architecture with a pipeline, stu-
dents will have to consider its mechanisms, like reg-
ister forwarding or data hazard detection, inside their
behavior description. The first step is to insert infor-
mation regarding the pipeline registers and pipeline
stages into the functional model, as shown in Fig-
ure 3. It is important to emphasize that the same in-
structions continue to exist and the Instruction Set Ar-
chitecture (ISA) remains unchanged for the pipelined
model, i.e., no modification on the AC ISA descrip-
tion file, showed in Figure 1, is required.

The pipelined model divides the instructions in
minor execution units to be executed in the sev-
eral pipeline stages, which are declared using the
ac pipe keyword. However, the stages communi-
cate to each other through the pipeline registers, which
have their particular structures, i.e, their fields. The
students, while modeling the pipeline, have to declare
the pipeline register structures, and thus, they have
inevitably to have a complete understanding about

how the pipeline works, what fields are necessary in
each pipeline register, and what are their functions.
Pipeline registers are declared by the combination of
the ac format and the ac reg keywords. Let us
take the ID/EX pipeline register of a MIPS proces-
sor, like described in COD, as an example. Such
processor has a 5-stage pipeline (Fetch, Identifica-
tion, Execution, Memory Access and Write-Back),
and four pipeline registers (IF/ID, ID/EX, EX/MEM,
MEM/WB). The student should declare a format (field
structure) for each register and give a name for it, as it
is done for registers in Figure 3.

From this point on, all the necessary structural in-
formation is already inserted in the model. But be-
fore running this new model, it is necessary to take the
second step, which is the refinement of the instruction
behaviors. This is necessary because in a pipelined
model the instructions are split into several parts, and
each of these parts are executed in a different pipeline
stage. It is important to notice that, in despite of the
higher abstraction level of ArchC models if compared
with the datapaths presented in the book, student must
have consolidated the concepts of pipelining and its
physical structure in order to be able to model it cor-
rectly.

ArchC automatically fetches the instruction pointed
by its program counter (ac pc), i.e., the student does
not have to worry about the instruction fetch, but do
need to take care of the PC increment. ArchC also
generate a decoder for the architecture, based on the
information provided in the AC ISA description. But
in a pipelined model there are other tasks that must be
performed at the ID stage. Let us take the instruction
add as an example. Still in the ID stage, the contents
of the ID/EX register must be filled-up, from where the
execution stage will access the correct values for the



AC_ARCH(mips){
...
ac_format F_IF_ID = "%npc:32";
ac_format F_ID_EX = "%npc:32 %data1:32 %data2:32 %imm:32:s rs:5 %rt:5 %rd:5

%regwrite:1 %memread:1 %memwrite:1";
ac_format F_EX_MEM = "%alures:32 %wdata:32 %rdest:5 %regwrite:1 %memread:1 %memwrite:1";
ac_format F_MEM_WB = "%wbdata:32 %rdest:5 %regwrite:1";

ac_reg<F_IF_ID> IF_ID;
ac_reg<F_ID_EX> ID_EX;
ac_reg<F_EX_MEM> EX_MEM;
ac_reg<F_MEM_WB> MEM_WB;

ac_pipe PIPE = {IF,ID,EX,MEM,WB};

ARCH_CTOR(mips) {
...

Figure 3: Inserting Structural Information Regarding the Pipeline and its Registers into the MIPS I ArchC Descrip-
tion

operand registers and the program counter of the cur-
rent instruction, along with some signals to control ex-
ecution into further stages. Figure 4 shows an excerpt
of a possible add behavior description. After that,
the add instruction goes to the execution stage (EX),
where the actual computation of the sum takes place,
followed by setting the fields in the next pipeline regis-
ter. In the case of the add instruction, the memory ac-
cess stage (MEM) has just to copy the EX MEM reg-
ister contents to the MEM WB register and, finally the
instruction reaches the write back stage (WB), where
the result of the sum is stored into the correct destina-
tion register.

...
case ID:

ID_EX.regwrite = 1;
ID_EX.memread = 0;
ID_EX.memwrite = 0;
ID_EX.npc = IF_ID.npc;
ID_EX.data1 = RB.read(rs);
ID_EX.data2 = RB.read(rt);

...
case EX:

EX_MEM.alures= ID_EX.data1 + ID_EX.data2;
EX_MEM.regwrite= ID_EX.regwrite;
EX_MEM.rdest = ID_EX.rd;

...
break;
...

Figure 4. Modeling Instruction Behaviors Considering the Pipeline

The main point of this example is that, assuming
that students are familiar with the basics of C/C++
programming languages, this operations are quite sim-
ple to be implemented, because they are nothing else
than simple C++ statements. One very important
thing when applying ArchC to computer architecture
classes, is that the simplicity of the language brings the

focus of the work to the architecture being described,
and do not add an extra burden to the learning pro-
cess due to syntax details of the language. Another
advantage of using ArchC is its flexibility, since stu-
dents are able to call their own functions inside behav-
ior description methods, in order to debug the simula-
tion. This facilitates the visualization of the pipeline
internals, i.e., the student is free to watch whatever he
wants by printing such data on screen, while running
the simulator.

Notice that the code presented in Figure 4 does not
consider the possibility of data hazards. With such a
model in hands, a teacher could give some small exam-
ples of MIPS machine code where, for example, an in-
struction needs to use a register, but this register is be-
ing used by another instruction inside the pipeline, i.e,
it is still not written in the register bank. Asking stu-
dents to identify the problem and to add, for example,
a register forwarding mechanism to their model can
be a very useful exercise, which would help to solid-
ify some important pipelining concepts. When model-
ing a processor with ArchC, a student can implement
data forwarding in a way that is very similar to the de-
scribed by didactical books. Lets take the if statement
showed in COD, page 480, as a didactical example on
how to insert data forwarding to our pipeline. In Fig-
ure 5 (A) we see how register forwarding is shown in
the book, and in Figure 5 (B), how it is modeled in
ArchC.

An ADL that generates C++ based simulators is also
a well suitable tool for exercises like those suggested
at the end of Chapter 6 in COD, mainly the last two
exercises. The first asks students to collect statistics
on data hazards for a C program and write a subrou-
tine to model the five-stage pipeline presented in the
book. Authors are asking for statistics like: num-
ber of instructions executed, number of data hazards,
etc. This could be accomplished by implementing a



BOOK: ArchC MODEL:

if(EX/MEM.RegWrite and if((EX_MEM.regwrite == 1) &&
(EX/MEM.RegisterRd != 0) and (EX_MEM.rdest != 0) &&
(EX/MEM.RegisterRd = ID/EX.RegiterRs)) (EX_MEM.rdest != ID_EX.rs))
ForwardA = 10; operand1 = MEM_WB.wbdata;

... ...

(A) (B)

Figure 5: Register Forwarding for the rs Register in Didactical Books and in an ArchC Implementation

pipelined model in ArchC. The last exercise asks for
students to elaborate a model of the single-cycle dat-
apath in a HDL like Verilog, and then refine it to-
ward a pipelined model. A single-cycle or multi-cycle
model implemented in ArchC, like those described in
Section 4.2, can be refined toward the pipelined im-
plementation required for this exercise. By using an
ADL, this task certainly would be accomplished faster
than by a HDL. A interesting approach is to divide the
class in groups of students, and assign some of them
to use an HDL like Verilog or VHDL, some to use
SystemC, and some to write models using ArchC. At
the end, students could share their experiences, point-
ing out the advantages and disadvantages of each ap-
proach. As suggested by the authors, this would be a
project that would take students at least a month to be
done. ArchC simulators are also capable of executing
pipeline stalls and flushes so, there are several other
possibilities of experiments that can be suggested to
students, while teaching pipelining in a computer ar-
chitecture course.

4.4 Memory Hierarchy

Continuing with our course based on COD, the next
topic would be memory hierarchies. ArchC is capa-
ble of describing hierarchies composed of caches and
memories distributed at different levels. Caches can
be customized by the user by choosing parameters for
associativity, number of lines, words per line, replace-
ment strategy, and write policies. This is illustrated
in the cache declarations contained in the example in
Figure 6. The user creates the hierarchy by describ-
ing the connections among these devices, through the
method bindsTo, as illustrated in the last two lines
of the example.

So, by adding such a memory hierarchy description
to our functional model, students can experiment dif-
ferent cache and hierarchy configurations. A possi-
ble exercise would be to choose a particular applica-
tion, or a small set of applications, and let students ex-
periment with cache parameters for a given hierarchy.
They would be able to analyze the simulation results,
to compare miss rates, and determine the best config-
uration for each application. ArchC simulators auto-

AC_ARCH(mips){

ac_cache icache("dm", 128, "wt", "war");
ac_cache dcache("2w", 64, 4, "lru", "wt", "war");
ac_mem MEM:256K;

ac_regbank RB:34;
ac_wordsize 32;

ARCH_CTOR(mips){
ac_isa("mips_isa.ac");

icache.bindsTo( MEM ); //Memory hierarchy
dcache.bindsTo( MEM ); //construction

};
};

Figure 6. Memory Hierarchy Declaration in ArchC.

matically keep track of all access to storage devices,
so reporting miss rates and total number of accesses to
each device declared in the AC ARCH description.

After going through all the theory in COD’s 7th
chapter, students have a bunch of exercises to work on,
in order to fix the concepts presented in the book. In
addition to the theoretical exercises, students may use
ArchC simulators to experiment with memory hierar-
chies. For example, one of the exercises proposed by
the authors ask students to analyze a trace produced by
GCC for different cache organizations. For MIPS and
SPARC architectures, there is a GCC port available
for generating code to be run in ArchC simulators [6].
So, students can perform such an experiment using
real-world applications, like JPEG or MPEG coders
or some cryptography algorithm, using more than one
processor and a number of different cache organiza-
tions. Moreover, they are able to compile their own
programs, or examples provided by teachers, in order
to do this kind of analysis. The simulation statistics
provided by ArchC simulators combined with some
pre-defined miss and/or hit penalty may be used to
compute the performance numbers for each configura-
tion tested. The most important part, they would actu-
ally see that the memory hierarchy may have a strong
impact on the performance, and get a felling of how
hard may be to tune a processor + memory system to
a given real-world multi-media application, a common
task for embedded systems designers.



5 Modeling Modern Architec-
tures

An alternative approach for teaching computer archi-
tecture would be to use the MIPS architecture, follow-
ing the COD book, in classes and to adopt different
projects to be developed by the students. In one of the
computer architecture courses at IC-UNICAMP, stu-
dents were divided into several groups, and each one
of those groups was assigned to a different project.
The project was basically to develop a new func-
tional model of a real-world architecture, most of them
largely used in the industry as part of SoCs and em-
bedded systems. For example, in this first semester
of 2004, there are groups developing models of In-
tel XScale, IBM/Motorola PowerPC, Altera Nios, In-
fineon TriCore 2, OpenCores OR1K, and Motorola
68k/ColdFire ISAs as part of the computer architec-
ture course. These functional models are heavily based
on the instruction set, not concerning specific pipeline
or cycle-accurate details of these complex architec-
tures. They all execute one instruction per cycle. But
the experience of getting into contact with different
ISAs, more complex and modern than the simple RISC
MIPS-I that is usually used in this kind of course, is
instructive and attractive for students. They have the
opportunity of learning details about architectures that
are state-of-the-art in the industry, which is an extra
motivation for the course. Moreover, students are get-
ting some experience on how to build cross-compilers
for GCC, in order to be able to create binary files to be
loaded in their simulators.

6 Conclusions

ArchC is an architecture description language re-
cently developed by the Computer Systems Labora-
tory (LSC), at IC-UNICAMP. Its based on C++ and
automatically generates SystemC simulators from pro-
cessor descriptions. ArchC is also capable of describ-
ing memory hierarchies. Its simulators have several
capabilities to help simulation debugging and statistics
collection that become useful in computer architecture
education.

The language has been used for the last two
semesters in computer architecture courses at IC-
UNICAMP, both at the undergraduate and gradu-
ate levels, and the feedback received from the stu-
dents was very positive. Among other projects, stu-
dents developed functional models for real-world ar-
chitectures like PowerPC and XScale. They got very
motivated while developing their projects, and some
of them even contributed with improvements on the
ArchC tools that ended up as new features adopted
by the ArchC Team in the official distribution, result-
ing in a kind of integration between education and
research. The experience of developing architecture

models gave students a deeper understanding of the
concepts recently learned from the book and classes.
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Abstract

Current developer tools and HDLs for system de-
sign are powerful instruments and support a vari-
ety of abstraction levels but they are too complex
for didactic purposes. This paper describes the
RTeasy IDE, an algorithmic design environment
on register transfer level that has been developed
to provide a simple system-design tool for didactic
purposes to be used e.g. in introductory courses
in computer engineering and digital design. The
RTeasy tool suite includes an HDL, a simulator
and further design features. As an example, it is
applied to the design flow of a shift-multiplier.

1 Introduction

Nowadays, the design of complex systems and
the implementation of new architectures demands
high-level tool support. Different abstraction lev-
els such as the gate, the register, and the pro-
cessor levels are used to define and describe the
structure and behavior of new designs. Especially
the gate level is well-supported. Current hardware
description languages (HDL) such as VHDL [2],
Verilog, and ABEL [3] are utilized. Their inte-
grated development environments (IDE) provide
programming support, gate-level simulation, and
download opportunities to suitable devices. Unfor-
tunately, these languages and tools require a high-
level knowledge and experience of system design.
For educational purpose and due to the tremen-
dous number of functionalities most of the com-
mon tools are too difficult for beginners. In the in-
troductory course on computer engineering [4] and
its following lab course at our university, the regis-

ter transfer notation (RTN) of John P. Hayes [1] is
applied. Here, second-year students of computer
science are taught the principles of digital systems
and system design. Hayes’ RTN allows them to
create own hardware modules based on an algo-
rithmic description. Especially in a didactic view
this way of description is well chosen because of
the similarity of high-level programming and the
RTN. The IDE RTeasy backs the design flow with
editor, parser and simulator for a variant of Hayes’
RTN.

In the following the RTeasy tool suite is pre-
sented. Section 2 introduces the RTeasy HDL.
Then, the RTeasy IDE is described in Section 3
and applied in a small design example in Section 4.
Section 5 concludes the presented work.

2 RTeasy HDL

The RTeasy HDL is a register transfer language
based on RTN. In the following section the basic
modeling constructs of the RTeasy HDL are intro-
duced. Their usage is demonstrated by arbitrary
chosen parts of RTeasy HDL code. An RTeasy pro-
gram consists of two parts: declarations of com-
ponents and the program body containing a de-
scription of the algorithm. Registers, busses and
memories are the provided components and can be
declared as follows:

Registers and Busses are declared by an identifier
in uppercase letters and the number and or-
der of bits in brackets. In the brackets the left
number of the colon stands for the most signif-
icant bit (MSB) and the right one stands for
the least significant bit (LSB). The numbers
represent the indices used in the program.



Example:

declare register A(7:0),
STATUS(1:5), RDY
declare bus INTERNAL BUS(7:0)

A is an eight-bit register where the MSB has
index 7 and the LSB has index 0, STATUS is
a five-bit register with MSB index 1 and LSB
index 5, and RDY is a single-bit register which
does not need any indices. INTERNAL BUS
is an eight-bit bus similar to register A. In
contrast to registers, busses hold their data
for only one clock cycle followed by a reset to
0. In hardware they are e.g. realized as signal
lines with tristate drivers.

Memories are declared by an identifier followed
by address and data registers enclosed in
brackets. These registers must be declared
beforehand.

Example:

declare memory MEM(AR,DR)

Here, AR is the address register and DR is
the data register. The memory dimension de-
pends on the size of the address register de-
termining its address space and the size of the
data register determining the memory-word
width. Data transfer between data register
and memory is triggered by the commands
write MEM and read MEM.

The program body generally describes a finite
state machine where each state includes some con-
current hardware operations given by data trans-
fers between registers or combined registers per-
formed directly or via busses. A simple timing
model is used with each statement executed in ex-
actly one clock cycle.

Each state or concurrent-command sequence is
separated by a semicolon and has the following
form:

[label :] concurrent operations ;
Note that a label can be left out. The semicolon
can be interpreted as a state transition and indi-
cates the end of a clock cycle. In general, the next
state is the one after the semicolon. For the modi-
fication of the succeeding state an absolute branch
command is provided:

goto label
It can be combined with the if-statement described
in the following to get a conditional branch.

The concurrently executed RT operations, see
below, per state are given by a comma-separated
sequence.

Example:

BUS ← A + B, RESULT ← BUS

Note that only busses instantly take new values
that are written on it in the same clock cycle, reg-
isters do not take their new values until the end
of the clock cycle. The example above shows con-
currently executed RT operations and the use of
busses. The first RT operation writes the sum of
A and B on the bus BUS. The second RT opera-
tion switches the bus signals to the input ports of
the register RESULT. A trace of the input values of
RESULT shows after a half cycle that first all bits
are zero, then some hazards follow, and finally the
result of A + B appears. In fact the observed val-
ues are the same as the output of the adder circuit
belonging to the expression A + B, delayed by the
bus delay.

In the following all statements which can build
up a concurrently executed statement sequence are
shown:

Conditional Statements have the form:

if expression then RT operations
[else RT operations] fi

The conditions are evaluated one half cycle
ahead of the RT operations they account for.
So, in general the evaluation bases on the
global state of all registers and busses at the
end of the preceded clock cycle.

The if-statements can be used wherever an
RT operation may occur. They may be nested
to any arbitrary level as this is only a conjunc-
tion of conditions easily realizable by AND
gates.

Expressions are used to model computations in
a similar way to high-level programming lan-
guages. Here, the operands are registers,
busses and bit-word constants instead of vari-
ables and constants. Parts of registers or
buses and single bits can be combined to com-
bined bit-words using the dot operator.

Example:

A ← A(6:0).A(7)



The example shows a left rotation by one bit
of the 8-bit register A. Combined bit-words
are handled like normal registers or busses be-
cause they are only arbitrary combinations of
signals in hardware. Bit-word constants are
either positive decimal, binary led by % or
hexadecimal led by $.
The set of operators includes the binary oper-
ators +,−, <, <=, >, >=,=, <>, and, nand,
or, nor, xor and unary operators − (sign) and
not with usual precedences. The arithmetic
operators + and − generate a carry bit, thus,
the result is one bit wider than the widest
operand. All other operators deliver a result
being as wide as the widest operand. Miss-
ing bits of the smallest operand are extended
by leading zeros. For arithmetic operations
registers, busses and combined bit-words are
processed right-aligned. Logical operators op-
erate bitwise on bit-words.

Example:

A <> B # 1 if A and B not equal
%1 + 7 # %1000 or 8
not B # B is bitwise negated

Comments can be inserted wherever it is nec-
essary by # as a line comment.

Register Transfer Operations are written as
combined bit-word ← expression

It is not allowed to transfer data from bus to
bus so that a bus can only be used on the left
or on the right side in an RT operation. This
is due to the fact that busses are realized
as signal lines. The triggering of an RT
operation results in signal propagation from
the circuit belonging to the expression to
the input ports of the combined bit-words
elements. When the triggering edge of the
operation units occurs the registers read their
input signals and save them for the next
cycle. When an RT operation writes on a
bus, the signal would be propagated through
other circuits representing expressions using
the bus.

On many points in the execution of algorithms
further computations depend on values evaluated
shortly before, i.e. in the same clock cycle.1 The

1This has also been taken into account during the de-
sign of the C programming language regarding the ++i con-
struct.

application of RTeasy constructs defined above
does not allow to use the results of any RT op-
eration in the conditional expression of a condi-
tional statement in the same concurrent statement
sequence. The conditional expressions are evalu-
ated utilizing the global state of the preceding clock
cycle. So, there is no chance to realize a condi-
tional branch by a goto-statement embedded in
an if-statement if the conditions need the values
of the same clock cycle. The general solution is a
bulky conditional branch in the next state where
the first operation of the branch is included. In the
example below, the first program code consumes
two clock cycles because the conditional branch is
performed in a separate cycle although it would
be possible to avoid it. This problem occurs fre-
quently so that the introduction of a handy nota-
tion for these conditional branches is worthwhile.
That is why RTeasy provides an additional sepa-
rator: the pipe symbol. Now, a state can be of the
form:
[label :] concurrent operations | conditional branch ;.
The conditional branch which is an if-statement
only including goto-statements may use the re-
sults of the RT operations on the left side of the
pipe operator symbol. So, the pipe operator saves
one clock cycle per each step of the loop, see
the program example. For internal processing or
hardware implementations, the pipe symbol is ex-
panded to equal but bulky statements.

Example:

The RTeasy program

LOOP: COUNTER ← COUNTER + 1;
if COUNTER < 20 then

goto LOOP
else

# do something
fi;
# go on

can be refactored by

LOOP: COUNTER ← COUNTER + 1
| if COUNTER < 20 then goto LOOP;
# do something
# go on

The command nop must be used to indicate that
no RT operations should be triggered. It can be
used to describe a state with no signal output.



Figure 1: Stepwise Simulation in RTeasy

3 RTeasy IDE & Simulator

The design concept of the IDE of RTeasy resembles
an assembler or embedded systems IDE. Actually,
the only thing still missing is an opportunity to
download developed designs to target devices. It
provides a text editor with usual functionalities
and a basic help system. The IDE has two work-
ing modes, editing and simulation. After launch-
ing RTeasy, the system is always set in editing
mode where programs can be written, loaded, or
saved. The simulation mode is entered by clicking
the ‘Simulate’ button. Then the system performs
syntactic and semantic analysis on the contents of
the editor window which is the upper window on
the left side in Figure 1. In case of a successful
analysis, the simulation status window which is
the upper one on the right side in Figure 1, pops
up. It contains all declared registers, busses and
memories in the sequence of their declaration. The
full memory contents can be shown in a separate
window. Each register and bus is depicted and
attributed with its dimensions and current value.
The contents of registers, busses, and memory cells
may be shown in one of five modes: binary, dec-
imal, signed two’s complement decimal, hexadec-

imal and signed two’s complement hexadecimal.
All values of registers, busses, or memory cells can
be interactively changed by the user. The simple
concept avoids complex layout problems as they
would occur by graphical representations such as
RT-level block diagrams and nevertheless displays
all relevant information.

Simulation Capabilities

The user controls the simulator by some buttons
well known from other simulation environments.
There are ‘Reset’, ‘Step’, and ‘Run/Stop’ with the
expected functionality and the ‘MicroStep’ button
explained below.
One ‘Step’ begins at each simulated clock cycle
with the triggering edge of the control unit. Note
that our RT designs can be split up into two units,
the control unit representing the algorithmic be-
havior and the operational unit including all hard-
ware components such as registers, busses, memo-
ries and arithmetic and logic units. The simulated
state is marked in the editor window, the upper
left one in Figure 1, by a colored background and
the contents of the status window shows the values
the registers, busses and memories have taken at
the end of this clock cycle. The values shown on



busses are reset at the end of each clock cycle be-
cause the control unit emits other control signals
at the beginning of the next cycle.
The ‘Run’ button launches a continuous execution
of the ‘Step’ simulation and changes its caption
to ‘Stop’ so that the next click aborts the infinite
simulation. Simulation may also end when the last
state is executed without a goto-statement or the
program quits because of the goto end-statement.
‘MicroStep’ provides a detailed view to the con-
current execution of RT operations. Although
they are executed concurrently this feature allows
the traversal through the states on an operation-
by-operation base. During the traversal the cur-
rently executed RT operations are marked yellow
whereas conditions not met are marked with ma-
genta background. The contents of the status win-
dow is consecutively updated as well ignoring their
concurrency. If the operations would be executed
in the order of appearance in the program ‘Mi-
croStep’ and ‘Step’ simulation would differ and
even the first one would not hold because busses
might not reach their final values. Thus, all bus
writes are simulated first.
In addition the IDE provides breakpoints which
are useful for debugging purposes.

Design Tools

Beyond modeling and simulating features RTeasy
IDE provides design tools for further system de-
velopment. These features are gathered in the
‘Design’ menu. They include extraction of con-
trol and conditional signals and model expansion.
The extraction of control and conditional signals
defines the input and output of the control unit.
RT operations are simply assigned with numbers
representing their triggering control signal lines.
Equal RT operations will be assigned to the same
number. Conditional signals are extracted from
if-statements. Boolean expressions that contain
expressions of other types such as arithmetic ones
are splitted, nested if-statements are flattened by
combining the boolean expressions. This flatten-
ing is necessary to build up the state transition ta-
ble of the control unit. Furthermore, conditional
signals that only occur together in state transition
tables can be merged by optimizations. Model ex-
pansion unfolds the right side of each pipe symbol
and merges nested if-statements to approach the
description of a synthesizable finite state machine.

Currently, the opportunities of the ‘Design’

menu will be enlarged by student research project.
The goal of this work is a function that gener-
ates VHDL code for control and operation unit.
The exported code can be used and simulated by
other tools such as Mentor Graphics’ FPGA Ad-
vantage [5].

4 RTeasy Example

The example shown in Figure 2 is a simple
shift/add multiplier. Its interface consists of two
16-bit busses, an incoming (INBUS) and an outgo-
ing one (OUTBUS), and two signals (1-bit busses):
RUN (in) and RDY (out). Furthermore, the model
makes use of two 16-bit registers A, and RESULT
and one 8-bit register B. The underlying algorithm
is quite simple:

1. As long as RUN is not set, read both factors
from INBUS. The first factor, which takes the
higher 8 bits, is transferred to the lower part
of register A. The second one, stored in the
lower 8 bits, is put to register B. The higher 8
bits of A and RESULT are initialized by zero.

2. For each bit k in B, beginning at the LSB with
index 0, add 2k·A to RESULT if Bk = 1.

3. During the last iteration RDY is set to 1 and
in the next cycle the contents of RESULT is
written on OUTBUS.

The addition of 2k·A is realized by left-shifting of
A. The test Bk = 1 is realized by right-shifting B
and testing the LSB. The loop is aborted if the
remaining part of B does not contain any bit with
value 1.
The screenshot in Figure 1 shows that RTeasy
identifies 7 unique RT operations and 3 condi-
tional expressions. The conditional expressions are
mapped to input signals for the control unit and
the RT operations to output signals to affect the
behavior of the operation unit. The block diagram
of Figure 2(b) and the listing of Figure 2(c) are at-
tributed with these signals. Figures 2(a) shows the
composition and interconnection of the two units.

This example design contains three kinds of RT
operations with different effects shown in the block
diagram. Simple data transfer operations such as
C1 and C7 that only transfer data from one entity
to another. Then there are operations on regis-
ters such as shift, rotate, and set/reset operations
(C0,C2,C4,C5,C6). The RT operation triggered



(a) System diagram.

(b) Block diagram of the operation unit.

# Declarations
declare register RESULT(15:0), A(15:0), B(7:0)
declare bus RUN, INBUS(15:0), RDY, OUTBUS(15:0)

# Behavior
IDLE: A(15:8) ← 0, A(7:0).B ← INBUS, RESULT ← 0, C0,C1,C2

if not RUN then goto IDLE fi; I0
LOOP: if B(0) then RESULT ← RESULT + A fi, I1 C3

if B(7:1) <> 0 then B ← B(7:1), A ← A(14:0).A(15), goto LOOP I2 C4,C5
else RDY ← 1 fi; I2 C6

FINISH: OUTBUS ← RESULT, goto IDLE; C7
(c) RTeasy program code describing algorithmic behavior and usage of components.

Figure 2: Design example of a shift/add multiplier.



by C3 is a special one. It involves an adder circuit
which is represented by the V-shaped symbol in
the block diagram.

The extracted information is used to generate
a Moore or Mealy state machine for the control
unit. These state machines can be minimized by
well-known techniques and implemented utilizing
their optimized switching functions taken from the
state transition table, one-shot circuits, or a mod-
ulo sequencer.

5 Conclusion

In this paper, an algorithmic design environment
on register transfer level is presented. The tool
bases on a modified version of the RTN introduced
by John P. Hayes [1]. The IDE is implemented
using Java and works fine on different platforms
such as Solaris, Linux and Windows 2000/XP.
In the last winter term, its usability was tested
and proven by the application in the introduc-
tory course of computer engineering. Second-year
students of computer science quickly accepted the
tool and easily applied the IDE at home and at the
university to solve exercises and to deepen their
acquired knowledge of system design. Moreover,
they have supported the development of RTeasy
with critical remarks and useful proposals for im-
provement.

In contrast to previous paper designs it was
know possible for them to test and debug their
algorithms with the simulator. Furthermore, the
simulation proved to be very helpful in introduc-
ing basic RT algorithms in the lectures replacing
”hand simulations“ on the blackboard.

Beside the generation of VHDL code, the future
work includes the extension of simulation features
as well as more design tools. It is planned to in-
clude the generation and viewing of VCD (Value
Change Dump) traces of register and bus values
into the IDE. Additionally, a capability of unit
tests should be implemented to support the proof-
reading of student exercises and automatic testing
of complex designs.
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Abstract—
This paper presentsthe casestudy proposedto 3

���
year

studentsin our department of computer science.It is a prac-
tical activity in the first ”Computer Ar chitecture” Unit of the
curriculum. This practical activity has several aims : 1) un-
derstanding a subtle mechanismin processorarchitecture, 2)
experimenting the relationsbetweenlogic level and RTL level
descriptionsand 3) practicing formal methodsof verification.
The main original point is theuseof extraction (andminimiza-
tion) of the full description of an automaton fr om the logic
schemabasedon flip-flops and gates. In a certain way, the
reverseof classic”automaton synthesis”.

I . INTRODUCTION

ComputerScienceis an importantcomponentin
GrenobleUniversitydueto environment: Grenoble
region is surroundedby mountainsandsemiconduc-
tor plants. It is sometimesdescribedas a kind of
Silicon Valley. 2003 seriousestimations1 give the
following data: 17700peoplework in computersci-
ence,12300in electronics,2300computerscientists
work for electroniccomponentssectorand900oth-
ersin thefield of electronicCAD.

Our activity is motivated by 2 common sense
ideas:
� Not all thecomputerscientistsareprocessorarchi-
tectsbut every computerscientistmustknow archi-
tectureprinciples.([12])
� Not all the computerscientistsuseformal meth-
odsin their work, but every computerscientistmust
know formalmethodsprinciples.
One of our tasksis to give all the studentsa good
basicknowledgein processorarchitecture.Someof
themwill furtherspecializein thisfield. Many others
will not andwill chooseimagesynthesis,embedded
systems,networksengineeringor oneof many other
fields. We want alsothemto have practicedformal
methods.

In thispaperweshallgivethemainideasfounding
this activity, then,in section3 we shalldescribethe
context of education.The techniquesusedand the
�
Reported by ”Electronique International Hebdo,
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exampleitself aredescribedin furthersections4 and
5.

I I . IDEAS IN PROCESSOR ARCHITECTURE AND

VERIFICATION

The main ideaswe want our studentsto acquire
areorganizedaroundthreetopics: 1) processorar-
chitecture,2) abstractionlevelsin digital circuitsde-
scriptionand3) validationof a digital design.

A. Basicconceptsin processorarchitecture

Let us give a list of basicprinciplesthat our stu-
dentsmustmasterat theendof our Unit :
� Thereis a borderbetweenhardwareandsoftware.
Machinelanguageis thelowestlevel of softwareand
the highestlevel of hardware. At the lowest level,
interpretationof machinelanguageinstructionsdoes
not resultfrom executionof a programbut from cir-
cuitsactivity.
� Execution of one instruction costsseveral time
steps.Oneof thereasonsis thatoneinstructioncould
requireseveralmemoryaccessesto fetchtheinstruc-
tion codeandtheoperands.
� One suchbasicstepconsitsin a statechangein
a ”data-path”automaton.A ”data-path”automaton
is a Finite StateMachine (FSM) but we prefer to
describeits implementationby registersand ALUs
ratherthan its functionby a list of statesand tran-
sitionarrows.
� Controlling the flow of stepsis doneby a con-
troller taking into accountInstructionRegister and
InterruptionRequests.Thecontrollerbehaviour can
be describedby an FSM with actionsassociatedto
states.Microprogrammingwasthe basictechnique
to implementsuchcontrollers.
� Pipeliningis a commontechniqueusedto imple-
mentprocessors.In this caseit is not convenientto
describethecontrollerby a ”centralized”function.
� Pipelining introducesa problem for conditional
controltransferinstructions.



B. Basicconceptsin digital circuitsdescription

Before introductionto processor(andcomputer)
architecture,the studentsalreadyknow the basics
of digital design.They cansynthesizeanddescribe
small circuitsat the logic level. Processorarchitec-
turewill makeobvioustheneedfor RegisterTransfer
Level (RTL) descriptionfor big circuits.
The4 kindsof circuitsof figure1 andassociatedde-
scriptive formalismsareused. Studentsprogressin
understandingthesecategories. Obviously the bor-
derbetweensmallandbig circuitsis partiallyamat-
ter of convention. As a consequencetheborderbe-
tweenlogic level andRT Level is suchthatsome”in-
termediatecomplexity” circuits canbe describedat
bothlevels.Theexamplepresentedin thispaperwas
designedto besucha circuit. Theproof itself relies
on logic description.

C. Basicconceptsin validation

The main techniqueusedto checkcorrectfunc-
tionality in computerscienceis to put the object
(hardware or software) at work (truly or by simu-
lation).

Another techniqueis to list somepropertiesthe
object must verify and to check them. A formal
modelmustexist allowing to describetheseproper-
tiesandthe implementationof theobject. A formal
checker canbeused.This secondtechniqueis now
commonlyusedfor combinationalcircuitswherethe
modelis BinaryDecisionDiagramrepresentationof
booleanfunctions.([1])

A similar approach,basedon Model Checking,
is usedfor Finite StateMachines. In this casethe
problemof combinatorialexplosionof the number
of statescannotbeavoided.

Theoremproversareoftenusedin processorveri-
ficationat a researchlevel. (Seefor exampleconfer-
encessuchasCAV, DATE, DAC, FMCAD, CHARME).
M. Velev hasverywell describedtheintroductionof
sucha techniquein advancededucation([10]).

Our casestudyusesa variantof Model Checking
andsimulation.

I I I . CONTEXT OF EDUCATION

For the reader to understandWHERE our case
studyoccursin thecurriculum,let usbriefly present
it. Our Unit is in a curriculumof computerscience
whereformalmethodsandtechniquesareimportant.
This Unit is the first one in computerarchitecture.
Thecompanionbook(in french)is [2]. Archivesof
examsareavailableat [17].

In this section,we describetheplaceof architec-
tureandformalmethodsin thecurriculumof ourde-
partment.

Beforeintroductionto computerarchitecture,ba-
sicdigital designtechniquesarealreadyknown(Kar-
naughmaps,FSM synthesis).Similarly, basicpro-
grammingin C andin assemblylanguagearealready
known. Assembly languageis basedon Sparc2.
Concurrentlywith ComputerArchitecture,introduc-
tion to compilationand advancedprogrammingin
assemblylanguageoccur : How to programfunc-
tions, environmentand frame pointer management
in stacks? How to readcodeproducedby astandard
C compiler?

This Unit of Computer Architecture is the
first encounterbetween studentsand the Hard-
ware/Software interface. A home-madesimulator
allows to discover the principlesof instructionsex-
ecution. It is basedon a microprogrammedorga-
nization. After that introduction, simulation of a
pipelinedmachineis made.Thestudentsmustintro-
ducethe ”by-pass”mechanismin the RTL descrip-
tion of thegivenprocessor. In theUnit, memoryhi-
erarchyis ”independant”from instructionsinterpre-
tation.We do not dealwith theinteractionsbetween
cachingandexecuting. In this Unit, nothingis said
aboutadvancedtechniques[9].

The practical activity presentedhereafterillus-
trates (a part of) the pipeline organization of a
SPARC.

For many reasons,not describedin this paper,
our departmentstrongly focusseson formal meth-
ods.For instancein digital circuitsdesignintroduc-
tion [3], somecircuitsproofsaredone.Studentssim-
ulatethecircuitsat thelogic level, thenthey arealso
invited to checkequivalenceof two combinational
circuits, then they also verify equivalencebetween
two synchronousimplementationsof Finite States
Machines.Similarly programmingtechniquesedu-
cationaretaughtin relationwith formaldescriptions
andverificationof programs([7]).

IV. ENVIRONMENT AND PROOF TECHNIQUES

This section presentsthe tools and techniques
usedfor thisactivity. Themainoriginality is to usea
kind of ”reverse”synthesisof FiniteStateMachines.

A. Howdo wedescribe?

All the descriptionsare given in the language
LUSTRE ([4] and[5]). In circuits descriptionLUS-
TRE is closeto Lola, thelanguageusedby N. Wirth
in hisbook. ([11])

Descriptionmaybeof differenttypes:
� Circuits describedas a set of nodes: the nodes
containlogic gatesandedge-triggeredD-type flip-
�
For technicalreasons,we arecurrentlymoving from Sparcto

anotherprocessor



Type of circuits implementationobjects descriptionformalisms level
small combinationalcircuits gates(passtransistors) booleanalgebra logic

big combinationalcircuits adders,coders,MUXes arithmeticandcomposition RTL

small sequential(synchronous) gates,flip-flops FSM bubblesandarrows logic
big sequentialcircuits registers,ALUs,busses,.. FSM with actions RTL

Fig. 1. Thedifferentkindsof circuits

node mux1bit (i, t, e: bool) returns (s:bool);
let

s = (i and t) or (not i and e);
tel;

node add1bit (a,b, ret_in :bool) returns (som, ret_out: bool);
let

som = a xor b xor ret_in ;
ret_out = a and b or a and ret_in or b and ret_in;

tel;

node addNbits (const N: int; a,b: boolˆN) returns (r: boolˆN);
var carry : boolˆ(N+1) ;
let

carry[0] = false ;
(r[0..N-1],carry[1..N]) = add1bit(a[0..N-1], b[0..N-1], carry[0..N-1]);

tel;

Fig. 2. A flavour of Lustredescriptions

flops. The only data type is boolean. (Cf node
mux1bit or add1bit ) hereafter.
� Genericcircuits of size N, dealingwith boolean
vectorsof sizeN. RegistershaveN flip-flops. Adder
can be N bits wide. (Cf node addNbits here-
after). Notice the ”implicit” repetitionof add1bitin
addNbits. N must be instanciatedbeforeeffective
use. This allows us to have a samedescriptionfor
any N-bitscircuits,weonly needto changeonecon-
stant.Thesamefeatureexistsin VHDL.
� Circuits describedas a hierarchicalor composi-
tional setof nodes.Thenodescanbedifferent(co-
operating)automata.The languageis suchthat,ba-
sically, all the automatasharethe sameclock. Due
to this feature,LUSTRE is often referedto asa syn-
chronouslanguage.([6])

This Lustreexamplein figure2 is givenfor illus-
tration.

B. Whatdo weobtain?

Fromthelogic description,it is possibleto simu-
late thecircuit. Thegateor flip-flops delaysarenot
taken into account.Timing diagramscanbedrawn.
This stepis doneby thestudents.

Another use, more orignal can be made : We
compilethe circuit description.Let us examinethe
meaningof this compilation.

Given a circuit descriptionof the FSM logic im-
plementationby gatesandflip-flops,theLustrecom-

piler [4], [16] cancomputetheautomatonasa setof
statesand a full descriptionof the two functions:
transitionfunction andoutput function. Obviously
this is the reversetask comparedto the very com-
mon synthesistools available in all standardCAD
packages.

If the input description contained several au-
tomata,thecompilercomputestheproductautoma-
ton. Thedescriptionof theresultautomatonis given
eitherin an internaltextual form, or in C language,
ready for compilation, or in a graphicalform. It
could aswell be given in VHDL or an other Hard-
wareDescriptionLanguage.Theexecutionof theC
versiongivesthe sameresultsthana simulator. We
usethetextual form with thestudents.

A complementarytool givestheminimalautoma-
tonequivalentto theproposedone.

This essentialfacility is usedin the introduction
to digital designto formally checkequivalencebe-
tween2 circuits. ([3])

V. THE CASE STUDY

Our circuit is a pipelined processor. We got a
VHDL descriptionof a SPARC architecturefrom the
EuropeanSpaceAgency site (Leon version [14]).
To make the example as simple as possible, we
madedrasticsimplificationsandlimited ourselvesto
a simple mechanism: delayedcontrol transferin-
structions.Theexampleis organizedaroundthepart



code possiblebehaviours
Instr1 sequenceif cond is trueat I2

I2 Brcondlabel Instr1,Brcondlabel,Instr3,Instr5,..
Instr3
Instr4
. . .

label Instr5 sequenceif cond is falseat I2
. . . Instr1,Brcondlabel,Instr3,Instr4,...

Fig. 3. Delayedbranchmechanism: asmallSPARC programandthetwo possiblebehavioursgivenby thesequencesof instructions

address label instr sequences(valuesof PC)
0 zz instr0 0 1 2 3 4 (not at 2)
1 instr1 0 1 2 3 7 (yesat 2)
2 brcond ss
3 tt instr3 3 4 5 6 7 . (notat 5) (notat 6)
4 instr4 3 4 5 6 0 1 (yesat5) (not at 6)
5 brcond zz 3 4 5 6 7 3 (notat 5) (yesat 6)
6 brcond tt 3 4 5 6 0 3 (yesat5) (yesat 6)
7 ss instr7

Fig. 4. A complex shortSPARC programandthepossiblebehaviours. If theconditiontestedin line 2 is true,thesequenceof valuesof
theprogramcounteris 0, 1, 2, 3, 7 ; if this conditionis falsethesequenceis 0, 1, 2, 3, 4. Similarly if theconditiontestedin line 5 is
falseandconditiontestedin line 6 is false,thesequenceof instructionsis 3, 4, 5, 6, 7.

computingthe next value of the ProgramCounter
(PC).We studytheso-calleddelayedbranch mech-
anism.

A. How doesprogressa SPARC ProgramCounter?

The systemof SPARC is different from the stan-
dardoneandiswell known([15], [13]). To makethis
paperself-contained,we recall it. Thereare Con-
trol TransferInstructions(CTI). Dif ferentCTI exist :
JumpandLink, ConditionalBranchandCall. The
instructionwritten immediatelyafter a CTI is exe-
cutedfirst, thenthe transferof control occurs.This
mechanismis known as DelayedBranch. The in-
structioninsertedis saidto bein theDelaySlot. We
shall simplify hereby consideringonly conditional
branchinstructions. We do not usethe mechanism
of annulbit in theframeof this paper.

In thesmallprogramof figure3 two sequencesof
instructionsmayoccur(assumingthatInstr1,Instr3,
Instr4,Instr5arenot CTI) :

- if the condition is true whenit is examinedin
instructionI2 thesequenceof instructionsis
[Instr1, Brcond label, Instr3, Instr5]

- if the conditionis false whenit is examinedin
instructionI2 thesequenceof instructionsis
[Instr1, Brcond label, Instr3, Instr4]

This behaviour is madepossibleby the existence
of a(classical)registerProgramCounter(PC)andof
anotherinformation namedNext ProgramCounter
(nPC) in the documentation.The immediateques-

tion is obviously : What occurs when two CTI
are written consecutively? (However the standard
practiceof a programmeris not to write programs
with suchfeatures[8].) The completedocumenta-
tion ([13], [15]) explains the differentpossiblebe-
haviours in this case.We take herea simplifiedver-
sion.

We shall presentsuch a situation in figure 4 :
the programcontainstwo consecutive conditional
branches.They appearin lines5 and6.

Let usexaminethis smallprogram.Theexpected
behaviours dependsupon the valuesof the condi-
tion duringexecutionof instruction5 and6. For in-
stanceif theconditiontestedin instructionataddress
5 andtheconditiontestedin instructionat address6
arebothtrue,thesequenceof valuesof theProgram
Counteris 3, 4, 5, 6, 0, 3. Theotherssequencesare
givenon thefigureitself.

B. Our experimentwith this Very ReducedCom-
puter

For this experiment,weuseonly :
� theProgramCounter(PC)
� theNext ProgramCountervalue(nPC),
� the combinational incrementerassociatedwith
theseregisters,
� theInstructionRegister(RInst)containingthecur-
rent instruction. It hastwo fields : opcodeanddis-
placement.
� theadderusedto adda displacement(depl)to ob-
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Fig. 5. Organizationof theProgramCounterupdatingin reducedSPARC p rocessor
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Fig. 6. Theautomatonobtainedby theLustrecompiler. Thecorrespondingvaluesof theProgramCounterareindicated.Whena state
hastwo ”next states”,thefirst onecorrespondto cond= true,theotheroneto cond= false.

tain thebranchtargetaddress

The Register Transfer Level descriptionof the
systemis givengraphicallyin figure5.

Our circuit is composedof this restrictedSPARC

and of a memory containingthe aforementionned
program. This memorycanbe a ROM becausewe
do not useany STORE instructions.

Our experimentis basedon a descriptionof this
processor+memoryat a logic level. In this example
we restrictedthe datapathto 3 addressbits and to
4 databits. The ROM contains8 4-bits wordsasin
figure 4. The Op-Codehasonly onebit (true for a
BRCOND, falsefor a NOP) and the displacementis
codedon 3 bits. It is enoughfor our experimentas
will beshown.

To put focuson therole of thecondition,we con-
siderit to beanexternalinput. Thelogic description
is simple : 3 bits adder, 3 bits incrementer,... The
only inputof this circuit is cond .

Thestudentsareinvited to compiletheLustrede-
scriptionof this logic description,obtainanautoma-
ton,andminimizeit.

They obtaintheautomatondescribedby figure6.

C. Resultsandcomments

Figure6 givesthe statesobtainedfrom the com-
piler. How do we understandthis automaton? We
namethestatesA, B, C,D, E,F, H anda,d,ddandh.
A is theinitial state.In regardsto thestatesweadded
the correspondingvaluesof the ProgramCounter.
For instancein statesD, d anddd, the PC valueis
3. Let uscommenta transitionin theautomaton:
- Arrow D � h (PC= 3 � PC= 7) correspondto the
instructionBrcondataddress2 andaconditionTrue.
As wehavealreadyseen,in thiscasethesequenceof
valuesof PCcontains2, 3, 7.

All thepossiblebehavioursgiven in figure4 cor-
respondto a path in this automaton.The sequence
of valuesof thePC3, 4, 5, 6, 0, 1 (conditiontruein



instructionline 5 andconditionfalsein instructionat
line 6) correspondto the sequenceof satesD, E, F,
G, a,B.

Detailed exploration of this automatongave us
confidencethat our PC computationmechanismis
correctwith respectto the specificationof the pro-
cessorwith delayedbranch.All thePCsequencesof
figure4 arepresentontheautomaton.Wecouldalso
observe thatour simplifiedmodelhasintroducedan
artefact: condseemsto betestedoneclockcycletoo
late.

The main activity of studentsis this task of un-
derstanding.They have to enterin the SPARC docu-
mentationandthey mustrelatetheresultsof this lab
sketchto the”true world”

VI . CONCLUSION

We have presentedan introductory activity for
three fields : computerarchitecture,digital logic
designof processorsand formal verification. Ob-
viously no generalisationof this techniquecan be
madefor atruesizeprocessor. Wemakethestudents
awareof this point.

This casestudyalsoshows the relationsbetween
RTL andlogic levels. It seemsto usnecessaryto ex-
plore somelogic implementationsof RTlevel tricks
suchaspipeline,branchdelayedinstructions,..

Introduction to readpapersabout formal proofs
of processorswould be a further step,but it needs
complementaryknowledgefor thestudents.Thanks
to M. Velev ([10]) we have a rich list of references
asa startingpoint.
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The Case for Broader Computer Architecture Education

William J. Dally
Computer Systems Laboratory

Stanford University

Keynote address

Most introductory computer architecture courses
– at both the graduate and undergraduate level – are
primarily courses on CPU architecture.  They tend to
cover instruction set architecture, processor
microarchitecture, and perhaps caches.  While this is
all useful content, our students would be better served
by an introductory course that paints a more complete
picture of computer architecture and one that better
places computer architecture in context with the
related fields of digital design and compilers.

Most computers today are not the desktop,
laptop, or server boxes that we have historically
associated with computing, but rather are embedded
computing devices that control the engines in our
cars, perform the modem functions in our cell
phones, process the images in our cameras, TVs, and
printers, or process packets traversing networks.  The
computing in these devices is typically performed by
a combination of CPUs and special purpose
hardware.  The hard problems solved by architects in
these systems do not involve the CPU, but rather the
system-level organization of the device – the division
of the problem over computing resources and the
interconnect, memory organization, and I/O
organization of the system.  The CPU(s) is (are)
typically not a major contributor to either cost (a
RISC CPU with I and D caches is less than 1mm2

today – and most of that is cache) or performance
(most of the heavy lifting is done by special-purpose
devices).

Even for PCs and servers, where CPUs do have a
large impact on cost and performance, the CPU is not
where the architect spends the bulk of their time.
System-level interconnect, memory bandwidth, and
I/O bandwidth tend to dominate.

To better reflect the challenges faced by actual
architects, our introductory courses should broaden
their coverage of architecture by treating system level
issues and considering the architecture of embedded
computing devices – not just traditional “computers.”
This will better serve both the students who plan to
specialize in architecture and those for whom the
introductory course will be their only exposure.  For
the specialists, a system-oriented course will expose
them to the type of architecture they are more likely
to be practicing.  Very few people architect CPUs.
Many people architect systems using CPUs – and
other computing devices.  For the non-specialists a
system-oriented course will give them a better
overview of computer architecture as a field than a
narrow treatment of CPUs.

To make room for the systems content in an
introductory course, much of the detailed treatment of
CPUs must be dropped from such a course.  Such
material rightly belongs in an advanced course on
CPU architecture – much as detailed treatment of
interconnection networks is deferred for an advanced
course.

Many of the problems faced by architects cannot
be solved entirely within the domain of architecture.
Digital design and compiler technology are critical to
solving many architectural problems.  Yet many
architects are not proficient in these areas.

Choosing between alternative organizations
typically requires estimating the delay, power, and
area of memories, interconnect, and logic.
Performing such estimates is remarkably easy.
However, many computer architects do not have this
skill.  Instead they rely on a separate “design group”
to give them estimates, or use “canned” programs
that perform estimates for a particular structure (e.g.
Cacti for caches).  Neither of these solutions really
works because the architect does not develop an
intuition about the alternatives that comes from
understanding how they work at the next level down
– and hence cannot use this intuition to arrive at the
“right” alternative – which is almost never one of the
initial alternatives.  For example, I am constantly
astounded by the large number of practicing
architects that do not have a good feel for the
speed/power/area tradeoffs of memories and hence
believe that DRAMs are inherently slower than
SRAMs.  Also, even though power is a critical issue,
few architects know the energy required by a
particular operation (add, read an 8K RAM, lookup in
a 32-entry CAM, clock a word into a pipeline
register, transfer a word 10mm across a chip).  This
makes it nearly impossible for them to accurately
estimate the power of proposed architectures.

A detailed understanding of digital design takes
years of experience; however, simple models of area,
power, and delay can be taught in a week or two.
The use of such models drastically changes the nature
of microarchitecture exploration.  No longer is the
task to develop the system that increases performance
at any expense (and without regard for impact on
clock rate) but the task becomes one of achieving
specified performance – including the impact on
clock rate - while staying within area and power
constraints.  Such simple models of delay, area, and
power should ideally be included in an introductory
course.



Many problems faced by an architect are better
solved at compile time than run time – or even by JIT
compilers that are invoked at run-time.  Statically
scheduling a sequence of instructions is far more
efficient (and results in a better schedule – if all the
information is available) than scheduling them
dynamically.  Similarly, specializing a piece of code
given the data type or value of a variable using partial
evaluation is far more efficient than “prediction” of
various types.  In a system with many computing
“elements” (some CPUs, others specialized), a
compiler plays a key role in “mapping” the problem
to the elements.  The best solution to most
architecture problems is usually a combination of
compile-time software and run-time hardware.

Many (not all) architects, unfortunately, view the
compiler as a given.  They see the architecture
problem as one of running existing binaries, or
compilers as someone else’s problem.  This may be
appropriate for a CPU architect tasked with
developing the next generation x86, where they really
do have to run old binaries.  However, it is not an

attitude that we should cultivate in our students.
Such an attitude is extremely limiting, ruling out
entire classes of solutions to problems.

By including a small amount of back-end
compiler technology in an introductory architecture
course – preferably with an exercise that illustrates
the advantages of solving a problem with a
combination of hardware and software – we enable
these students to view compiler technology as
another tool in their arsenal and open up a range of
solutions not accessible to those who view a compiler
as a black box.

Our architecture students would benefit greatly
from a broader introduction to computer architecture
– one that focuses on system (rather than CPU)
architecture and considers a broad class of computing
systems (not just traditional “computers”).  At the
same time, we need to enable our students by giving
them a broad range of tools to apply to architecture
problems.  Two key tools are back-end compiler
technology and simple models of delay, area, and
power.
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Abstract

Bridging the gap between the student’s current knowl-
edge and the technical details of computer systems is
frequently required for the education of undergradu-
ate students or students with a lack of previous techni-
cal knowledge. In this paper we will describe how to
build bridges by the combination of introducing Flash-
animations1 and the educational units of the RaVi sys-
tem2. In a first step the Flash-based animations make
the students familiar with the underlaying principles.
After that the student could jump to the more technical
context by using the educational unit of RaVi. We have
developed two bridges, one for explaining the principles
of cache coherency protocols and the other for showing
the concept of processor pipelines.

1 Introduction

Nowadays, many students are looking at computer sci-
ence from an application perspective. Learning how to
use the computer and to design new applications is very
attractive. Learning why and how computers are func-
tioning seems to be a lot less appealing for many stu-
dents. Moreover, it is our experience that some kind
of bridge has to be provided for students to learn how
computers are working. It is not sufficient to start right
away with technical terms and issues. There seem to be
two reasons for this: missing prerequisites and lack of
motivation. This problem is amplified in classes with

1We acknowledge the contribution of Alexandra Nolte who created
the artwork of Flash-based animations with a great level of dedication
and artistic professionalism.

2We gratefully acknowledge the funding of the RaVi-project
(which is a subproject of the SIMBA-project) by the German min-
istry of research and development (BMBF). The RaVi system is a set
of interactive training components for the teaching of the computer
architecture. Each component visualizes an aspect of the dynamic be-
haviour that is found in computer architectures.

students with very heterogeneous backgrounds.

In the context of this situation, it is unacceptable to just
give up and accept that students just focus on the ap-
plication perspective. A serious lack of knowledge of
fundamental principles would be the result and students
would not really be able to understand the principles of
the equipment they are using in their professional career.
This could very easily lead to misconceptions and dam-
ages.

So, the issue is: how to motivate the students to learn
about the internals of computers and how to provide the
bridges that are required for the students to enter areas
such as computer architecture?

One of the approaches for removing barriers that prevent
students from entering certain areas is to write very mo-
tivating books. However, this approach does not really
fully utilize the opportunities that exist due to modern
media. Modern media can provide a very motivating
path from the student’s current knowledge to what the
student should know about operating principles of com-
puter systems.

In this paper, we will describe how modern media can be
used to motivate students to study the operating princi-
ples of modern computer systems and how to use mod-
ern media to bridge the gap between the student’s cur-
rent knowledge and the technical details of computer
systems.

This paper is structured as follows: in section 2, we
describe related work. In section 3, we present our
”bridge” for understanding the MESI protocol for mul-
tiprocessor caches. In the following section, we show
how processor pipelines can be introduced to an audi-
ence that has limited previous knowledge about proces-
sors and a limited motivation. A short description of the
didactical background you will find in section 5. Experi-
ences and conclusions for our future work are explained
in section 6. The final section provides a summary of
the current paper.



2 Related work

The fact that bridges need to be provided for the stu-
dents to look at the details of computer systems with
some level of dedication has already been realized by a
number of educators.

For example, this view is dominating for the book
”Computer systems - A programmer’s perspective” by
Bryant and Hallaron [1]. In order to motivate students to
look at caches, for example, the topic is introduced using
the effect of caches on the performance to different ver-
sions of the same algorithm. In this context, it is remark-
able that the author’s University (Carnegie Mellon Uni-
versity) managed to significantly increase the percentage
of female students (if compared to male students). Fe-
male students are said to focus more on applications of
computers and less so on their internals. Unfortunately,
the approach of Bryant et al. is totally restricted to the
use of classical media, such as books.

One of the inherent limitations of books is their inabil-
ity to visualize system dynamics. Moreover, they hardly
provide any interactivity apart from adding marks to the
pages. In order to remove these limitations, simulation
of computer systems has been used. In order to be useful
in a classroom, simulation-based educational units have
to designed for this purpose. Otherwise, complex menus
and high graphical resolution requirements would make
it too difficult to understand the units quickly. Simula-
tors in this class include HADES [4], Ptolemy II [3] and
the RaVi simulator [7]. The focus of RaVi is on the vi-
sualization of complex system behavior which cannot be
explained with the animation capabilities of Powerpoint
and similar tools. RaVi includes educational units for
visualizing the dynamics of microprogrammed MIPS-
machines, pipelined MIPS-machines, dynamic out-of-
order instruction scheduling techniques and cache proto-
cols. According to our experience, RaVi meets its goal.
There is a corresponding large number of downloads of
RaVi every month and according to our statistics, RaVi
is used throughout the world. An inherent limitation of
RaVi is that RaVi does not really provide bridges that
bridge the gap between the student’s knowledge and the
details of computer architectures.

The goal of this paper is to describe how the two ap-
proaches just mentioned can be combined.

3 A bridge for the MESI multiprocessor
cache coherency protocol

The first bridge described in this paper addresses prob-
lems in explaining the principles of cache coherency
protocols with RaVi educational units. The units pro-

vide a detailed simulation of four caches and processors
connected to one ”main” memory. According to our ex-
perience, this is already a too detailed view for many
classes of attendees, including colleagues from other ar-
eas within computer science. We found it useful to avoid
this problem by relating the technical details to real life.
For the multiprocessor cache, we choose a banking sys-
tem as an example. In this example, there is a bank that
has a number of branches (which will later correspond
to processors). Customer requests at the branches in-
clude obtaining statements from the bank, withdrawals,
and deposits. Initially, local branches are not allowed
to have local copies of the account information. Ac-
cordingly, each of the customer service requests results
in sending a messenger to the central bank in order to
check and update account information. Obviously, this
approach is very slow and it makes sense to allow local
copies of account information. With such local copies
(later called caches) customers using only one branch
are serviced in a short amount of time. For customers
moving to different branches, messages still need to be
exchanged. Invalidate and well as update messages are
required. For each of the accounts, four different states
can be distinguished: modified, shared, exclusive and in-
valid. The meaning of these four states can typically be
understood even by the non-specialists. Problems which
exist for multiprocessor caches can be introduced very
easily. For example, the problem of quickly invalidating
local copies of account information in the local branches
in order to avoid people getting too much money is very
obvious. Also, the problem of identifying the branch
that has the up-to-date account information while being
in the exclusive state can also be demonstrated easily.

This example has been implemented in a Flash-based
animation. The level of interactivity in these animations
is sufficient for the ”bridges”. It would be less appro-
priate for the MESI educational units, as the behavior of
the protocol is quite complex and difficult to implement
in Flash. Fig. 1 shows a screenshot of the corresponding
Flash animation.

In the actual presentation, the correspondence between
the central bank and the main memory as well as the
correspondence between the local branches and the lo-
cal processor/cache systems are explained next. This is
quite easy to understand even for the non-specialist.

4 A bridge for processor pipelines

For processor pipelines, it is possible to use a similar
case from real life. The corresponding Flash-animation
is based on a production pipeline and uses pipe stages
similar to those that are found in MIPS pipelines. The
first stage is the dispatch stage. Instructions for fabri-



Figure 1. Flash-animation for the cache co-
herency protocols (segment of a screen-
shot)

cating hammers are issued in this stage. Components
required for this fabrication are fetched in the second
stage. The third stage is the execution stage. This is
where the hammers are actually made. The fourth stage
is idle as long as only hammers are made. The fifth
stage is the storage stage. Hammers are stored in this
stage. It is important to show that these stages operate
concurrently. Fig. 2 shows a screenshot of this Flash-
animation.

Figure 2. Flash-animation for processor
pipelines (segment of a screenshot)

In the actual presentation, the correspondence between
the pipe stages and MIPS pipe stages are explained next.
Again, it is quite easy to understand even for the non-
specialist.

5 Didactical Backgound

The underlaying didactical method which we are realis-
ing by the Flash-based animations, is a kind of anchored

learning [2]. The method of the anchored learning is
based on the idea, that the learner can find a link from
his already existing understanding of the real-world to
the new information and concepts by providing them a
so called anchor. The learners who find the link, can
construct their own new knowledge base and the under-
standing of the new main principles will be easier.

Our Flash-animations are providing a kind of an anchor
by highlighting the analogy of the every-day example
and the technical example. That means, the students
who know the main principle of a production pipeline
can find the link to the main principle of the processor
pipelines. For those students who do not know how a
production pipeline works, the anchor does not archive
its aim.

A problem for implementing the anchored learning is
that an adequate anchor has to be provided. That means,
the analogy of both examples have to match every aspect
of the examples. There is a high risk for misunderstand-
ings or missing a key point, if one or more aspects do
not match.

6 Experiences and future work

Both bridges described above have been used in pre-
sentations. The pipeline was used in a presentation to
sophomore students having no previous knowledge of
computer architecture. Feedback was limited, but it is
interesting to note that without this ”bridge” we would
not even have dared to discuss such technical details in
this audience. A second presentation was done at Seoul
National University. The audience was quite mixed,
including colleagues, graduate and undergraduate stu-
dents. A first result was the observation that the Flash
animations helped to maintained a good level of inter-
est in the audience, despite the heterogeneity of it. A
second observation was that switching between Flash-,
Powerpoint- and RaVi-animations was challenging for
the presenter.

This problem was avoided in a follow-up presentation
at KAIST in Taejon, Korea. RaVi- as well as Flash-
animations were linked to Powerpoint slides using the
macro facility of Powerpoint. This improved the situa-
tion for the presenter significantly, as he could better fo-
cus on his speech and did not have to care about switch-
ing between applications. An interesting result is the
proposal to have a Korean version of the MESI-bridge.
Unfortunately, there is only very poor support for gener-
ating localized versions of Flash-animations.

We believe that the approach described in this paper has
been very successful so far. Next, we will be working
on a similar approach for embedded system design. The



topics to be covered are presented in our recently pub-
lished book [5]. Slides corresponding to that book are
also available for download [6]. We observed that the
unavailability of tools for the visualization of the dy-
namic behavior of embedded systems is a serious bottle-
neck. We have therefore decided to extend the approach
described above to embedded systems. Candidate top-
ics include models of computation, real-time scheduling
and communication protocols.

There are still some limitations of the approach de-
scribed in this paper. As can be seen from the above
examples, currently available technologies for dynamic
visualization are far from optimal. The separation be-
tween simulation-based visualization and Flash is cer-
tainly not ideal. Powerpoint-macros are frequently dis-
abled due to security issues. Unfortunately, none of the
two tools can actually replace the other.

7 Summary

In this paper, we have described an approach for bridg-
ing the gap between the knowledge and motivation of
undergraduate students and the details that must be dis-
cussed when the internal operations of computer are ex-
plained. It is based on using an intuitive entry into
the world of computer architectures. Flash animations
turned out to be sufficient for this purpose. These ani-
mations were appreciated by the audience, but it must be
kept in mind that they are just bridges. The area reached
via those bridges must also be presented, preferably us-
ing animation and interactivity. Currently, a combina-
tion of Powerpoint and simulation-based presentation is
used. The combination of presentation techniques pro-
vided the required bridges to computer architecture to
a very heterogeneous audience, including freshman and
software-oriented people. However, it would be nice to
have a portable and serviceable tighter integration be-
tween the different presentation techniques.
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Abstract  
 
In this article, we put forward a new 
methodology and strategy for teaching the 
Instruction Set Architecture in a “Computer 
Organization” unit. This unit belongs to the 
second year of the undergraduate program in  
Computer Science at our University. In 
particular, we have centered our effort on the 
development of laboratory sessions, focused 
on an adequate introduction of assembler 
language of a general purpose processor. Our 
methodology has taken into account, among 
other aspects, the choosing of processor and 
tools, the pace with which concepts are 
introduced and the responsibility of learning. 
Thus, we obtain a less traumatic approach for 
our students to one of the most important 
subjects in the background of our future 
computer engineers and scientists. 
 Results obtained show students response 
is positive. This effect is reflected in 
student’s interest and the ease with which 
they are been able to solve the exercises we 
set them to do. Because of that, an 
improvement on learning in this subject and 
this  aspect is reflected in the subsequent 
evaluation of students. 
 
 
1. Introduction 
 
Generally, Computer Architecture units 
taught in Computer and Computer 
Engineering undergraduate programs  begin 

during the first year, and are followed in 
subsequent years, with varying intensity and 
depth depending specialization. The contents 
of these units include many aspects that are 
fundamental for the training of future 
computer scientists and engineers. It is lively 
that these aspects will retain their importance 
in the syllabus for the next 10 to 20 years [2], 
since the development of applications and 
their performance requirement have an 
important impact on the architecture, 
structure and organization of computers  [9, 
10, 12]. From another point of view, we do 
not foresee over the next years any important 
modifications to the way computers work 
and are constructed. Nowadays, in the 
architecture of current processors  we are 
using some ideas that appeared more than 30 
years ago. However, we are expecting new 
developments that will make possible very 
different approaches to the widely used 
computational models, like quantum and 
molecular computing [3]. 
 There is a generalized consensus about 
the contents that must be taught in the first 
computer architecture courses  [1, 2], but 
there are different alternatives with respect to 
the kind of processors and tools used for 
describing and studying how they work [5]. 
In this  sense, it is particularly interesting to 
study processor organization, instruction set 
architecture (mainly assembler 
programming), memory use and input/output 
control. These contents are, for this reason, 
the core of first units on Computer 



Architecture. Nevertheless, the high 
sophistication and configuration variety of 
current computers means that these must be 
studied in varying depth according to the 
final course goals [6]. An important 
complement of computer architecture 
contents is  the study of the technological 
aspects of computer design, but we do not 
consider these aspects in our article. 
 As we will see in this paper, the choice of 
processor and the tools used to teach this 
subject are very important, but the pace of 
the course and responsibility have also a 
decisive influence on the learning of the 
concepts and techniques we want our 
students  to learn. These two elements 
determine whether or not students can 
achieve the planned goals . If care is not taken 
to adequately adjust the pace of the course 
and encourage a responsible attitude on the 
part of the students , many of them will lose 
the thread of studies and finally drop out. 
 The rest of this paper is  organized as 
follows. In section 2, we review some more 
outstanding aspects related to teaching in 
introductory Computer Architecture subjects. 
In section 3, we compare  the experience of 
teaching this subject at other Universities. In 
section 4, we show the more important 
aspects of our teaching methodology. In the 
last section, we explain the principal 
conclusions derived from our experience. 
 
 
2. Introductory teaching in 
Computer Architecture  
 
Introductory Computer Architecture units 
include, among other digital aspects , the 
study of following lecture topics: 
 
• Processor: Structure and organization, 

data path, instruction set and machine 
language, assembler language and their 
relation to high level languages. 

• Memory: Organization and management, 
instructions and data storing, and cache. 

• Input/Output: Asynchronous control by 
status register and exceptions, and 
protocols . 

• Performance: Analysis and comparatives. 
 
 These contents must be transmitted to 
students both in theoretical lectures in the 
classroom and in laboratory work. In this 
way, they can acquire the knowledge and 
abilities set out in the unit syllabus. 
 The most important conceptual aspects 
must be presented in the lectures and then 
extended and elaborated in laboratory work 
where a practical application of these 
concepts are given. In this context, the pace 
and the order of laboratory work must be 
adjusted to theoretical lectures. Furthermore, 
in laboratory work students acquire the 
ability to perform analysis and synthesis . For 
that, it is often to enhance assembler 
language study (exoarchitecture) by using a 
real machine or simulator of an architecture 
strongly related to the model explained in  
previous theoretical lectures (associated to 
endoarchitecture and microarchitecture [7]), 
preferably the same. 
 There is a time in the design of an 
academic project in which we must adopt, 
among various alternatives, an example 
processor and a tool to teach this subject. 
 
2.1. Processor 
 
It seems clear that it is preferable to choose a 
real processor rather than a hypothetical one 
as this will mean that it can be used as a part 
of a real device such a commercial computer 
or a development system designed for 
laboratory. It is impossible to do this with a 
hypothetical processor. Nevertheless, real 
processors introduce some special features 
that cannot be extended to other processors, 
since its design is the result of practical and 
economic considerations. These special 



features can introduce, during the first years, 
additional complexities in the learning 
process. Furthermore, the perspective 
acquired by students may be not adjusted to 
more extended processor architecture. So, it 
is important to choose an suitable processor. 
 On the other hand, hypothetical 
processors  can be better adapted to academic 
needs at each moment, in function of student 
knowledge level. Thus, it is  easier for them 
to assimilate and apply  the concepts and 
techniques  involved. These processors are 
often designed by choosing different 
abstraction levels of some more extended 
general-purpose processors. 
 
2.2. Tools 
 
The tool chosen to teach this subject may be 
a commercial computer, a development 
system, or a simulator. A commercial 
computer can be directly used if a real 
processor is chosen. In this case, the 
assembler and software development used 
must be adapted to the characteristics of a 
particular processor, as well as its 
possibilities and restrictions. In this situation, 
processor analysis is  indirect and limited by 
the organization of a particular machine 
(memory, cache, bus, etc.). 
 When a simulator is used, it can be 
designed for a real or hypothetical processor 
(original or as abstraction of a real 
processor). Simulators of hypothetical 
processors could be better adapted to the 
needs of a particular unit. Furthermore, 
complexity can be increased in subsequent 
courses  by extending and modifying initial 
abstractions. Thus, it is possible to introduce 
more advanced concepts one at a time 
without students needing to learn about new 
tools or assembler languages. 
 In both the above cases, it is possible to 
use computer resources (directly or no), 
although these resources are always more 
limited if we use simulators. 

 
 
3. Experience in other Universities 
 
In recent years, teaching experience on 
introductory computer architecture subjects 
has featured by following characteristics: 
 
• Choose, for the first year, a simple 

hypothetical processor instead of a real 8 
bit processor (i8085, Z80, MC6800, 
R6500, etc.). The main goal is to reduce 
the gap between student knowledge and 
introductory concepts  in the first years of 
computer architecture. 

• In the second year, it is typical to opt for 
one of the well-known real 16 bit CISC 
processors produced in the 80’s (Intel 
i8086, Motorola MC68000, etc.). In some 
cases , a 32 bit RISC processor is selected 
(MIPS R2000, ARM, MC88010, etc.), in 
order to reach a better approach to the 
complexity of current commercial 
processors [5]. 

• Simulators, alone or combined with 
development systems and market 
processors, are used to show the 
relationship between assemb ly/machine 
languages and architecture, to appreciate 
the challenge of producing efficient and 
correct programs , and to develop 
applications with real hardware. 

 
 
4. Our proposal 
 
In the first year of our Computer Science 
program, the “Introduction to Computers” 
unit presents elementary concepts about how 
computers work, and the basic switching 
logic. In the second year, “Computer 
Organization” course presents a more 
detailed study of computer architecture and 
organization. Important parts of this unit are 
the instruction set architecture and the 
assembler programming. 



 Until last year, the processor we were 
using (since 1992) to teach “Computer 
Organization” was the Motorola MC68000, 
one of the most elegant exponents of CISC 
architecture. There are a lot of reasons why 
MC68000 is the most used processor to teach 
Computer Architecture (its streamlined 
architecture combined a powerful instruction 
set with moderately easy-to-learn assembly 
language). Nevertheless, its architecture is 
far from the seminal processors of current 
superscalar architectures.  
 In laboratory classes , students used a 
MC68000 based development system with a 
complex environment which cannot be used 
outside laboratory. Each laboratory session 
was organized as follows: it began with a 
lecture by the teacher, in which many new 
concepts were presented and the goal of each 
session was fixed. These goals were well 
specified, but very ambitious, and close 
attention by students was required. 
Furthermore, before students began to work, 
they need a meticulous study of its paper 
description, in which was included an 
abstract of the principal concepts explained 
by teacher. These two tasks take up the 
greater part of the laboratory sessions. 
Because of this, students had little time to 
develop the proposed exercises.  
 Laboratory sessions were designed in 
increasing order of complexity, as students 
were to analyse and design assembler 
programs, of variable complexity, from the 
first session. These programs  included data 
declaration, different kinds of instructions, 
and a great variety of addressing modes. This 
situation is habitual in the assembler 
language teaching of analyzed universities. 
 All the above circumstances encourage us 
to plan an alternative in order to make it  
easier and more comfortable for our students 
to reach the goals we set them in these 
laboratory sessions. We base this change on 
the following initial goals : 
1. Simple processor architecture. 

2. Abstraction of a more advanced real 
processor. 

3. Simulator easy to use. 
4. Laboratory work can be continued at 

home. 
5. Self-learning. 
6. No need to attend with fixed timetable . 
7. Personalized rate of learning 

(asynchronous learning) 
In order to obtain the two first conditions we 
opted for a non-segmented abstraction of the 
MIPS R2000 processor, which has easier 
structure and is easier to program than a real 
R2000 processor [12]. This is a RISC 
processor;  therefore, it has a simple 
instruction set and reduced addressing 
modes. Furthermore, in more advanced units 
we can use the same or similar processor (as 
the hypothetical, but realistic, DLX 
processor), without current abstractions [8, 
10]. 
 Conditions 3 and 4 are obtained by using 
the SPIM simulator. Concretely its graphic 
version called XSPIM, developed by James 
R. Larus from the Wisconsin University, 
which works under Linux and 
DOS/Windows operating systems [11]. This 
is an integrated simulator, where all 
information about processor and memory can 
be shown, and it is easy to use. The latest 
version (from the 6.3) of this simulator can 
show original R2000 programming 
difficulties, activating delayed load and 
delayed branch functionalities. Furthermore, 
as this simulator is a freeware software and 
multiplatform, students can use it at home. 
 
 The last three conditions are reached 
thanks to the planning and development of an 
adequate laboratory textbook. Each part of 
this textbook is associated with one or 
several laboratory sessions and is self-
contained. In each chapter new concepts are 
presented, the more advanced the unit, the 
more complex they become and it is 
supposed that only previous session concepts 



are known. Figure 1 shows a concentric 
vision of contents corresponding to 
laboratory sessions. 
 

Simulator

Data in memory

Load/Store

Arithmetic-Logic

Conditionals/Loops

Stack/Subroutines

Input/Output

Exceptions

 
Figure 1. Contents of corresponding 

laboratory sessions. 
 
 We have taken special care with students 
learning rate when designing the contents of 
each session. We don’t forget the maxim that 
says: first analyze and after synthesize. For 
that reason, all sessions begin with a little 
introduction and several example programs 
that students must analyze and understand 
the behavior of. In the following step, we 
propose some changes to previous example 
programs that students must analyze at 
another time. Thus, students increase their 
participation and make some simple guided 
synthesis. Finally, synthesis problems , such 
as short  development projects, are proposed 
in order to test the correct understanding of 
the techniques and concepts  introduced. In 
the next chapter/session, students begin with 
other example programs that they must 
analyze, and follow the same steps again. 
These steps are shown in Figure 2. 
 
 Thus, laboratory work is structured as a 
consecutive set of questions which require 
from students : to analyze an example of 
assembler program, to modify them, and 
complete a design based on the concepts and 

techniques they have learned (see Figure 3 
for an example of this structure work). A  
textbook containing laboratory work is also 
electronically obtainable from the unit 
website [4]. 
 When students have doubts about some 
concept or technique, they only have to 
review earlier sessions. Thus, there is no 
need for a teacher to be near the student at all 
times, and students work, systematically, 
solving questions and learning actively, 
because there is no obligatory attendance at 
laboratory sessions. Logically, students work 
at their own learning pace. Students needing 
more time on a particular session know that 
they have to work outside laboratory 
programmed sessions, either in free time 
access or at home, to finish all laboratory 
sessions. Only in this  way, do students have 
any guarantee of passing the evaluation of 
assembler programming. 
 

example

analysis

modification

synthesis

Enforcement
Advance

 
Figure 2. Learning flow of laboratory 

sessions. 
 
 Since simulator use is not an end goal of 
this laboratory, students don’t have to show 
their ability to use it in the evaluation tests. 
Otherwise, in the laboratory they analyze, 
modify and design little programs by using 
concepts and techniques  shown in theoretical 
lectures, and these subjects are the core of 
evaluation tests. 



 Figure 4 shows the number of students 
who have passed (results great than or equal 
to 5) and the overall of results obtained at 
course 00/01, in which the new methodology 
is introduced, have increas ed respect to early 
years (98/99 and 99/00). Tendency lines of 
last two years highlight this behaviour. 
 The number of students attending exams 
rose 20%, as dropouts  are reduced (these are 
greater in the first year this unit is coursed). 
However, these are very poor test results 
(between 0 and 3), which constitute at least 
16% of students presented. However, this 
percentage is  less than 23% compared to the 
course 99/00. 
 
Example Edit a file with the following 

code: 
     … 
Description: 
     … 

Analysis  Question 1. What code does …? 
¿What is the value of...? 
Question 2. Show which 
instructions do...? 
Question 3. If datum ... has a 5 
what happens...? 

Modificati
on 

Question 4. Modify the code to 
.... 
 

Synthesis  Question 5. Develop a program 
.... 
 

 
Figure 3. General structure of laboratory 

work. 
 
 
5. Concluding Remarks  
 
Our new methodology for the laboratory has 
shown that it is good to choose an RISC 
processor abstraction and a simulator for 
introductory computer architecture units. 
Although, it is also important that students 
follow their own pace and are actively 

responsible in this process. Sometimes it 
does not happen because students don’t  know 
how to do it. Our textbook [4] is an auxiliary 
tool to guide them in this way. Furthermore, 
in this new laboratory methodology, students 
advance more quickly, and see more contents 
in this unit, as input/output control and 
treatment of exceptions. 
 This methodology, as well as our 
textbook, has been adopted as a guide to 
other computer science programs at our 
University and at other Spanish universities. 
Evaluation results show that this is a good 
methodology improving instruction set 
architecture and assembler programming 
learning. 
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Figure 4. Histogram of the last three years 

assembler evaluation results. 
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ABSTRACT 

 
This paper presents novel methods in teaching 
advanced computer architecture courses. These 
methods include presenting fundamental computer 
architecture issues using e-learning; employing visual 
aids to teach fundamentals concepts like Caches, 
pipelining and scheduling. In addition, this paper 
discuss integrating research into the course is 
beneficial to the students pursing a PhD career.  

 
 

1. INTRODUCTION 
 
Advanced Computer Architecture courses are usually 
taught in the senior year of undergraduate curriculum 
or first year graduate curriculum. This is a 
fundamental course for microprocessor designers and 
computer architectures. Hence, establishing a good 
understanding for this course is a must for graduating 
engineer.  
 
The concepts taught in this courses includes: 
measuring performance, Instruction Set Design, 
Memory Hierarchy and Caches, Pipelining and its 
Hazards, Instruction Level Parallelism, I/O storage, 
and latest contemporary computer architecture issues. 
The course usually combines the software and 
hardware approaches that increase performance of 
the microprocessor design.   The course introduces 
these concepts and presents quantitative approaches 
to measure the feasibility of these approaches on 
performance emphasizing on the differences between 
hardware and software approaches.  
 
There are several computer architecture books [1], 
[2], and [3] available to the Computer Architecture 
Instructor. However, only reference [1] gives a 
quantitative approach to computer architecture 
concepts. Also, Hennessy & Patterson’s gives a 
comprehensive documentation on most of computer 
architecture topics.  
 
This paper will first discuss some computer 
architecture concept set for e-learning like Cache 
Associativity, superscalar microprocessors, and 
dynamic scheduling algorithms. Then discuss 
integrating research topics in the course will be 
presented. 
 

2. CACHE SET ASSOCIATIVTY  
 

This section proposes changing the presentation of 
the set associativity concept. The concept of cache set 
associativity is presented in [1] could be presented in 
a better way. This paper simplifies the presentation of 
associativity concept to make it better for students to 
visualize. Figure 1 & 2 show the set associativity 
explained according to [1]. This approach presents 
the cache to be split into number of sets and each set 
has equal number of lines. For example, a 2-way set 
associative cache having 8 lines will have 4 sets and 
each set has two lines.  
 

 
 

Fig. 1. Hennessy & Patterson’s Memory Diagram [1]. 
 
 

0 1 2 3 4 5 6 7 
        

Set 0 Set 1 Set 2 Set 3 
 
Fig. 2. Hennessy & Patterson’s 2-way set 
associative cache. 
 
This paper proposes set associativity to be dividing 
the cache into n sets; each set has number of lines. 
For example, the same 2-way set associative cache 
with 8 lines will be divided into two sets and each set 
has four lines. Figure 3 shows a 2-way associative 
cache with four lines in each set. The hardware will 
be the same whether the concepts is explained 
according to [1] or this approach, but this novel way 
is better to visualize the concept of associaitivity.    

 

Line 
no.



3. COMPLICATED CONCEPTS MADE EASY 
USING VISUAL AIDS 

 
Computers and microprocessors are rich with 
concepts that seem complicated for new students. 
These concepts are easily explained with visual aids. 
Concepts like Pipelining and its hazards, Superscalar 
design, Instruction Level Parallelism, and Dynamic 
Scheduling. This section shows these concepts 
explained using visual aids like PowerPoint 
animations. 

 
0 1 2 3  0 1 2 3 

 
 
 
 
 

    

 

    

Set 0  Set 1 
 
Fig. 3. Novel approach for explaining the concept 
of cache associativity. 
 
3.1. Pipelining and Hazards 
 
The concept of pipelining is simple to understand, but 
pipelining hazards can get complicated. Figure 4 
shows a slide of a PowerPoint presentation showing 
each pipeline stage with respect to its instruction. 
This if for a DLX processor of five pipeline stages 
(Instruction Fetch, Instruction Decode, Instruction 
Execute, Instruction Memory write, and Instruction 
Write Back). In PowerPoint presentations, each 
instruction will appear at a given time such as shown 
in Figure 5. Figure 6 will be display the next 
instruction to be issued in the pipeline stage and so 
forth.  
 
The pipeline could be also shown in terms of cycles, 
meaning display the events at each clock cycle as 
shown in Figure 5 for instruction issued.  
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Fig. 4.    DLX pipeline stage. 
 

For pipeline hazards, the visual aid could show 
bubbles inserted in the pipeline. Figure 7 shows 
bubbles and data forwarded using arrows. 
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Fig. 5.    DLX pipelining the first stage. 
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Fig. 6.    DLX pipelining the second 
instruction. 
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Fig. 7.    DLX pipeline stage. 
 
3.2. Superscalar and multi-issue machines 
 
The concept of superscalars can also be explained 
with the visual aids. For example, Figure 8 shows a 
2-way issues for a DLX supersacalar machine where 
one pipeline is assigned for integer and the other for 
floating-point operations. Note that floating-point 
operation takes 3 cycles to execute. Again this could 

Line 
no. 



be presented to the students as a motion animation 
where two instructions are issued at a given time. 
 

Instruction 
type 

Pipeline Stages 

Integer F D E M W   

FP F D E E E M W 

Integer  F D E M W  

FP  F D E E E M 

Integer   F D E M W 

FP   F D E E E 

 
Fig. 8. DLX Superscalar issue of Integer and FP 
pipeline. 
  
3.2. Instruction Level Parallelism 
 
Instruction Level Parallelism and Dynamic 
Scheduling is made easy with visual aids. For 
example, Tomasula’s algorithm for dynamic 
scheduling can be easily understood using 
animations. Figure 9 shows the window of Dynamic 
scheduling at cycle =0 for five instructions scheduled 
on this window.  
 

Instruction Issu
e 

Exec Write 
Result 

Memory Bus
y 

i    Load1  
i+1    Load2  
i+2    Load3  
i+3      
i+4      

 
Reservation Station 

Time Name Busy Op Vj Vk Qj Qk 
 Add1       
 Add2       
 Add3       
 Mul1       
 Mul2       

  
 RF F0 F2 F4 F6 ……. F30 
        

 
Fig. 9. Tomasula’s algorithm 

 
The engineering student can then fill in the blank in 
each cycle and the given time for it. For example the 
student can be writing each cycle result as the lecture 
taking place. Note that these examples are obtained 
mostly form [1]. However, the idea to involve the 
student in the process of learning and solving the 
problem as it been presented for the very first time is 
novel. 

 
4. INTEGRATING RESEARCH TOPICS 

 
Advanced Computer Architecture is rich with new 
topics that are in the research stage. The student must 
be aware of these topics before completing any 
advanced computer architecture course. This could be 

integrated in the course project where the students are 
asked to provide a quantitative measure for these new 
topics, or it could be in the form of exercise and small 
end of the course homework. The effect of this 
research on there understanding is tremendous.  
 
The best types of research papers to provide for the 
students are papers that provide the original concept. 
Also, paper that compares different microprocessors 
and their implementations [4] [5] would be good 
challenge to the students. However, for advanced 
courses and computer architects the best approach is 
to challenge the students with advanced topics [6]. 
This will give more bases for creativity when pursing 
their engineering career. 
 

5. CONCLUDING REMARKS 
 

Advanced Computer Architecture is rich with 
advanced topics. Some of the universities nowadays 
offer two levels of Computer Architecture courses for 
graduate level engineers. This paper offers a better 
ways to present some of the typical concepts of 
computer architecture such as pipelining, pipelining 
hazards, cache associativity, and Instruction Level 
Parallelism, and Dynamic Scheduling. There are 
more creative ways to present computer architecture 
concepts that are not presented here.  
 
The most advanced way of learning is through visual 
aids and e-learning. Future trends in teaching 
Computer Architecture may lead to e-learning at a 
distance. This could be explored in future papers. 
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Abstract 
Embedded processing, where computers are used to 
monitor and control dedicated hardware, is a growing 
presence within mainstream computer science and 
engineering. Network processing, where embedded 
processors monitor and control communication 
networks, is a premier example of embedded 
processing. This paper presents contents of a 
Network Systems Design course used to introduce 
undergraduate students to understanding software-
hardware co-design concepts and acquiring practical 
experience in embedded processing. The achieved 
goals of the course include: (i) carrying out lab-based 
introduction to embedded processing in its 
application area of network processing, and (ii) 
strengthening ties between academic study of 
network processing and industrial practice in the 
field, given the fact that most advances in network 
processor architectures to date have been made in 
industry. Responses from students approved our 
intention of the “hands-on” lab-based introduction 
using a modular network processing laboratory and 
verified the effectiveness of integrating academic 
study with industrial experience. 

1 Introduction 
Embedded processing, where computers are used to 
monitor and control dedicated hardware, is a growing 
presence within mainstream computer science and 
engineering [1-3]. Network processing, where 
embedded processors monitor and control 
communication networks, is a premier example of 
embedded processing. 

There is a growing need for undergraduate students 
to understand software-hardware co-design concepts 
and to acquire practical experience in embedded 
processing [4]. Network processing and network 
processor architecture provide an ideal context to 
teach software-hardware co-design at the advanced 
undergraduate level in computer science and 

engineering. In fact, network processor architecture 
is undergoing rapid evolution, making it a dynamic 
area for observation and contribution. The network 
systems in which network processors are deployed 
are also growing and evolving. These systems 
include substantial hardware and software 
components. 

This paper describes an advanced undergraduate 
course that was designed and developed about 
network processing, integrated with a modular 
network processing laboratory, to bridge 
undergraduate learning and research in both software 
and hardware. Over the last several years there have 
been a number of graduate-level courses developed 
on network processors (e.g., [5]). We have adapted 
the graduate-level courses on network processors 
into an undergraduate-level course on network 
processing and processors. The course materials, 
including course notes and laboratory exercises have 
been developed and are freely available on the 
Internet to academic institutions teaching similar 
software-hardware co-design courses. A researcher 
from industry has co-taught the course, which adds 
valuable industrial experience in these fields to the 
course. 

The modular network processing laboratory has been 
designed and utilized to teach undergraduate students 
in a “hands-on” manner the operation of a network 
processor as well as elements of network devices. 
There exist a number of papers that are useful 
references for designing lab sessions of this course. 
For example, [6-8] have discussed education of 
networking concepts via hands-on experiments or 
practical experience. We have observed that their 
course design can be improved by offering safety-net 
characteristics and industrial experience components. 
Safety-net means that students who fail to complete a 
particular assignment are still able to move forward 
to the next assignments and eventually get the 
incomplete part done. Experience with such a 
software-hardware combined environment will 



benefit students in the scientific, mathematical, and 
engineering disciplines. 

2 Course Information 
2.1 Components and schedule 

The semester long Network Systems Design course 
consisted of four components: Introduction, 
Traditional Network Systems, Network Processor 
Technology, and Example Network Processor. They 
were divided into two categories: lectures and lab 
sessions. The course schedule is shown in Table I. 
The grade weights were assigned as follows: 
homework: 20%; midterm: 20%; lab projects: 30%; 
and final exam: 30%. There was no prerequisite on 
introductory computer network course and thus the 
first three weeks were used to introduce basic 
concepts of computer networks in a nutshell. 

Table I. Lecture and Lab Schedule 

Component Lecture Lab 

Introduction 
(6 hours) 

Course introduction, 
network architecture, 
layering & protocols, OSI 
and Internet architecture; 
Encapsulation, hardware 
building blocks, encoding, 
framing; Error detection, 
Ethernet (802.3), FDDI, 
switching and forwarding, 
circuit switching; Packet 
switching, IP, service 
model, socket, routing and 
forwarding; UDP and TCP. 

Traffic 
monitoring 
and 
throughput 
measurement 

Traditional 
Network 
Systems (12 
hours) 

Computer architecture; 
Packet processing 
algorithms and functions; 
Protocol software, socket; 
Hardware architecture for 
packet processing; Classifi-
cation and forwarding; 
Switching fabrics. 

Basic router 
configuration; 

Firewall, 
ethereal, 
switch vs hub 

Network 
Processor 
Technology 
(6 hours) 

Network processor 
introduction; Complexity of 
network processor design; 
Network processor 
architectures; Scaling a 
network processor; Design 
tradeoffs and consequences. 

SystemC 
models and 
simulation 

 

Example 
Network 
Processor 
(10 hours) 

Overview of Agere network 
processor and FPL 
classification language; 
System architecture and 
modeling; Stateful network 
processor applications; 
Policing, buffer 
management and traffic 
shaping; Agere site visit; 
Network processing trends. 

Network 
processor 
bridge; 

Fragment-
ation and 
Encapsulation 

Stateful FPL 
application 

2.2 Achieved Goals 

The course offered in Fall 2003 consisted of both 
software and hardware components. The students 
were exposed to a variety of important software-
hardware co-design concepts. They learned to 
program algorithms for network processing, use tools 
to design network processors, and construct network 
devices of complex network processing systems in a 
well-structured, hierarchical way. 

We have created a project-based introduction to 
embedded processing in its application area of 
network processing, where there is increasing 
demand for skills and for which we anticipate 
substantial advances in technology. Students have 
gained hands-on experience in both the general area 
of embedded processing and in the specific area of 
network processing. 

In addition, we have successfully strengthened ties 
between academic study of network processing and 
industrial practice in the field, given the fact that 
most advances in network processor architectures to 
date have been made in industry. Agere researchers 
have participated in the course development in terms 
of co-teaching lectures, developing laboratory 
sessions, conducting Agere site visit, and supervising 
internship. 

Moreover, the development of the advanced 
undergraduate course in network processing has 
leveraged existing educational resources, including: 
(i) Classic texts and laboratory exercises in 
network processing before the advent of network 
processors, particularly Internet-oriented materials; 
and (ii) review feedback to Network Systems 
Design Using Network Processors (Agere Version of 
[9]), a new text by Professor Douglas Comer of 
Purdue University. 

3 Network Processing Laboratory 
3.1 Overview 

The purpose of the network processing laboratory 
projects or assignments is for students to develop a 
thorough understanding of network processing 
concepts, architectures, algorithms and techniques by 
implementing them. “Learning through doing” forces 
the students to digest the information presented in 
classes to the point where they can instruct the 
computer how to apply it. Active learning such as this 
has a higher chance of having a lasting effect on 
students than if the students passively listen to 
lectures without reinforcement.  
 
The architecture of the laboratory 
projects/assignments breaks the task of implementing 



network devices into smaller, more manageable 
chunks. They incrementally build on top of each 
other to incrementally create a complete hardware-
software solution to a sophisticated network 
processing system. 
 
A safety net was provided for students who fail to 
complete a particular assignment. We also offered the 
benefit in the laboratory that students have an 
opportunity to work with many different partners 
throughout the semester. 
 
The overall approach of the laboratory sequence is to 
start with high-level, application-oriented networking 
concepts with which students are already familiar, 
such as Internet communications and the World Wide 
Web, and work our way down networking protocol 
layers in the examination of underlying protocols and 
their processing in software and dedicated hardware. 
Once we have explored underlying mechanisms, labs 
reverse their direction, examining how network 
processor architectures are evolving to handle higher-
level protocol layers at full speed. Thus the 
laboratory sequence consists of an analysis stage 
leading to underlying mechanisms, followed by a 
synthesis stage that reveals the forces behind current 
trends in network processing evolution. 
3.2 Lab Projects 

Below is a list of the six incremental lab projects 
associated with the laboratory practice sessions. 

(1) Traffic monitoring and throughput measurement 
(step 1 of analysis): 

Initial exercises use ethereal/tcpdump and similar 
network traffic monitors to capture and observe live 
packets created by real applications such as web 
browsers and email. Concepts include generation and 
observation of structured traffic, a central activity in 
professional network processing. Students use traffic 
monitors and generators learned in this step in all 
subsequent steps. 

(2) Basic router configuration and raw socket (step 2 
of analysis): 

The router configuration lab helps students to 
understand more of network protocols by 
configuring Cisco routers to support various network 
topologies of the local area network and architecture 
such as VLAN. Also a homework-oriented 
assignment of raw socket concentrates on 
conventional network programming interfaces used 
by protocols and applications. 

(3) Firewall, ethereal, switch vs. hub (step 3 of 
analysis): 

Projects place network interface cards (NICs) on 
conventional computers into promiscuous mode and 
control packet receipt and transmission directly. This 
lab session includes three parts: configuring firewalls 
using iptables in Linux; using ethereal to 
capture network packets and observe the packets in 
various layers; and comparing the difference between 
a switch and a hub. 

(4) SPA network processor simulator (step 1 of 
synthesis): 

At this stage we begin reworking the mechanisms 
used in the previous stages into a form supported by 
dedicated network processing instruction sets and 
multiprocessor topologies. Exercises begin with an 
examination of fast path (a.k.a. wire speed or hard 
real-time) processing as contrasted with slow path 
(a.k.a. control path or non-real-time) processing, 
using both high-level functional simulation 
environments and actual network processor 
development environments, including tools from 
Agere Systems, Inc. 

(5) SystemC models and simulation (step 2 of 
synthesis): 

This stage uses high-level, functional simulation to 
explore hardware building blocks such as pattern 
matchers that are part of network processors. 
Students complete design of a hardware block and 
simulate its interactions with other network processor 
components. In a complete system design, a system 
designer can simulate execution of network 
processing code such as routing on a simulated 
processor written in SystemC. Students exercise this 
two-tiered simulation of hardware and software 
called co-simulation. 

(6) Stateful FPL application (step 3 of synthesis): 

Exercises focus on a representative sample of 
programs illustrating how network processors are 
currently used. Examples include bridges, routers, 
network address translators, and firewalls. For 
example, using Agere FPL (Functional Programming 
Language) to deploy a hash table to implement a 
learning Ethernet bridge. 

4 Student Response 
In a survey question asking students’ comments 
about the course, 40% of the students mentioned that 
they liked the hands-on labs, and 10% of these 
students stated that the later labs tied everything 
together. In addition, 40% students found the subject 
matter to be relevant to today’s network field.  They 
felt that the material was interesting and presented 
well, and they learned a lot of new material.  Other 



students appreciated that the professors were well-
qualified and treated the students with respect. 

Twenty percent of the students felt that the course 
could be split over two semesters, with the first 
semester introducing the basics of network system 
design and the second semester introducing more 
advanced topics in greater detail.  Other suggestions 
by individual students included having more labs like 
the first two, and providing more real work and 
fewer simulations. 

5 Conclusions and Future Work 
This paper presents contents of the Network Systems 
Design course used to introduce undergraduate 
students to understanding software-hardware co-
design concepts and acquiring practical experience in 
embedded processing. The goals achieved include: 
(i) carrying out lab-based introduction to embedded 
processing in its application area of network 
processing, and (ii) strengthening ties between 
academic study of network processing and industrial 
practice in the field. 

The next time this class is taught, a prerequisite of an 
introductory undergraduate course on computer 
networks should be imposed and the number of 
lectures and labs on the introduction of networking 
concepts would probably be increased. In addition, 
the student presentations on “what I learned” would 
be reserved for the second half of the semester. 

More Agere’s software will be adapted to our 
undergraduate course. Currently there is a 
production-quality network processor simulator 
(System Performance Analyzer – SPA) that Agere 
has donated for use in the course. There are also two 
prototype software tools that teaching assistants 
could enhance for use in the course. One is a network 
processor emulator (SAUNA) that translates network 
processor code into C code that can run on a PC 
containing two network interface cards. This 
emulator will allow students to design and test 
network processor algorithms on inexpensive PC 
hardware; code runs at PC speeds rather than at 
faster network processor speeds, but algorithms work 
identically. Having the emulator in addition to actual 
network processor hardware supports more lab 
stations at low expense, and it scales readily to 
inexpensive reuse at other colleges and universities. 
The other prototype software tool is an open source 
embedded system debugger from Agere (RTEEM) 
that a teaching assistant will enhance for debugging 
and algorithm visualization of network processing 
programs running on the emulator. 
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Abstract: HDLDLX is a graphically described VHDL model of  5-stage integer pipeline of  well known  DLX
processor.  It can be used as a  platform explaining logic-level  implementation  of   pipelined  processor as a
complement to SW functional simulators. Students can interact with model by implementing hazard resolution
logic or modifying the pipeline  structure. Even though that the model is  internally represented in VHDL, the
previous knowledge of this language is not required.  HDLDLX can be used in conjunction with HDL Designer
and  Modelsim  tools  from  Mentor  Graphics  corporation.  Article  also  discusses  pros  and  cons  of  using
commercial EDA tools in undergraduate computer architecture course.

1. INTRODUCTION

Good  understanding  of  instruction  pipelining  is
essential  for  current  computer  architecture  students.
RISC processors DLX [1] or MIPS64 [2] are used as
examples  explaining  the  main  principles.  It  is  a
common practice  to  reinforce  understanding  of  this
topic by practical assignments done by students. One
way  to  help  understand  of  pipelining  is  making
students to  optimize programs for these processors.
Cycle  accurate    simulators  [3]  with  visualization
capabilities  such as DLXView [4], WinDLX [5] or
WinMIPS64 [6] or MIPSIt [7] are used for program
verification.  Although these  simulators  give  a  good
view  of  pipelined  instruction  execution,  actual
implementation  of  pipeline  and  associated  hazard
detection  logic  is  usually hidden.  Moreover  the
pipeline implementation in these simulators  is mainly
fixed  although  some  parameters  could  be  changed
(e.g. functional unit latencies). Main question is how
the  students  could  experiment  with  actual  pipeline
structure  on  the  logic  design  level.  Some  teachers
presented dedicated tools which requires the students
to  specify  the  pipeline  structure  using  specialized
Hardware Description Language. These tools usually
generates a complete VHDL or Verilog netlist of the
processor  specified.  Example  of  such  tool  is  ASIP
Meister [8].

It  is  obvious  that  development  and  maintenance  of
similar  tool  is  relatively complex task.   We present
another  approach which leverages  commercial  EDA
tools  as  teaching  aids  in  undergraduate computer
architecture course.
 
We were looking for a  tool  which allows design of
simple pipelined processor and its simulation without
knowledge of Verilog or VHDL. This requirement is a

result  of  the  fact  that  VHDL is  introduced  only to
hardware  oriented  students  after  the  undergraduate
computer architecture course.

Finally we decided  to  use a  graphical  VHDL entry
tool  –  HDL  Designer  from  Mentor  Graphics
corporation  for  our  experiments.  In  this  article
HDLDLX – a graphical VHDL model of well known
integer DLX pipeline is presented. This model can be
used together with HDL Designer and Modelsim for
simple experiments with instruction pipeline.

The rest of the paper is organized as follows – section
2 presents an overview of HDL Designer and its use in
computer  architecture  course.  Section 3 outlines  the
developed HDLDLX  model. Section 4 describes the
use  of  this  model  in  undergraduate  computer
architecture  course.  Section  5  presents   conclusions
and future work.

2. HDL DESIGNER OVERVIEW

HDL Designer is a professional EDA tool intended to
be a “designers cockpit”. It offers a graphical VHDL
entry  and integrates several downstream design tools
in  a  single  GUI  –  namely   simulator  Modelsim,
synthesis  tool  Leonardo  Spectrum,  Precession  and
others (see fig. 1) Out intention was to build a flexible
graphical model of integer DLX pipeline and simulate
it  using a common VHDL simulator  Modelsim.  The
reason why  we decided to use this tool was in fact
that we used it in specialized design courses and it was
possible  to  extend  the  number  of  licenses  without
increase  of  maintenance  fee  (offered  in  Mentor
Graphics High Education Program).
  



Figure 1: HDL Designer flow

One  of  important  question  was  how  the  processor
model will be represented assuming that students do
not know the VHDL or Verilog. HDL Designer offers
several different types of graphical VHDL entry :
• Block Diagram

It was obvious that top-level representation of the
processor  should  be  in  block  diagram.  This
diagram should  be  the same or  similar  to  block
diagrams  used  during  lecture  to  simplify
orientation of students and save time.

• Truth Table
This  view  is  useful  for  defining  combinatorial
components of the pipeline. It is also well known
abstraction and easily understandable by students.

• State Diagram
This  abstraction  is  very  useful  for  Finite  State
Machine  specification.  However,  our  integer
pipeline does not use any state machines and this
abstraction currently is not used.

• Flow Chart
Flow Chart is a graphical equivalent of VHDL
process. It has been used for sequential elements in
design such as memories and registers

From all these components, the tool generates VHDL
files which are submitted to Modelsim for simulation.
Thanks  to  tight  integration  of  Modelsim  and  HDL
Designer,  it  is  possible  to  cross-probe between
Modelsim waveforms and graphical representation in
HDL Designer.  Namely, it  is  possible  to  observe a
values of signals directly in the block diagram.

Although the creation of the model was relatively easy
task for us, the big question was whether students are
able to learn how to use it. Even when we use only
limited functionality of the tool the overhead to learn
how to use it can overweight actual benefits. For this
reason high effort was spent in preparation of
documentation and step by step user guide. 

We return to this issue later in section 4. Another
disadvantage of using commercial EDA tool is that it
runs only with  connection to licensing server. It limits
the ability of students to run this tool from their home
computer if they do not have an access to the Internet. 

3. HDLDLX MODEL

Although the latest edition of Hennessy-Patterson
book [2] switched to MIPS64 processor, we decided
to implement 32-bit DLX processor because we use
WinDLX and DLXV simulators in rest of the semester
and DLX ISA during lectures. However, resulting
model can be relatively easy modified to 64-bit MIPS
due to similarity of pipeline structure.

Figure 2: HDLDLX pipeline 

3.1  HDLDLX Pipeline Overview

DLX is  well  known 32-bit  RISC processor  used  in
computer  architecture  courses  and  many  different
simulators of this processor  exist. These tools differs
in  the  variant  of  DLX  implementation  because  it
evolves throughout the book. 

Our main intention was to create the same variant of
DLX as the one used during our lectures. 
In the first pipelining lecture, the evolution of integer
DLX processor  datapath and controller  from single-
cycle  non  pipelined  processor  through  multicycle
processor to 5-stage integer pipeline. 
The implemented model corresponds to this simple 5-
stage  integer  DLX  pipeline  (Instruction  Fetch  –
Instruction  Decode  –  Execute  –  Memory  –  Write
Back).

Following section outlines the implementation of DLX
pipeline components.

3.2 HDLDLX Pipeline Components

HDLDLX  consists  of  pipelined  datapath  and
controller.  Datapath  is  created  by  PC,  program
memory,  register-file,  ALU,  data  memory,
multiplexers and pipeline registers. Controller consists
of  combinatorial  logic  in  every  stage  and  pipeline
registers.

• Program Counter (PC)  is fed by the value from
Next Address Logic. Depending on control signal,
the  PC  is  either  incremented  by  4  or  jump  to
branch target address.
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Important  control  signal of PC is  IF_stall which
can prevent the PC from changing its value. This
signal is very useful in implementation of pipeline
stalls.

• Program Memory is implemented as a ROM. Its
content can be preloaded from the file (containing
instructions  encoded  in  hexadecimal  form).  The
size of Program Memory is limited to 16K x 4B
(higher bits of PC are ignored). 

• Register file implements 32 32-bit registers. It can
be described  as 3-ported  synchronous RAM with
R0 hardwired to zero. To be conform with book,
the register file contains internal bypassing – data
from write port could be forwarded directly to one
of read ports in the same clock cycle (in exception
of write to register R0 which is never forwarded). 
Register  file  ignores  any  attempt  to  write  to
register  R0  which  can  be  used  to  simplify  the
pipeline control.

• ALU is  implemented  using  Truth-Table
abstraction as a black box. It supports only limited
set  of  binary  and  unary  operations  (see  section
3.3).  However  number  of  operations  can  be
expanded by increasing the size of ALU control
bus  and  expanding  the  truth-table.  Besides  the
result of operation, it also produces zero indication
which can be used in branch evaluation.

• Data  Memory is  implemented  as  ideal
synchronous  RAM.  Memory  model  pre-loads
initial data from the text file and dumps its content
into file after the simulation is finished. The size of
Data  Memory is  currently  limited  to  64KB and
higher address bits are ignored.

• Controller.  As  could  be  seen  from  fig.  2,  the
controller  is  implemented  as  a  sequence  of
combinatorial logic sliced by pipeline registers. In
real implementation, the instruction is decoded in
ID stage into internal representation which flows
through the pipeline stages. However, it would be
very difficult for students to observe the pipeline
behavior in this  case.  For this reason we let  the
complete 32-bit  instruction code to flow through
the whole pipeline. In every stage, the necessary
control  signals  are  decoded  from  this  32-bit
instruction  code.  Although,  this  is  slightly
redundant implementation, it allows to understand
the  pipeline  much  easily.  Control  combinatorial
logic in every pipeline stage is described as truth-
table and can be easily  modified.
 

• Pipeline  Registers  are  implemented  as  rising-
edge triggered D flip-flops. Two types of flip-flops
is used in the pipeline - normal D-flip-flops in the
datapath  and  specialized  in  the  controller.
Specialized D-flip-flops in the controller have two
control  signals  –  stall and  clear.  There  are
dedicated stall and clear  signals for every pipeline
stage (e.g. ID_stall, ID_clear, EX_stall, EX_clear

etc.)  If  the  stall  signal  is  asserted,  the  pipeline
register retains its value, if clear signal is asserted,
the  pipeline  register  is  synchronously cleared.
Clearing pipeline register  in controller  efficiently
means that NOP is inserted to this pipeline stage.

As could be seen from fig.2 , the pipeline evaluates
branch  instruction  in  the  MEM  stage  and  no
forwarding and no  hazard detection is  implemented.
These features has to be added by students. 
Main methodology to implement these changes is
defining of stall and clear signals behavior either by
drawing schematics or writing VHDL equation. We
would discuss this in detail in the section 4.

3.3 HDLDLX Instruction Subset

Only  limited  instruction  subset  is  implemented  in
HDLDLX.  However,  all  types  of  instruction  are
supported  (Register-Register,  Register-Immediate,
Load, Store and Branch).
Number of supported instructions can be expanded by
changing combinatorial logic in controller and ALU.

4. EXPERIENCE WITH HDLDLX 

We currently use the HDLDLX in our undergraduate
computer  architecture  course.  This  course  is
obligatory for  all  computer  science  and  engineering
students and current capacity is around 300 students.
The course has a single 90-minute lecture and single
90-minute laboratory seminar per week. HDLDLX is
used in laboratory seminars during 4 sessions as could
be seen in table 1. Experiments with HDLDLX were
done  every  second  week  and  interleaved  with
simulations on WinDLX. It means that  students can
compare  two  models  of  the  same  architecture.
WinDLX also helps  in  understanding what must  be
implemented in HDLDLX. The ultimate goal is that
both  simulators  process  the  same  integer  program
equivalently.

Following  subsections  outline  the  actual  use  of
HDLDLX during the course.

Table 1 HDLDLX  in undergraduate CA Course.

Week Lab Overview

1 Introduction  to  HDL  Designer  and
HDLDLX model 
Simulation of HDLDLX with pipeline data
hazards

2 Implementation of RAW hazard resolution
logic (pipeline interlock)

3 Adding of control hazard resolution logic
into DLX pipeline with stalls.
Implementation of forwarding

4 Finalizing of forwarding



4.1 Introductory Session 

As could be seen from table 1, a first session is spent
in introduction to the tool and model. An ultimate goal
of  the  first  session  is  a  brief  explaining  of  HDL
Designer and Modelsim and more detailed description
of HDLDLX model. 

Although only limited functionality of HDL Designer
is used, some time must be spent in setting up the tool
and explanation of necessary steps in using this tool in
various situations. Tool setup was relatively easy task
accomplished only by downloading and expanding of
HDL  Designer  library  from  a  web  into  a  user
directory.   All  HDLDLX  model  components  were
stored  in  shared  library and  students  had  read-only
access to this library. It means that only top-level part
of HDLDLX was stored in student's  libraries and only
this part can be modified. This restriction saves a lot
of  time  possibly spent  in  tracking of  peculiar  bugs
unintentionally introduced  by students  modifying of
model components.
After setting-up the library in the user directory, the
tool  use  was  relatively  simple  and  consists  mainly
from sequence of  mouse clicking. In  the beginning,
students must open a project,  open a library within
this  project   and  finally  open  structural  view  of
HDLDLX.  Luckily,  the  majority  of  these  steps  is
performed only during a first HDL Designer run and
later  the  tool  opens  the  library  automatically.
Although it was not completely necessary, we briefly
explained the concept of projects, libraries and blocks
and their different views to students. The rest was not
difficult to understand and students considered HDL
Designer  just  as  any  other  schematic  editor.
Generation  of  VHDL  model,  compilation  and
invoking  of  Modelsim  was  automated  by  a  single
clicking on Modelsim icon in HDL Designer. Overall
the tool setup and necessary explanation took around
30 minutes. 

Problem  of  explaining  HDLDLX  pipeline  is  more
demanding.  However,  it  was simplified  by the  fact
that the same (simplified) DLX pipeline is explained
in the same week during lecture. In the first lab, the
effort is spent mainly in explaining how each type  of
instruction  flow  through  pipeline  and  purpose  of
various parts of DLX datapath. This is  illustrated by
running of simulation of sample program. 
Next, the concept of inserting stalls into pipeline using
stall  and  clear  signals is  explained. Initial  model of
HDLDLX does not contain any hazard detection and
resolution logic and students may actually observe the
effect of  RAW  hazards  in  the  pipeline.  A  good
teaching  aid  is  the  ability  of  cross-probing signals
between  HDL  Designer  schematic  diagram  and
Modelsim.

4.2 Experiments performed with HDLDLX

A  list  of  experiments  possible  with  HDLDLX  is
presented in table 1. Simple experiments are suitable

for undergraduate course where students have limited
access to the tool. More complex experiments can be
performed  in  graduate  course  as  a  half  semester
assignments assuming that graduate students will have
more  knowledge  of  the  HDL  Designer  and  better
access to the tool.

All simple experiments lead to specification of some
form of combinatorial  logic into pipeline.  Typically,
equations for stall and clear signals must be specified
for implementation of pipeline interlocks and branch
instruction. Forwarding is implemented by adding of
multiplexers  into  datapath and  specifying control  of
these multiplexers.  

Table 2 Experiments with HDLDLX  

Simple experiments possible with HDLDLX

• Implementation of data hazard detection logic
and stalling of the pipeline 

• Implementation of pipeline flushing after branch
instruction 

• Implementation of data forwarding
• Moving branch evaluation into ID stage and

implementation of delayed branches

More complex experiments with HDLDLX

• Implementation of Program and  Data Caches
and pipeline stall due to “Cache miss”

• Implementation of multicycle operations (e.g.
multiplication) and associated WAW, structural
hazard resolution logic

• Implementation of exceptions

During the first run of the course, we proposed use of
schematic diagram or VHDL subset for specifying this
combinatorial  logic.  It  was  expected  that  students
would  prefer schematic  diagrams  over  learning  of
subset  of  a  new  language.  However,  majority  of
students  decided  to  directly  write  VHDL  parallel
signal assignments. We thought that students preferred
a text description because it  is faster and it reminds
them software programming.

Overhead of learning subset of VHDL syntax was not
high.  Students  received  a  one-page  simplified
description of the VHDL parallel statements and some
of  them  were  even  able  to  write  these  statements
before  the  end  of  the  first  session  with  HDLDLX.
Parallel assignments have smallest learning overhead
in VHDL . Their another advantage is in fact that they
introduce a dataflow way of thinking.
 
The  major  difficulty  encountered  by  students   was
distinguishing  between  std_logic  and  boolean
statements which use the same overloaded operators
(e.g. AND, OR, NOT). It suggests that using Verilog
can be even more straightforward in this application.

4.3 Experience from First Run on HDLDLX

After  first  introductory  session,  students  work  in
groups  of  two autonomously and  tried  to  complete



assigned  tasks.   A role  of  teaching assistant  during
these  sessions was in helping students  to  overcome
difficulties with VHDL and trying to push them on a
way to find solution. Although the fact that students
can  work  on  the  simulator  only  in  the  school
complicated their task, it also limited the possibility of
cheating by copying solution of other groups.
  Experience  shows  that  around  50  %  of  groups
completed the assignments during the expected time
and  obtained  a  full  number  of  points.  The  rest  of
students required more time but majority of them were
finally able to complete it  also.  It  was an important
role  of  teaching  assistant  to  check  that  students
understand “their” solution to limit the possibility of
cheating. 

5. CONCLUSIONS AND FUTURE WORK

Current  experience shows that  HDLDLX is  a  good
teaching  aid  in  explaining  basics  of  instruction
pipelining. The use of commercial EDA tool allows
relatively  fast  model  development  comparing  to
building  custom  simulator.  Although the  model  is
based  on  VHDL,  the  students  were  able  to  use  it
without previous knowledge of this language. Students
of  undergraduate  computer  architecture  course  were
able  to  learn  a  limited  subset  of  this  language
relatively easy  and preferred using it over schematic
diagrams.

Students who completed the assigned tasks get better
understanding of complexity of hazard detection logic
implementation. Moreover, they were also introduced
to contemporary tools and language used in design of
digital circuits. Students mostly stated that their task
was relatively difficult but very interesting. A fact that
a  commercial  tool  is  used  was  also  positively
appreciated and some students were interested to use
this tool in the future courses.

A good experience we had with HDLDLX confirmed
our  decision to  introduce  Hardware  Description
Languages in early courses of logic design. It means
that in the future, students will come to undergraduate
computer architecture course with basic knowledge of
VHDL which will offer new possibilities.

HDLDLX model will be soon available on the
internet -  http://service.felk.cvut.cz/hdl_dlx.html
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Software Implementations of Division and Square 
Root Operations for Intel® Itanium® Processors 
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Abstract 
Division and square root are basic operations 
defined by the IEEE Standard 754-1985 for Binary 
Floating-Point Arithmetic [1], and are implemented 
in hardware in most modern processors. In recent 
years however, software implementations of these 
operations have become competitive. The first IEEE-
correct implementations in software of the division 
and square root operations in a mainstream processor 
appeared in the 1980s [2]. Since then, several major 
processor architectures adopted similar solutions for 
division and square root algorithms, including the 
Intel® Itanium® Processor Family (IPF). Since the 
first software algorithms for division and square root 
were designed and used, improved algorithms were 
found and complete correctness proofs were carried 
out. It is maybe possible to improve these algorithms 
even further. 
The present paper gives an overview of the IEEE-
correct division and square root algorithms for 
Itanium processors. As examples, a few algorithms 
for single precision are presented and properties 
used in proving their IEEE correctness are stated. 
Non-IEEE variants, less accurate but faster, of the 
division, square root and also reciprocal and 
reciprocal square root operations are discussed. 
Finally, accuracy and performance numbers are 
given. The algorithms presented here are inlined by 
the Intel and other compilers for IPF, whenever 
division and square root operations are performed. 

Introduction  
One of the design goals for the Intel® Itanium® 
architecture, finalized in the late 1990s, was to 
achieve world-class performance in floating-point 
computations. For this reason, the floating-point 
architecture included many novel features for Intel 
processors: available 82-bit floating-point format (1-
bit sign, 17-bit exponent, and 64-bit significand), 
128 floating-point registers, rotating registers and 
other support for software pipelining, multiple status 
fields, flexible computation modes, and a floating-
point multiply-add instruction with only one 
rounding error in the addition step [3][4][5]. Today 
it is a known fact that this goal was achieved: 
presently, 16 of the 17 top positions (1 through 7 and 
9 through 17) in the SpecFP 2000 ranking list for 
speed of single processor systems are held by 
machines based on Itanium processors.  
The floating-point multiply-add instruction fma was 
at the basis of efficient software implementations of 

the floating-point division and square root 
operations. An important application of this 
instruction is in the calculation of exact remainders. 
For example for a division a/b, where a and b are 
floating-point numbers, a sequence of increasingly 
better approximations q0, q1, … qi–1, qi of the 
quotient a/b can be calculated using the Newton-
Raphson or another equivalent method. A final 
approximation qi can be obtained that can be 
rounded correctly as specified by the IEEE Standard 
754-1985, provided a correction term (remainder) ri-1 
can be calculated exactly based on the penultimate 
approximation qi–1: 

ri-1 = a – b ⋅ qi –1 

If the approximation qi–1 is good enough1, it can be 
shown that ri–1 calculated with an fma instruction 
can be represented always exactly as a floating-point 
number. The floating-point multiply-add operation, 
which is not defined by the current IEEE Standard 
for Binary Floating-Point Arithmetic, is thus 
essential in calculating IEEE-correct results in 
software for division and square root in the three 
most widely used formats defined by the standard: 
single precision, double precision, and double-
extended precision. A brief review of some of the 
IEEE floating-point formats available in the Itanium 
architecture is included here for reference. 
In general, floating-point numbers are represented as 
a concatenation of a sign bit, an M-bit exponent field 
containing a biased exponent, and an N-bit 
significand field (in this context N = 24, 53, or 64). 
Mathematically: 
 f  = σ ⋅ s ⋅ 2e 
where σ = ±1, s ∈ [1,2),  e ∈ [emin, emax] ∩ Z2,          
s = 1 + k/2N-1 ,  k ∈ {0, 1, 2,…, 2N-1-1},  emin  = -2M-1 
+ 2, and emax = 2M-1 – 1. Let FN be the set of floating-
point numbers with N-bit significands and unlimited 
exponent range (no special values such as zeros, 
infinities, or NaNs3 are included). The main 
                                                           
1 It suffices for qi–1 to be accurate to one unit-in-the-last-
place (ulp). A unit-in-the-last-place represents the weight 
of the least significant digit of a floating-point number. For 
a floating-point number f with N bits in the significand, f = 
b0.b1b2…bN–1 ⋅ 2e, the value of one ulp is 1 ulp(f) =    
2e–N+1. 
2 Z is the set of integer numbers. 
3 NaN stands for not-a-number. NaNs are symbolic values 
encoded in floating-point format, used most often to cause 
or be the result of invalid operations. 

 



parameters of the formats used in the software 
implementations discussed in the paper are shown in 
Table 1. 
Table 1. Floating-Point Formats Available in the 
Itanium Architecture (subset) 
Format Precision 

(N) 
Exponent 
Bits (M) 

Exponent Range 

Single 24 8  –126 ≤ e ≤ 127 

Double 53 11   –1022 ≤ e ≤ 1023 

Double 
extended 

64 15  –16382 ≤ e ≤ 16383 

Register 
single 

24 17  –65534 ≤ e ≤ 65535 

Register 
double 

53 17  –65534 ≤ e ≤ 65535 

Register 64 17  –65534 ≤ e ≤ 65535 

 
The division and square root operations discussed 
here have in general two different implementations 
available for every format: one that minimizes 
latency, and one that maximizes throughput. The 
latency-optimized versions minimize the number of 
clock cycles elapsed from the beginning of the 
computation until the result is available. In most 
cases this is easy to determine, because the majority 
of floating-point instructions have a latency of 4 
clock cycles on the Itanium 2 processor. The 
throughput-optimized versions minimize the number 
of clock cycles elapsed between the moments when 
two consecutive floating-point results are generated. 
The latter are intended for use in software-pipelined 
loops, and the resulting throughput depends on the 
number of functional units available. For example, 
the throughput-optimized single precision division 
algorithm uses 7 floating-point instructions, and 
possibly three memory access instructions. The 
limiting factor in this case is the number of floating-
point instructions. On the Itanium 2 processor, 
which has two floating-point units available, it will 
take on average 7/2 = 3.5 clock cycles to generate a 
result with the throughput-optimized algorithm (but 
only if the loop is unrolled once, otherwise the 
throughput will be of 4 clock cycles/result).  

IEEE-Correct Floating-Point 
Division 
Division operations that comply with the IEEE 
Standard 754-1985 have a clearly defined result. In 
general (exceptions are the cases of underflow or 

                                                                                      

 

 

overflow) this is the exact result rounded to the 
destination precision, using the IEEE rounding mode 
currently in effect (rounding to nearest, toward zero, 
toward positive infinity, or toward negative infinity). 
Division for Itanium processors is implemented 
based on iterative algorithms, starting with an 11-bit 
approximation y0 of the denominator’s reciprocal. 
This value is provided by a special instruction 
performing a table lookup, frcpa, and has a 
relative error of at most 2-8.886: 
 y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886    
Multiplying this value by a, a first approximation of 
the quotient is obtained and its relative error e0 can 
be calculated. The symbol rn denotes the IEEE 
round-to-nearest mode, and rnd represents any IEEE 
rounding mode. 
 q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0) 
 e0 = (1 - b ⋅ y0)rn = –ε0 
This approximation can be further improved if the 
value of q0 is multiplied by the polynomial 1 – ε0 + 
ε0

2 – … + (–ε0) k–1, derived from the identity 
    (1 + ε0) ⋅ (1 – ε0 + ε0

2 – … + (–ε0)k–1) = 1 – (–ε0)k 
The result (ignoring for now the rounding errors) 
will be: 

q ≈ a/b ⋅ (1 – (–ε0)k) 
In addition, an optimal way of calculating the 
product of this polynomial by 1+ε0 has to be 
determined for each division algorithm: with the 
lowest latency for latency-optimized operations, and 
with the lowest number of floating-point instructions 
for throughput-optimized operations. 
Consider as a first example the latency-optimized 
single precision division algorithm. 

Single precision division, optimized for 
latency 
The following algorithm calculates the single 
precision value q’3 = (a/b)rnd, where a and b are 
single precision numbers. All the other intermediate 
results are 82-bit floating-point register format 
numbers. The precision used for each step is shown 
too. An approximate value of the result is also 
shown, calculated assuming that the rounding errors 
are negligible. 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 
    table lookup 
(2) q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(4) q1 = (q0 + e0 ⋅ q0)rn ≈ a/b ⋅ (1–ε0

2) 
    82-bit floating-point register format 
(5) e1 = (e0 ⋅ e0)rn ≈ ε0

2 
    82-bit floating-point register format 



(6) q2 = (q1 + e1 ⋅ q1)rn ≈ a/b ⋅ (1–ε0
4) 

    82-bit floating-point register format 
(7) e2 = (e1 ⋅ e1)rn ≈ ε0

4 
    82-bit floating-point register format 
(8) q3 = (q2 + e2 ⋅ q2)rn ≈ a/b ⋅ (1–ε0

8) 
    17-bit exponent, 53-bit significand 
(9) q’3 = (q3)rnd ≈ a/b ⋅ (1–ε0

8) 
    single precision 

This shows that the intermediate approximations q0, 
q1, q2, and q3 are getting increasingly closer to a/b. 
The last step is needed to reduce the precision of the 
result to 24 bits, for the single precision format. As 
steps (2) and (3),  (4) and (5), and (6) and (7) 
respectively can be executed in parallel, the total 
latency on the Itanium 2 processor will be of 6 x 4 = 
24 clock cycles. In software-pipelined form, this 
algorithm could generate on average a result every 
9/2=4.5 clock cycles. However, an algorithm can be 
found that has better throughput characteristics. 

Single precision division, optimized for 
throughput 
The first idea was to modify the latency-optimized 
algorithm so that the first five steps generate 
increasingly better approximations y1 and y2 of 1/b, 
rather than q1 and q2. The subsequent steps would be 
to calculate  
                q0 = (a ⋅ y2)rn 
then an exact remainder  
                r0 = (a – b ⋅ q0)rn  
in the penultimate step, and the correctly rounded 
result  
                q1 = (q0 + r0 ⋅ y2) rnd ≈ a/b ⋅ (1–ε0

8)  
in the last step. This would result in a latency of 7 x 
4 = 28 clock cycles, which is worse than that of the 
previous algorithm, but a better throughput of 8/2 = 
4 clock cycles/result. However, an even better 
algorithm could be found after noticing that         
ε0

8 < 2-71.088 leads to a value q1 before rounding that 
is more accurate than needed for an IEEE-correct 
single precision result. The relative error incurred 
when rounding a real number to single precision is 
less than 2-24, and about twice as much accuracy 
should be enough (as shall be seen in the subsection 
on Correctness Proofs). It suffices for example to 
calculate q ≈ a/b ⋅ (1–ε0

6) where ε0
6 < 2-53.316. The 

best throughput-optimized algorithm is thus: 

   

Proofs were developed to show that the results of the 
division algorithms proposed for single, double, and 
double-extended computations are IEEE-correct for 
any combination of operands and for any of the four 
IEEE rounding modes. This included showing also 
that the floating-point exception status flags are 
always set correctly, and that unmasked exceptions 
trap as specified in the IEEE Standard (using the 
user status field sf0 only in the first and last 
computation steps and the reserved status field sf1 in 
the intermediate steps helps ensure correct IEEE 
exception behavior; note that Itanium processors 
have four status fields available). To prove that the 
results are always numerically correct, three 
properties were used [7]. (The values N of concern 
in this context are N = 24, N = 53, and N = 64.) 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 
    table lookup 
(2) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(3) e1 = (e0 + e0 ⋅ e0)rn ≈ –ε0+ε0

2 
    82-bit floating-point register format 
(4) y1 = (y0 + e1 ⋅ y0)rn ≈ 1/b ⋅ (1+ε0

3) 
    82-bit floating-point register format 
(5) q1 = (a ⋅ y1)rn ≈ a/b ⋅ (1+ε0

3) 

    17-bit exponent, 24-bit significand 
(6) r1 = (a – b ⋅ q1)rn = –a ⋅ ε0

3 
    82-bit floating-point register format 
(7) q = (q1 + r1 ⋅ y1)rnd ≈ a/b ⋅ (1–ε0

6) 
    single precision 

In software-pipelined form, this algorithm can 
generate on average one result every 3.5 clock 
cycles. However, for this the loop would have to be 
unrolled once, so that it will contain an even number 
of floating-point instructions. Then two results will 
be generated on average every 14/2=7 clock cycles. 
Similar algorithms were designed for double and 
double-extended precision division operations. In 
each case, the optimal sequence was selected that 
would still afford sufficient accuracy in the final 
result q ≈ a/b ⋅ (1 – (–ε0)k) to allow for correct IEEE 
rounding in all cases. Of all possible sequences, the 
one that minimized the number of clock cycles was 
chosen for latency-optimized algorithms, and the one 
with the lowest number of floating-point instructions 
for throughput-optimized algorithms. The complete 
set of IEEE-correct algorithms for the division 
operation can be found in [6], where source code for 
all the IPF division algorithms can also be obtained. 

Correctness Proofs 

Theorem 1. Let a, b ∈ FN, such that a/b ∉ FN, q* ∈ 
R, and N1 ∈ N4, N1 ≥ 2 ⋅ N + 1. 
If q* is within 1 ulp of a/b in FN1, then  

(q*)rnd = (a/b)rnd.        
Theorem 2. Let b ∈ FN, with the restriction that the 
significand of b is not 1.11…1. Let y ∈ FN be an 
approximation of 1/b within 1 ulp of 1/b in FN. Then 
the computation: 

e = (1 – b ⋅ y)rn 
y' = (y + e ⋅ y)rn 

                                                           
4 R is the set of real numbers, and N is the set of natural 
numbers. 

 



yields y' = (1/b)rn.                             
Theorem 3. Let a, b ∈ FN. If y ∈ R* is within 1/2 
ulp of 1/b in FN, q ∈ FN, and q ≅ a/b is within 1 ulp 
of a/b in FN, then the computation 
         r = (a – b ⋅ q )rn 
        q' = (q + r ⋅ y)rnd 
yields q' = (a/b)rnd.                                                          
Theorem 1 was applied in proving correctness of the 
latency-optimized single precision division 
algorithm. Relative error evaluations for steps (1) 
through (8) showed that q3 is within 1 ulp of a/b in 
F49. Theorem 1 proves that in step (9), q’3 = (a/b)rnd 
(i.e. a/b is correctly rounded, as specified by the 
IEEE Standard). 
Theorem 3 was applied in proving correctness of the 
throughput-optimized single precision division 
algorithm. First it was shown that y1 is within 1/2 ulp 
of 1/b in F24 and q1 is within 1 ulp of a/b in F24. 
Theorem 3 states that steps (6) and (7): 

                (6) r1 = (a – b ⋅ q1)rn 
                (7) q = (q1+ r1 ⋅ y1)rnd 

yield q = (a/b)rnd.                                                          
Theorem 2 was needed only for the double-extended 
division algorithms, where the operands and the 
result have the same precision as the intermediate 
calculations. This makes it more difficult to rely just 
on simple relative error evaluations to show for 
example that y in the last step is within 1/2 ulp of 1/b 
as required by Theorem 3, but Theorem 2 makes this 
possible. One special case had to be treated 
separately, when the significand of b is 1.11…1 (but 
for this case it could be checked directly that y' = 
(1/b)rn). 
The mathematical proofs of correctness were 
checked further using an automatic proof checker 
written in HOL [8]. 

Non-IEEE Floating-Point Division 
There are applications where strict IEEE accuracy 
for floating-point computations may not be required, 
and instead faster basic operations would be of more 
benefit. To cover such needs, non-IEEE floating-
point division algorithms were derived from the 
IEEE-correct versions, with relative errors not 
exceeding 1 ulp (the IEEE-correct operations have 
relative errors of at most 0.5 ulp). Non-IEEE 
algorithms were designed also for reciprocal 
operations, which are not defined by the IEEE 
Standard. The division operations performed by the 
non-IEEE algorithms are thus slightly less accurate, 
but faster than their equivalent IEEE-correct 
algorithms. 
For example, the non-IEEE single precision division 
algorithm is: 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 

    table lookup 
(2) q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(4) e1 = (e0 + e0 ⋅ e0)rn ≈ –ε0 + ε0

2 
    82-bit floating-point register format 
(5) q1 = (q0 + e1 ⋅ q0)rnd ≈ a/b ⋅ (1+ε0

3) 
    single precision 

The same algorithm can be used both in latency-
optimized as well as throughput-optimized code. 
Only a limited correctness proof is required in this 
case. The maximum relative error of the result has to 
be determined, and it has to be proved that overflow 
and underflow conditions occur reasonably close to 
those for the IEEE-correct algorithm. The exception 
status flag for precision is not checked in this case. 
The algorithm for calculating the non-IEEE single 
precision reciprocal is even simpler: 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 
    table lookup 
(2) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(3) e1 = (e0 ⋅ e0 + e0)rn ≈ –ε0 + ε0

2 
    82-bit floating-point register format 
(4) y1 = (y0 + e1 ⋅ y0)rnd ≈ 1/b ⋅ (1+ε0

3) 
    single precision 

Similar algorithms for non-IEEE double precision 
division and reciprocal are given in [9], together 
with source code. 

Latency, Throughput, and 
Accuracy for Division and 
Reciprocal Operations 
Latency and throughput values for the single, 
double, and double-extended IEEE-correct and non-
IEEE division and reciprocal operations on the 
Itanium 2 processor are given in Tables 2a and 2b. 
Table 2a. Latency, Throughput, and Accuracy for 
IPF IEEE Division and Reciprocal Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock cycles/ 
result) 

Accuracy 
(ulps) 

Single 
Precision 
Division 

24 3.5 0.50 

Double 
Precision 
Division 

28 5.0 0.50 

Double-
Extended 
Precision 
Division 

32 7.0 0.50 

Single 
Precision 
Reciprocal 

24 3.5 0.50 

Double 
Precision 
Reciprocal 

28 5.0 0.50 



Theoretical error bounds for the non-IEEE 
operations are given in Table 2b. These are 
guaranteed upper bounds, but might not be reached 
in some cases. For this reason, maximum errors 
observed in testing are also included in the table. 

Table 2b. Latency, Throughput, and Accuracy for 
IPF Non-IEEE Division and Reciprocal Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock 
cycles/ 
result) 

Theoretical 
Accuracy 
(ulps) 

Observed 
Accuracy 
(ulps) 

Single 
Precision 
Division 

16 2.5 0.6585 0.6524 

Double 
Precision 
Division 

20 4.0 0.5018 0.5010 

Double-
Extended 
Precision 
Division 

NA NA NA NA 

Single 
Precision 
Reciprocal 

16 2.0 0.6585 0.6487 

Double 
Precision 
Reciprocal 

20 3.5 0.5010 0.5003 

 

IEEE-Correct Floating-Point 
Square Root 
Square root operations that comply with the IEEE 
Standard 754-1985 return the exact result rounded to 
the destination precision, using the IEEE rounding 
mode currently in effect. The square root operation 
for Itanium processors is implemented based on 
iterative algorithms as well, starting with an 11-bit 
approximation y0 of the reciprocal square root. This 
value is provided by a special instruction performing 
a table lookup, frsqrta, and has a relative error of 
at most 2-8.831: 
 y0 = 1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
Multiplying by a, a first approximation of the square 
root is obtained and its relative error d can be 
calculated: 
 S0 = (a⋅ y0)rn = ◊a ⋅ (1+ε0) 
 d = 1/2 ⋅ (1 – S0 ⋅ y0)rn = –ε0 – 1/2 ⋅ ε0

2 
Note that 1 – 2 d = (1+ε0)2. Just as for division, the 
approximation S0 can be improved further if it is 
multiplied by 1 – ε0 + ε0

2 – … + (–ε0)k–1. The result 
(ignoring the rounding errors) will be: 

S ≈ ◊a ⋅ (1 – (–ε0)k) 
A complication in this case is the fact that the 
relative error d calculated for S0 is not equal to –ε0, 
as it was for the division operation. In order to use 
the identity: 
    (1 + ε0) ⋅ (1 – ε0 + ε0

2 – … + (–ε0)k–1) = 1 – (–ε0)k 

a polynomial in d has to be found, that approximates 
sufficiently well  
    1 – ε0 + ε0

2 – … + (–ε0) k–1 + … = 1/(1 + ε0) 
For this, the value of ε0 is calculated from d = –ε0 – 
1/2 ⋅ ε0

2: 
 ε0 = –1 + ◊ (1 – 2 ⋅ d) 
The McLaurin series expansion for 1/(1 + ε0) =    
1/◊ (1 – 2 ⋅ d) is: 
    1 – ε0 + ε0

2 – ε0
3 + ε0

4 – … = 1 + d + 3/2 ⋅ d2 +  
      5/2 ⋅ d3 + 35/8 ⋅ d4 + 63/8 ⋅ d5 + 231/16 ⋅ d6 + … 
An approximation of the expansion in d consisting 
of a few terms can be used to design an algorithm 
converging toward the square root value. The 
coefficients of some of the higher degree terms in 
this approximation can even be modified to make the 
calculation easier. Because of the truncation, the 
result will be 

S ≈ ◊a ⋅ (1 + O(ε0
k)) 

instead of 
 S ≈ ◊a ⋅ (1 – (–ε0)k) 
where O(ε0

k) denotes a polynomial containing terms 
in ε0 of degree k or higher. 
In addition, an optimal way of calculating the 
product of this polynomial by 1+ε0 has to be 
determined for each square root algorithm: with the 
lowest latency for latency-optimized operations, and 
with the lowest number of floating-point instructions 
for throughput-optimized operations. 
Consider as a first example the latency-optimized 
single precision square root algorithm. 

Single precision square root, optimized 
for latency 
The following algorithm calculates S = (◊a)rnd in 
single precision, where a is a single precision 
number. An approximate value of the result is also 
shown, calculated assuming that the rounding errors 
are negligible. The approximation is expressed in 
terms of ε0 and/or d, as convenient: 

(1) y0 =1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
    table lookup 
(2) H0 = (0.5 ⋅ y0)rn = 1/(2⋅◊a) ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(4) d = (0.5 – S0 ⋅ H0)rn = –ε0 + 1/2 ⋅ ε0

2 = d 
    82-bit floating-point register format 
(5) e = (1 + 1.5 ⋅ d)rn ≈ 1 + 3/2 ⋅ d 
    82-bit floating-point register format 
(6) T0 = (d ⋅ S0)rn ≈ =◊a ⋅ d ⋅ (1+ε0) 
    82-bit floating-point register format 
(7) G0 = (d ⋅ H0)rn ≈ 1/(2⋅◊a) ⋅ d ⋅ (1+ε0) 
    82-bit floating-point register format 
(8) S1 = (S0 + e ⋅ T0)rn ≈  

 



    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) 
    17-bit exponent, 24-bit significand 
(9) H1 = (H0 + e ⋅ G0)rn ≈  
    1/(2◊a) ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) 
    82-bit floating-point register format 
(10) d1 = (a – S1 ⋅ S1)rn ≈  
    a ⋅ (5 ⋅ d3 + 15/4 ⋅ d4 + 9/2 ⋅ d5) 
    82-bit floating-point register format 
(11) S = (S1 + d1 ⋅ H1)rnd ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2 + 5/2 ⋅ d3 + 

35/8 ⋅ d4 + 63/8 ⋅ d5 + 81/16 ⋅ d6 + 27/8 ⋅ d7) 
= ◊a ⋅ (1+ε0) ⋅ (1 – ε0 + ε0

2 – ε0
3 + ε0

4 – ε0
5 + 

    O(ε0
6)) = ◊a ⋅ (1 + O(ε0

6)) 
    single precision 

This shows that approximations S0, S1, and S are 
getting increasingly closer to ◊a. As steps (2) and 
(3), then (5), (6) and (7), and also (8) and (9) can be 
executed in parallel, the total latency on the Itanium 
2 processor will be 7 x 4 = 28 clock cycles. In 
software-pipelined form, this algorithm could 
generate a result every 11/2=5.5 clock cycles. 
However, an algorithm can be found that has better 
throughput characteristics. 

Single precision square root, optimized 
for throughput 
The following algorithm for the calculation of the 
single precision square root has the least number of 
instructions possible, and therefore is best suited for 
software-pipelined loops. It calculates S = (◊a)rnd in 
single precision, where a is a single precision 
number:  

(1) y0 = 1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 

    table lookup 
(2) H0 = (0.5 ⋅ y0)rn = 1/(2⋅◊a) ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(4) d = (0.5 – S0 ⋅ H0)rn = –ε0 + 1/2 ε0

2 = d 
   82-bit floating-point register format 
(5) d' = (d + 0.5 * d)rn ≈ 3/2 ⋅ d 
    82-bit floating-point register format 
(6) e = (d + d * d')rn ≈ d + 3/2 ⋅ d2 
    82-bit floating-point register format 
(7) S1 = (S0 + e * S0)rn ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 d2) 
    17-bit exponent, 24-bit significand 
(8) H1 = (H0 + e * H0)rn ≈ 
    1/(2◊a) ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) 
    82-bit floating-point register format 
(9) d1 = (a – S1 ⋅ S1) rn ≈ 
    a⋅ (5 ⋅ d3 + 15/4 ⋅ d4 + 9/2 ⋅ d5) 
    82-bit floating-point register format 
(10) S = (S1 + d1 ⋅ H1)rnd ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2 + 5/2 ⋅ d3 +  

35/8 ⋅ d4 + 63/8 ⋅ d5 + 81/16 ⋅ d6 + 27/8 ⋅ d7) 
= ◊a ⋅ (1+ε0) ⋅ (1 – ε0 + ε0

2 – ε0
3 + ε0

4 – ε0
5 + 

     O(ε0
6)) = ◊a ⋅ (1 + O(ε0

6)) 
     single precision 

Only steps (2) and (3), and then (7) and (8) can be 
executed in parallel, so the latency of 8 x 4 = 32 
clock cycles is worse than that of the previous 
algorithm. However, its throughput of 10/2 = 5 clock 
cycles/result is better. It can be noticed that even 
though the throughput-optimized sequence differs 
slightly from the latency-optimized one, they both 
calculate practically the same result. The rounding 
errors might accumulate differently, but the end 
result was shown to be IEEE-correct in both cases. 
Similar algorithms were designed for double and 
double-extended precision square root operations. In 
each instance, the optimal sequence was selected that 
would still afford sufficient accuracy in the final step 
to allow for correct IEEE rounding in all cases. 
Similar to the single precision square root, an 
optimal sequence was determined in each case, that 
would lead to a result in the form S ≈ ◊a⋅(1–(–ε0)k). 
Of all possible sequences, the one that minimizes the 
number of clock cycles was chosen for latency-
optimized algorithms, and the one with the lowest 
number of floating-point instructions for throughput-
optimized algorithms. The complete set of IEEE-
correct algorithms for the square root operation can 
be found in [6], where source code for all the IPF 
square root algorithms can also be obtained. 

Correctness Proofs 
Proofs were developed to show that the results of the 
square root algorithms proposed for single, double, 
and double-extended computations are IEEE-correct 
for any combination of operands and for any of the 
four IEEE rounding modes. This included showing 
that the floating-point exception status flags are 
always set correctly, and that unmasked exceptions 
trap as specified in the IEEE Standard (just as for 
division, using the user status field sf0 only in the 
first and last computation steps and the reserved 
status field sf1 in the intermediate steps helps ensure 
correct IEEE exception behavior). To prove that the 
results are always numerically correct, two 
properties were used [7]: 
Theorem 4. Let a ∈FN and ulp (√a) one ulp of √a in 
FN. If √a ∉FN, then for any f∈FN, the distance 
between √a and f satisfies 

| √a – f | > 2-N-1 ⋅ ulp (√a) 
Theorem 5. Let a∈FN and ulp (√a) one ulp of √a in 
FN. For any m∈FN+1–FN  (midpoint between two 
consecutive floating-point numbers in FN), the 
distance between √a and m satisfies   

| √a – m | > 2-N-3 ⋅ ulp (√a) 
These two properties show that if √a cannot be 
represented as a floating-point number with an N-bit 
significand (which is the non-trivial case to check), 



then there are exclusion zones of known minimal 
width around any floating-point number, as well as 
around any midpoint between two consecutive 
floating-point numbers, within which √a cannot 
exist. The minimum distance between √a and f or √a 
and m can be determined analytically, as well as 
values of the argument a for which √a is close to 
points f or m [7] (few points are ‘really close’ and 
they can be determined relatively easily). Excluding 
a number of these points a has the effect of 
increasing the widths of the exclusion zones. This 
can be done until the exclusion zones are more than 
twice wider than the maximum error of the result 
that approximates √a. It means that the exact result 
and the approximation computed by the algorithm 
are on the same side of any floating-point number or 
any midpoint, and therefore they will both round to 
the same floating-point value. For the relatively few 
cases of arguments inside the increased exclusion 
zones, verification was carried out directly. 
Similar to the case of the division algorithms, the 
mathematical proofs of correctness were checked 
further using an automatic proof checker written in 
HOL [10].  

Non-IEEE Floating-Point Square 
Root  
Just as for division, non-IEEE floating-point square 
root algorithms that are less accurate but more 
efficient were derived from the IEEE-correct 
versions, with relative errors not exceeding 1 ulp 
(the IEEE-correct operations have relative errors of 
at most 0.5 ulp). Non-IEEE algorithms were 
designed also for reciprocal square root operations, 
which are not defined by the IEEE Standard. For 
example, the non-IEEE single precision square root 
algorithm is: 

(1) y0 =1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
    table lookup 
(2) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) d = (1 – S0 ⋅ y0)rn = –2 ⋅ ε0 + ε0

2 = 2 ⋅ d 
    82-bit floating-point register format 
(4) e = (0.5 + 0.375 ⋅ d)rn ≈ 1/2 + 3/4 ⋅ d 
    82-bit floating-point register format 
(5) T0 = (d ⋅ S0)rn ≈ 2 ⋅ d ⋅ ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(6) S = (S0 + e ⋅ T0) rnd ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) = 
    ◊a ⋅ (1 + 5/2 ⋅ ε0

3 + 15/8 ⋅ ε0
4 + 3/8 ⋅ ε0

5) = 
    ◊a ⋅ (1 + O(ε0

3)) 
    single precision 

The same algorithm can be used both in latency-
optimized as well as throughput-optimized code. 
Only a limited correctness proof is required. The 
maximum relative error of the result has to be 

determined, but the exception status flag for 
precision is not checked in this case. 
The algorithm for calculating the non-IEEE single 
precision reciprocal square root is: 

(1) y0 =1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
    table lookup 
(2) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) d = (1 – S0 ⋅ y0)rn = –2 ⋅ ε0 + ε0

2 = 2 ⋅ d 
    82-bit floating-point register format 
(4) e = (0.5 + 0.375 ⋅ d)rn ≈ 1/2 + 3/4 ⋅ d 
    82-bit floating-point register format 
(5) T0 = (d ⋅ y0)rn ≈ 2 ⋅ d ⋅ 1/◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(6) S = (y0 + e ⋅ T0) rnd ≈ 
    1/◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) = 
    1/◊a ⋅ (1 + 5/2 ⋅ ε0

3 + 15/8 ⋅ ε0
4 + 3/8 ⋅ ε0

5) = 
    1/◊a ⋅ (1 + O(ε0

3)) 
    single precision 

Similar algorithms for non-IEEE double precision 
square root and reciprocal square root are given in 
[9], together with source code. 

Latency, Throughput, and 
Accuracy for Square Root and 
Reciprocal Square Root Operations 
Latency and throughput numbers for the single, 
double, and double-extended IEEE-correct and non-
IEEE square root and reciprocal square root 
operations on the Itanium 2 processor are given in 
Tables 3a and 3b. 
Table 3a. Latency, Throughput, and Accuracy for 
IPF IEEE Square Root and Reciprocal Square Root 
Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock cycles/ 
result) 

Accuracy 
(ulps) 

Single 
Precision 
Square Root 

28 5.0 0.50 

Double Prec. 
Square Root 

36 6.5 0.50 

Double-Ext. 
Precision 
Square Root 

40 7.5 0.50 

Single 
Precision 
Reciprocal 
Square Root 

52  
(sqrt+div) 

8.5  
(sqrt+div) 

1.0 
(sqrt+div) 

Double Prec. 
Rec. Sq. Root 

64  
(sqrt+div) 

11.5 
(sqrt+div) 

1.0 
(sqrt+div) 

 
Theoretical error bounds and maximum errors 
observed in testing are both included in Table 3b. 
 
 
 

 



Table 3b. Latency, Throughput, and Accuracy for 
IPF Non-IEEE Square Root and Reciprocal Square 
Root Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock 
cycles/ 
result) 

Theoretical 
Accuracy 
(ulps) 

Observed 
Accuracy 
(ulps) 

Single 
Precision 
Square 
Root 

20 3.0 0.9449 0.8194 

Double 
Precision 
Square 
Root 

32 5.5 0.5001 0.5000 

Double-
Extended 
Precision 
Square 
Root 

NA NA NA NA 

Single 
Precision 
Reciprocal 
Square 
Root 

20 3.5 0.9449 0.8860 

Double 
Prec. Rec. 
Square 
Root 

32 6.5 0.5031 0.5007 

Conclusion 
Several factors determined the implementation in 
software of the division and square root operations 
for Itanium processors. A first consideration was 
flexibility, as alternative algorithms can be easily 
substituted for the original ones, should this be 
needed. One example is using non-IEEE algorithms 
instead of IEEE-correct ones when accuracy can be 
relaxed for the benefit of better performance. 
Second, the software implementations of these 
operations inherit the high degree of pipelining in 
the basic floating-point multiply-add operations, 
leading to high-throughput algorithms. Third, as in 
typical applications division and square root are not 
extremely frequent, it may be that the die area on the 
chip that would be dedicated to hardware 
implementations of these operations could be better 
used for some other purpose. 
The Itanium floating-point architecture was designed 
so that its high performance, accuracy, and 
flexibility characteristics make it ideal for technical 
and scientific computing. The present paper showed 
how software implementations of division and 
square root operations based on the fused floating-
point multiply-add instruction support this goal. The 
principles used in designing algorithms for these 
operations were presented together with examples. 
Correctness proofs were outlined and underlying 
properties were stated. Non-IEEE algorithms were 
described in contrast with those that implement the 
division and square root operations mandated by the 
IEEE Standard 754-1985. Finally, performance 
numbers were presented. 
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Abstract 

The purpose of this article is to provide an 
introduction to the SuperSim simulator for ILP 
processors as a teaching tool for computer 
architecture related courses. It presents the various 
aspects of the simulator, including the user interface, 
the instruction set, the configuration possibilities and 
applications. The main focus is on the educational 
usage of the simulator, through the experience gained 
in its actual application. 

1. Introduction 
Superscalar processors are one of the two major 

directions of ILP development. They issue multiple 
instructions per cycle, which results in complex 
decoding stage. This can lengthen the clock cycle or 
lead to multiple decoding cycles. Usually superscalar 
processors employ some kind of predecoding of 
instructions while they are fetched from memory to 
instruction cache. Pre-decode bits are attached to 
every instruction usually indicating the instruction 
class and the type of required resources. 

Another aspect of multiple instruction issue is 
that can lead to higher performance, but at the same 
time it amplifies the restrictive effects of control and 
data dependencies on the processor performance. In 
order to reduce these effects, superscalar processors 
employ advanced techniques like register renaming, 
shelving and speculative branch processing. 

Developing powerful microprocessors requires 
research in many different areas; such are electronics, 
algorithms, optimization, etc. Many new techniques 
are required for this process. To prove their 
efficiency, in a manner that allows grater freedom of 
research, simulation tools are very important.  

The usage of simulators in the computer 
architecture courses has been proven as the best 
approach towards students’ better understanding of 
the main architectural concepts. This is especially true 
for the visual simulators, since many internal features 
can be best understood through dataflow 
visualization. 

2. Description of the SuperSim Simulator V 2.0 
The basic considerations for designing the 

SuperSim Simulator were taken from the design space 
concept given by Sima et al [12], using similar 
experience of [2]. The previous versions of the 
simulator are covered in [7]. 

The main features of the SuperSim Simulator are: 
- Running user code, written in its own 

pseudo assembler 
- Syntax checking of the user code with 

error indication 
- Extensive configuration 
- Simulating a big range of processors, 

varying from simple RISC to advanced 
PostRISC   

- Step by step execution 
- Visual representation of each stage of the 

pipeline 
- Fast, non visual mode for better 

performance 
- Vast logging capabilities for performance 

analysis 
- Detailed statistics 

3. User Interface 
The simulator has a very friendly user interface. It 

consists of several separate windows, including the 
code editor (Fig.1), runtime, configuration, statistics 
and other windows. 

 
Figure 1: The code entry window 

The code editor window enables the user to write 
its own custom code, using the pseudo assembler.  
The code can be saved into a file or loaded from one. 
Options available on this window include syntax 
checking with indication of possible errors and 
standard file management. Code can have inline 



comments, separated with ‘//’ from the instructions. 
Especially important is the configuration option, 
which defines the simulated execution environment. 

4. Configuration 
The configuration window consists of several 

major parts, each represented with a tab, as shown in 
fig. 2. The configuration enables choosing the number 
and the type of the execution units. The maximum 
number of execution units is 6, and the minimum is 1. 
Supported units are  

- 1 multi cycle unit, for execution of multi 
cycle integer operations, like division or 
multiplication 

- Up to 3 single cycle integer units, for 
execution of simple integer arithmetic 

- 1 load/store unit for address calculation of 
the memory transfer instructions and 

- 1 branch unit for calculation of the branch 
target addresses. 

 
Figure 2: The options window 

Only the multi cycle unit is mandatory, while the 
others can be added or removed. If a special unit is 
not used, for example the load/store unit, the multi 
cycle unit performs the operations. 

The issue rate can also be configured on this tab, 
varying from 1 up to the total number of units used. 

The second tab of the configuration window, 
shown in fig. 3, covers the use of shelving. When 
shelving is used, the user can select between central 
or dedicated reservation stations. For each station 
used, the number of entries can also be configured.  

The next tab, fig. 4, is used for configuring the 
register renaming options of the simulator. If 
renaming is used, the number of rename buffers can 
be selected. Additionally, the access method for the 
renamed registers can be chosen from indexed or 
associative.  

 
Figure 3: Shelving options 

 
Figure 4: Register renaming options 

The "Out of order" tab, fig. 5, enables the using of 
the out of order issue and dispatch. On the same tab, 
the user can adjust the number of entries in the 
Reorder Buffer (ROB). 

The final configuration tab covers the branch 
processing used in the simulation, as shown in fig. 6. 
It can be blocking or speculative. When using 
speculative branch prediction, three modes are 
available: fixed, static and dynamic. The dynamic 
branch processing can be configured to use BTAC, 
BHT or both. It can also use global 2-bit history, for 
better prediction. 

Other options available are turning on and off the 
visual simulation, which can increase performance 
and tuning on and off the logging option. When 
visualization is disabled, the number of clock cycles 
simulated per second is 7-10 times bigger. 



 
Figure 5: Out-of-order options 

 
Figure 6: Branch processing options 

The selected configuration can be saved into a 
file for later reuse, or loaded from one. 

5. Runtime 
The runtime environment greatly depends on the 

selected configuration. When full configuration is 
used, it looks like in fig. 7. The top part consists of 
some command buttons, among which are: “Close” 
for closing the runtime window, “Run” for running 
the simulation continuously, “Step” for executing 
cycle by cycle, “Pause” for pausing the simulation 
when ran in continuous mode. 

Depending on the configurations some or all of 
the buttons in the upper right part will be enabled: 
“Show ROB” displays the ROB, fig. 8, “Show RF” 
displays the registry and rename registry file, fig. 9, 
“Show BT” displays the branch prediction tables 
window, fig 10, “Show DC” displays the data cache, 
fig. 11. 

 
Figure 7: The runtime window 

The rest of the window is divided into separate 
parts for each stage of the pipeline. Mandatory stages 
are Fetch, Issue, Execute and Write-back, while the 
other two, Dispatch and Complete are shown only if 
shelving and out-of-order execution are used, 
respectively. For each stage, a container represents the 
appropriate tables and/or buffers that hold the current 
instructions. In the upper left part, two separate 
containers represent the pending load and store 
queues.  

The ROB window, shown in fig. 8 is used for 
monitoring the work of the reorder buffer. It has an 
entry for each instruction that has been issued and has 
not completed yet. Since the ROB is designed as a 
circular buffer, at also shows the head and the tail 
pointer in the buffer. Instructions are represented in 
different colors, depending on the stage of the 
pipeline they are in.  

 
Figure 8: The ROB window 

The registry file window, fig. 9, shows the state of 
both the architectural and the rename registers. On the 
left of the window, architectural registers are shown. 
For each rename register, there are three parameters 
shown: the number of the architectural register that is 
mapped to this rename register, the value (if 
calculated yet) and the latest bit.  



 
Figure 9: The Register file window 

The branch tables’ window, fig. 10, is used for 
monitoring the state of the branch prediction tables. 
Depending on the configuration, one or two tables are 
shown. They are the BHT and/or the BTAC.  

 
Figure 10: The Branch tables' window 

The data cache window shows a map of the data 
memory, with each entry representing a 4-byte word, 
as shown in fig.11. 

 
Figure 11: The Data cache window 

The statistics window, shown in fig. 12, gives a 
detailed statistics of the simulated code and 
configuration. The figures include the total number of 
executed instruction of each type, branch statistics 
and prediction accuracy measures, the flow of the 
instruction through each stage and both memory and 
register data dependencies. Some advanced measures 
are also included, like the average number of cycles 
required for flushing the processor and average 
number of register wasted when a miss-prediction 
occurred. 

 
Figure 12: The Statistics window 

6. Internal design 
The instruction set of the simulator represents a 

subset of the standard modern instruction sets 
[6,9,11], and contains the instructions shown in table 
1. 

The simulator simulates a processor performing 
32-bit integer operations with block diagram 
presented in fig.13. The floating-point part is not 
considered in this project. Most of the current 
PostRISC features [6, 9, 11] can be simulated using 
the SuperSim, including out-of-order issue, register 
renaming, shelving, branch prediction etc.  

Supported memory addressing modes are 
displacement and indexed based [6]. While the same 
mnemonic is used for both modes, instruction 
processing is different depending on the mode. The 
memory is divided into instruction cache and 1024 
locations of 32-bit words data cache. The memory is 
aligned on a word (4 bytes) boundary and all memory 
access instructions refer to a word address. 

The maximum number of execution units is six 
(refer to fig. 2). Instructions that take multiple clock 
cycles to execute, i.e. the 'mul' instruction, are 
executed in the multi-cycle, which is obligatory. 
Optionally there can be up to three single-cycle 
execution units for instructions like 'add', or 'sub' that 



take one clock cycle to execute, one load/store unit for 
handling memory access, and one branch unit 
dedicated for branch processing. When there is no 
available corresponding execution unit, the 
instructions are executed in the multi-cycle unit, 
which provides the functionality of all execution 
units. The number of execution units determines the 
dispatch rate so there are no restrictions about the 
instructions being dispatched. Issue rate can be set up 
to the dispatch rate [12]. 

 
Figure 13: Block diagram of the simulator 

The use of RS is optional with the possibilities 
shown in Fig.3. When selected, there is a choice 
between central or dedicated RS. Dedicated RS are 
placed in front of every execution unit, so the issue 
stage directs every instruction to the corresponding 
RS. In the case of central RS there must be additional 

logic to determine the execution unit where the 
instruction is dispatched. Additional requirement in 
the case of central RS is the number of output and 
input ports, which have to be larger unlike the case of 
dedicated RS.  

Register renaming is implemented by separate 
register rename file (also known as rename buffer) 
[1,3,5,12,13,14,15,16]. The access to the rename 
buffer can be associative or indexed. When using 
associative access, there may be multiple instances of 
renames of one architectural register with separate 
notion of the last rename. In contrast only one rename 
per architectural register may exist with indexed 
access. 

Out of order execution refers to whether 
instructions are issued out of order or dispatched out 
of order. When shelving is enabled instruction issuing 
is in order, while instruction dispatch is out of order. 
This design option is realized since the issue stage 
does not check for dependencies so there cannot be 
pipeline blockages due to dependency. If shelving is 
disabled, the only possibility is out of order 
instruction issue. Fig.5 shows the possible options 
about out of order execution [15,16]. 

Branch processing options are shown in Fig.6. If 
branch processing is speculative, predictions about 
branch instructions can be: fixed "always not taken", 
static displacement based, or dynamic with optional 
use of BTAC, BHT or 2 bit global history register. In 
the latest case BTAC is used only for recent taken 
branches and the use of either BTAC or BHT is 
obligatory if dynamic prediction is selected [17]. 
Additionally, when BHT is used, global BHT can be 
activated and the initial state can be set.  

Table 1: Instruction set 

Instruction Semantics Comment 
ADD R1, R2, R3 Regs[1] = Regs[2] + Regs[3]  
SUB R1, R2, R3 Regs[1] = Regs[2] - Regs[3]  
AND R1, R2, R3 Regs[1] = Regs[2] & Regs[3]  
OR R1, R2, R3 Regs[1] = Regs[2] | Regs[3]  
NOT R1, R2, RX Regs[1] = ! Regs[2] The third operand can be  
SHL R1, R2, R3 Regs[1] = Regs[2] SHL Regs[3] either register,  
SHR R1, R2, R3 Regs[1] = Regs[2] SHR Regs[3] or a constant 
MOD R1, R2, R3 Regs[1] = Regs[2] Modulo Regs[3]  
DIV R1, R2, R3 Regs[1] = Regs[2] / Regs[3]  
MUL R1, R2, R3 Regs[1] = Regs[2] * Regs[3]  
LOAD R1, R2, 200 Regs[1] = Mem[Regs[2] + 200] Reads a word from memory  
STORE R1, R2, 150 Mem[Regs[2] + 150] = Regs[1] Writes a word in memory 
BEQ R1, R2, 200 if (Regs[1]=Regs[2]) IP = IP+200  
BNE R1, R2, R3 if (Regs[1]!=Regs[2]) IP = IP+Regs[3] The third operand can be 
BGT R1, R2, 200 if (Regs[1]>Regs[2]) IP = IP+200 either register,  
BLT R1, R2, R3 if (Regs[1]<Regs[2]) IP = IP+Regs[3] or a constant 
BGE R1, R2, 13 if (Regs[1]>=Regs[2]) IP = IP+13  
BLE R1, R2, R3 if (Regs[1]<=Regs[2]) IP = IP+Regs[3]  



7. Implementation 
The SuperSim simulator is developed using 

Borland Delphi and targets 32-bit Windows 
platforms. It has full object oriented design, with each 
phase in the pipeline represented by its own object. 
Each object has a public interface for realization of 
communications between the stages in the pipeline. 
The object architecture makes upgrading easy and 
intuitive.  

The performance in the sense of simulated clock 
cycles per second varies depending on whether the 
visualization is on or off. When off, it simulates 
around 100 clock cycles per second, measured on PIII 
working on 650MHz. If visualization is on, this 
number is 7-10 times smaller.  

8. Teaching ILP using the simulator 
The SuperSim simulator can be equally well used 

in research and in education. Its visual interface helps 
students to understand the functionality of a RISC or 
PostRISC, get familiar with the basic concepts of ILP 
and practice their assembly language programming 
skills.  

The simulator executables, with sample 
configurations and programs are available to the 
students through the computer architecture courses 
web sites. After the initial introduction of the basic 
simulator elements and performing some simple 
examples, each student is assigned a project. The 
project consists of writing a small assembly program 
(searching, sorting, prime number search, SCD, 
matrix operations, linked list operation, conversions 
etc.) and performing some analysis of the superscalar 
techniques on the program execution. The analysis 
concerned the performance impact of the key ILP 
factors like the number of execution units, number of 
register available for renaming, type of the reservation 
stations, ROB entries, loop unrolling and branch 
prediction techniques. The deliverables were the 
program itself and a paper explaining the results of 
the analysis.  

The results of this method of teaching ILP were 
more than satisfactory. The students’ interest for the 
course was bigger and the achieved results were better 
then before the introduction of the simulator [10]. 
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Abstract 
 
We have implemented a MIPS simulation 
environment called WebMIPS. Our simulator is 
accessible from the Web and has been 
successfully used in introductory computer 
architecture course at Faculty of Information 
Engineering in Siena, Italy. The advantages of 
the Web approach are immediate access to the 
simulator, without installation, and a possible 
centralized monitoring of students’ activity. 
WebMIPS is capable of uploading and 
assembling the MIPS code provided by user, 
simulating a five-stage pipeline step by step or 
completely, and displaying the values of all 
registers, input and output data of all pipeline 
elements. 
 
 
1. Introduction 

 
The study of computer architecture is a 

challenging field because of the high complexity 
involved in any computer system. To ease this 
complexity, different tools have been developed 
allowing architectures to be simulated and modified. 
This approach is beneficial to students approaching 
computer architecture for the first time, because it 
allows them to see the execution of actual assembly 
programs in the architecture. One important step is 
that the student makes use of simulation tools to 
understand concepts otherwise difficult to 
comprehend. Our experience, started with JCachesim 
cache simulator [1], indicates that Web-based lab 
exercising is effective, sometimes even more 
interesting than traditional teaching to our students. 
We are not alone in trying to make computer 
architecture education more interesting to students, as 
can be seen in [5], where the authors used animation 
for this purpose. 

An extensive survey of computer architecture 
simulators is given in [8]. For computer architecture 
education, especially interesting is the category of 
intermediate-level simulators, targeted at students that 
have some background in computer architecture and 
need a simulator that covers the principles in more 
detail, but are not ready for the simulator that 

captures all the features of the current state-of-the-art 
in computer research. The simulators in this category 
attempt to illustrate and teach two general principles: 
the instruction set architecture and the micro-
architecture.  

In many universities, MIPS architecture is 
studied because it is a RISC architecture that makes 
understanding abstract concepts of computer design 
easier. Another advantage of MIPS ISA is that it is 
used in textbooks [2], [3], which represent a reference 
material for teaching computer architecture in many 
universities, which is also the case for our faculty. 
There are three widely used MIPS architecture 
simulators: SPIM, WinDLX and MIPSim.  

SPIM [4] is an assembly language simulator for 
the MIPS (R2000/R3000) processor that has both a 
simple terminal interface and a visual, window-based 
interface. It implements almost entire MIPS 
assembler-extended instruction set (detailed SPIM 
description can be found in [3] with more 
documentation available online [4]). SPIM was 
extensively used in our teaching, however it lacks 
pipeline modeling.  

WinDLX [9] and MIPSim [10] are pipeline 
simulators developed at the Vienna Institute of 
Technology and were described by authors in [11]. 
WinDLX models the pipeline of the MIPS-like DLX 
architecture described in [2]. It allows for displaying 
and modifying all of the information relevant to the 
CPU (pipeline, registers, I/O, memory), 
enabling/disabling pipeline forwarding, changing 
memory size. MIPSim [10] models the MIPS 
architecture as in [3], with the possibility of changing 
memory content, but without hazard detection and 
forwarding units in the pipeline.  

We have decided to make a five stage MIPS 
pipeline simulator capable of displaying the status of 
almost all hardware units (more than 25) in the MIPS 
pipeline model, as well as hazard detection and 
forwarding in the pipeline. Instead of improving 
MIPSim, which also would have been a valid 
alternative for our goal, we decided to create a 
completely new simulator that can be executed from 
the Web browser window. Our simulator, called 
WebMIPS, eases the process of learning assembly 
coding, mastering pipeline, control, and datapath 
design. However, its major advantage is the 
immediate accessibility to students, without any prior 
installing, and the possibility of monitoring their 
activity over the Web.  



 

The name WebMIPS indicates that the simulator 
is designed for Web use, and indeed it is written in 
ASP language [7] and can be started by opening a 
simulator Web page [6]. Another advantage of the 
Web based service is that the user are not required to 
have any special operating system for accessing this 
software. 

WebMIPS does not support the complete MIPS 
instruction set; the user that wants to write assembly 
programs on its own must consult the list of 
supported instructions in order to simulate the code. 
Since our intention was not implementing a whole 
assembler, the simulator supports only the basic set of 
instructions, which were studied during the 
introductory computer architecture course.  

The user can load (copy/paste) MIPS assembly 
file or use one of the “load-and-play” (built-in) 
assembly examples to follow its execution in 
simulator. WebMIPS is not a real assembler; 
however, it is able to recognize if there are errors in 
the provided code, and to display the line with the 
error. The simulator is also able of displaying the 
program execution step-by-step or all at once. In step-
by-step mode the user can follow advancing of 
instructions in each stage of the pipeline, and by 
clicking on the constituting elements of the pipeline 
can see the corresponding values, input and output 
signals in every clock cycle. WebMIPS has 
forwarding always enabled, resolves pipeline hazards 
and displays the contents of hazard detection and 
forwarding units in the pipeline. 

2. Detailed description of WebMIPS 
simulator 
 
2.1 General structure  
 

WebMIPS is a Web application and it is 
executed on remote servers in multiuser mode (users 
can execute different code at the same time). To 
avoid blocking of the system in case of infinite loops, 
erroneous references to memory and other common 
programming errors, we limited the execution of each 
uploaded program to 1000 clock cycles. On the 
server, all simulation parameters can be configured. 

When trying to execute unsupported assembly 
instructions, an error is displayed and WebMIPS 
indicates the corresponding line number. In standard 
assembly language the use of directives .text and 
.globl is allowed, and in this case the first instruction 
to be executed corresponds to the .globl label. The 
end of execution is not specified by syscall 10, 
instead in WebMIPS the execution stops at the last 
code line. 
 
2.2 Loading of the code 

 
To offer the possibility of loading proprietary 

code to the users, we made an ASP page section, 
where it is possible to program in MIPS assembly and 
to verify whether the code is correct. By clicking on 
the button “Load/Reload Program” in the upper part 
of the WebMIPS browser window (Figure 1), the 
MIPS assembler is activated. 

 

Figure 1. WebMIPS window during execution. Note the Load/Reload Program button in the upper part. 
The wires can be hidden to have an easier reading of the CPU units. 



 

 
Not all options of the real assembly were 

implemented, since our goal was to demonstrate the 
execution of base instructions explained during our 
computer architecture course. However, almost all 
MIPS instructions can be written by combining the 
implemented instructions. We included a set of 
simple assembly programs with the scope of 
demonstrating its execution in MIPS pipeline. 

 

 The functioning of our simulator can be easily 
understood by using some of the simple built-in 
(called “load-and-play”) programs. The simulator 
keeps track of the code in execution and it can be 
easily modified in any moment by clicking on the 
“Load/Reload Program” button. 

 
 

 
Figure 3: Instruction memory in the middle of 

execution.
Figure 2: Registers during execution. 

 
 



 

 
2.2 Program execution 
 

In order to allow users to follow program 
execution, the left part of the browser window is 
dedicated to information regarding register file, data 
and instruction memory. Instruction memory displays 
the mnemonic, memory address, type, binary 
translation, symbolic representation, field values and 
current position in the pipeline for every instruction 
in execution (Figures 2, 3). 
The page displaying data memory can visualize 
single words, a word interval, or the whole memory 
contents. The register page demonstrates the binary 
content of 32 MIPS registers, which can be identified 
either by register number or their symbolic identifier. 

The central part of the browser page is dedicated 
to five-stage MIPS pipeline. Since the major scope of 
the simulator was to facilitate understanding of 
pipeline principles, a user can click on any desired 
element of the pipeline (for example, ALU, hazard 
detection unit, or even a simple multiplexer) to show 
its input and output data. A good feature of 
WebMIPS is the possibility of tracking every 
instruction in each pipeline element by simply 
looking at the central graphical screen. Additionally, 
displaying of control/data wires can be turned on/off 
using a corresponding check-box. 

Once loaded, a program can be executed in two 
modes: step-by-step or completely. In step-by-step 
mode, after each clicking of the “Step-by-Step 
Execution” the pipeline stages are updated and the 
user can see the changes in memory and detailed 
pipeline logic. After the execution has completed, the 
total number of clock cycles is calculated and 
displayed in the left-hand menu. Complete execution 
of the program should be is used only for verifying 
the correctness of the assembly code. 
 
 
2.3 Analyzing pipeline data hazard and 
forwarding 

 
In the implementation, branch decision is in the 

Decode stage of the pipeline to save one cycle. Data 
hazards created in this way are detected in hazard 
detection unit, and resolved via forwarding unit, 
which are shown in graphic representation of the 
pipeline. Among “load-and-play” programs user can 
find a simple four-operation calculator; the loading of 
this example is shown in Figure 4. We will use this 
simple example to illustrate the functioning of hazard 
detection and forwarding in the pipeline. The top of 
the left-hand menu lists the pipeline stages in stall 
during the execution of the program (Figure 5).  

 
 

Figure 4: A simple calculator program 
(among built-in examples) loaded. 

 
 

 
Figure 5: The top of the memory window 

displays a stage in stall. 
 



 

 
Figure 6: Stall passed through the pipeline. 

 

 
Figure 7: When the execution finishes, the top of 

the memory window shows  
the total number of clock cycles. 

 
 
The pipeline with data hazard resolved is 

displayed on Figure 6. When the execution of the 
program finishes, the simulator displays total number 
of cycles (Figure 7). By clicking on the hazard 
detection and forwarding units in the pipeline a user 
can see the corresponding signals and follow the 
propagation of the stall through the pipeline (Figure 
8). 

 
 

Conclusions 
 
We have implemented a Web-based MIPS 

pipeline simulator called WebMIPS. Our simulator is 
publicly accessible and it displays execution in the 
Web browser window, and is capable of detecting 
and resolving hazards in the pipeline. The WebMIPS 
software was used in introductory computer 
architecture course at University of Siena, Italy as an 
auxiliary resource for explaining pipeline principles.  

We received a good feedback from our students, 
who also appreciated its availability from any client 
computer (independently from the installed operating 
system), the possibility of executing on any Internet-
enabled PC without prior installation, and its ease of 
use. Further plans for WebMIPS development include 
extending the supported instruction set to include all 
MIPS (R2000/R3000) instructions. 
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Figure 8: Details on forwarding and hazard 
detection in the pipeline can be seen by clicking on 

the corresponding unit. 
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ABSTRACT 
Renewed interest in computer architecture education in our 
university started three years ago.   Since then, research 
framework in computer architecture has been established with 
emphasis on simulation of different computer architecture 
concepts.   One of the concepts, which have generated a lot of 
excitement, is the topic on pipelining.  Our research group had 
already developed a pipeline simulator based on the DLX 
architecture called DARC [1].  The simulator was used as a 
supplementary tool for both undergraduate and graduate students.  
It was received favorably and at the same time, they gave 
feedbacks and suggestions on improving the simulator.   With 
those suggestions, DARC2, the 2nd generation pipeline simulator 
based on DLX architecture was developed.   This paper describes 
the DARC2 system. 

Categories and Subject Descriptors 
K.3.2 [Computer & Information Science Education]: – 
computer science education, computer architecture education, 
DLX Architecture.  

General Terms 
Experimentation, Human Factors 

Keywords 
Computer Architecture, undergraduate teaching, graduate 
teaching, pipelining, DLX Architecture 

1. INTRODUCTION 
In the past, computer architecture education was given less 
emphasis in our university.  But this has change in recent years 
due to the following reasons: 

!" Introduction of the position of Academic Area Chair.  
The Academic Area Chair is in charge of the 
development of the curriculum in their respective area.  

In the past, faculty members who were assigned to teach 
a particular subject in an academic area, developed their 
own syllabi and course contents.  Thus, there is no 
continuity in the development of this area.  With the 
academic area chair, he is task to develop a research 
framework, which will serve as a roadmap for the 
development of its area.  He is also task to make sure 
that all appropriate textbooks and reference materials 
are up-to-date.  Computer Architecture is classified as 
one academic area. 

!" Adoption of the computer architecture book “Computer 
Architecture, A Quantitative Approach” by Patterson & 
Hennessy [2].  The university has adopted many 
references but not textbook for computer architecture.  
Finally, in our opinion, a good book in computer 
architecture. 

The current research framework of computer architecture in our 
university is focused on the development of simulation tools for 
the different concepts of computer architecture.  In an 
environment where financial resources are limited, finding less 
expensive alternatives is always welcomed.  With simulators, a 
quality-learning environment that is equivalent to the actual 
system itself is presented to students without incurring additional 
expenditures.   Initial project is centered on the pipelining concept 
based from the DLX architecture.  Many students are fascinated 
with the concept though they have a hard time visualizing them.  
Initially, simulation is through Microsoft® Excel file, then some 
students volunteered to write a module, then another.  Eventually, 
a research group was formed to develop a “full-blown” pipeline 
simulator based on DLX architecture called DARC.   Though 
there are simulation tools on this concept, but each institution is 
unique in their learning needs and the learning process of 
developing a pipeline simulation more than justify the 
development of our own pipeline simulation project. 

2. The DARC2 ORIGIN: DARC 
DARC2 is the 2nd generation of DLX Architecture Pipeline 
Simulator (DARC).  DARC is a windows-based software system 
with a built-in text editor.  It simulates a DLX code segment using 
different pipeline algorithms.  We defined Pipeline 0 as the un-
pipelined version of the algorithm; Pipeline 1 as the pipelined 
version and Pipeline 2 as the modified pipelined to minimized 
branch hazard.  All of the algorithms are based from [2].  As an 
added bonus, dynamic scheduling algorithms - Scoreboarding and 
Tomasulo, are also provided. Users may enter as much as 1,024 
instructions, with the provision for saving the program. It 
incorporates a compiler for identifying syntax errors, and a help 

 

 

 



file that aids the user in correcting such errors. Pipelining results 
obtained are displayed through a trace of the pipeline stages, 
while dynamic scheduling algorithms are processed in the 
standard table form.   
The system uses two simulation modes: one-pass and stepwise. 
One-pass mode allows continuous execution. Stepwise mode, on 
the other hand, allows instructions to be simulated one at a time. 
The simulator can be configured to support either shared or 
separate memory as option to illustrate structural hazard.  
Forwarding and non-forwarding are used as option to visualize 
data hazard.  While control hazard can be resolved using pipeline 
freeze, predict-not-taken and pipeline 2.  During simulation, 
hazards encountered are displayed and explained to the user. 
As seen, DARC demonstrates great aid in the study of the DLX 
architecture. The simulator was initially offered to around 160 
students in four separate classes.  It was a sighed of relief for them 
since they could now visualize and experiment different options 
and situations in pipelining.  They also suggested several changes, 
correction and enhancements.  One such change is that the 
memory contents should be displayed as 32-bit word instead of 
displaying it as byte.  Another suggestion is that there should be a 
provision for breaking out of infinite loops.   The system also does 
not support floating-point values in IEEE standards. Students also 
reported some inconsistencies with the results obtained.  They 
also suggest that besides that standard “pipeline” view, they could 
also visualize the flow of data to the individual components of the 
DLX architecture (i.e., pipeline registers, program counter) as 
well as the generation of the control signals.   These suggestions 
warrant a major design of the simulation system.  Thus, a new 
version of pipeline simulator is created – DARC2. 

3. DARC2: DLX ARCHITECTURE 
SIMULATOR 2 
DLX Architecture Pipeline Simulator 2 (DARC2) is an improved 
version of DARC.  It is a windows-based system that utilizes 
graphical user interface to simulate both DLX pipelining 
algorithms and dynamic scheduling algorithms. Unpipelined 
instruction execution, Pipeline 1 and Pipeline 2 algorithms are 
now illustrated both through the standard tracing of the pipeline 
stages and through an animated diagram of the DLX data path. 
The animation shows the data flow through the major components 
of DLX architecture.  DLX instructions are showed as they are 
processed, together with the control signals associated with them. 
Through the animation, the user is informed on how each internal 
component works and on the actual process of passing along data 
from each unit. To ensure consistency, all the diagrams are 
presented in the same manner as in [2], matching both the look 
and the function of the architecture. This improves the learning 
process and the usability of the simulator. On the other hand, 
results obtained through the dynamic scheduling algorithms – 
Scoreboarding and Tomasulo – are shown in the usual tabular 
form. 
As with the original version, there are two modes of simulation: 
one-pass and step mode.  Apart from this, the user also chooses 
among other simulation options specific of each pipelining 
algorithm. These options are forwarding, pipeline freeze, pipeline 
flush, predict-not-taken, and the use of unified or separate 
memory. The chosen options are greatly important since they set 
the conditions to be followed during the simulation process. 

Moreover, users are given the freedom to choose which memory 
address to be assigned as base address for the instructions in the 
program code. This is especially useful when unified memory is 
utilized. The system also enables the user to change the value of 
the registers and the memory at any point during the simulation. 
With this, users can test different register values without having to 
construct another program code. Changes made would apply to 
DLX instructions that are not yet decoded in the Instruction 
Decode (ID) stage. 
Another feature integrated to the system is the option for 
backtracking. DARC 2 allows values stored in the pipeline 
registers, as well as the other registers to be viewed at any clock 
cycle. From the final trace of the pipeline diagram, the user may 
choose the required clock cycle and the corresponding data path 
diagram showing data stored in the different components is 
displayed. During the simulation process, the system also gathers 
statistical data that aids in determining the effectiveness of the 
DLX program code used as input. The number of hazards 
encountered is considered and updated per clock cycle of the 
simulation, after which it is displayed. 
A text editor, syntax checker and help system are also 
incorporated into the system. The text editor allows the user to 
key in the DLX instruction code to be simulated. The syntax 
checker checks the instruction code for syntax errors and notifies 
the user if such are encountered, providing opportunity to correct 
them.  The help function provides topics and references related to 
the DLX Architecture. 

4. SYSTEM STRUCTURE 
The DARC 2 system is an integration of several major 
components that work together to achieve the requirements and 
specifications of the simulator. The interaction of these 
components - the text editor, the assembler and the function 
manager – is illustrated in the system’s block diagram. A more 
detailed description of each of these components follows. 
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 Figure 1. Block Diagram of DARC2 
 

4.1 Text Editor 
The built-in text editor of the system, as illustrated in Figure 2, 
accepts a DLX assembly code consisting of at most 1,024 
instructions. The program code comprises of instructions written 
in DLX mnemonics, constructed either from scratch or chosen 
among the initial sample programs installed in the system. The 



text editor also allows the user to save written assembly codes for 
later use. 
The program code entered contains not only DLX instructions, 
but also data variable declarations as well. The user defines all 
variable declarations in the.  DATA segment. All DLX 
instructions are included in the separate .CODE segment. 
Immediate addresses included within the instruction code itself 
may be in decimal, binary or hexadecimal form.  For decimal, the 
format is #immediate. For binary, the format is $immediate. 
Unless written in any of these formats, the immediate is 
considered as hexadecimal. 
After the user has keyed in the DLX instruction code through the 
text editor and clicking the Assemble button, illustrated in Figure 
2, the assemble options window is displayed. The user inputs the 
base address of the instructions in the program code to be 
simulated. Upon which, the program code together with the value 
set as base address is passed on to the assembler for processing. 
 

 
Figure 2. DARC 2 Text Editor 

4.2 Assembler  
The assembler module handles the processing and translation of 
the DLX mnemonics. The module is comprised of two sub-
modules: the syntax checker and the opcode translator. After the 
user has created the instruction code through the text editor, the 
syntax checker checks the code for syntax errors. If no errors are 
identified, the program code is then passed on to the opcode 
translator. However, if errors arise, assembling is considered 
unsuccessful and error messages are displayed to the user. The 
opcode translator then gets the instruction mnemonics and 
translates them into opcodes, that are in turn used as input to the 
simulator 

4.2.1 Syntax Checker 
The Syntax Checker handles the instruction code written through 
the text editor. Each instruction line is checked for syntax errors. 
If there are no errors, the program code is passed on to the 
Opcode Translator. In the case that an error is encountered, the 
Syntax Checker takes note of the line number and proceeds with 
checking the remaining instructions, until the last instruction is 
reached. A message box is then displayed to inform the user of 

unsuccessful assembling and of the line numbers where the errors 
were found.  
Upon receiving the program code, the Syntax Checker identifies 
variable declarations by checking the presence of a .DATA 
segment. If such exists, variable declarations are checked for 
correctness. Format should be label = target address. Label 
names or variables can be alphanumeric. Special characters, 
except for the underscore (_), are not allowed. The labels and 
their corresponding target addresses are stored in a temporary 
array for reference during simulation. In case there is no defined 
.DATA segment, all text input are considered DLX instructions. 
Following the .DATA segment is the .CODE segment, consisting 
of the DLX instructions to be simulated. With each instruction, 
the DLX mnemonic is compared with each entry in a library of 
DLX instructions, called main.lib. The format of R-type 
instructions contained in the library is mnemonic : instruction 
type : opcode;. I-type and J-type instructions, on the other hand, 
have the format mnemonic : instruction type : opcode : EX : MEM 
: WB;. The opcode is an assigned two-digit binary code for each 
of the instructions. The EX, MEM and WB portions of the library 
entries pertain to the attributes of the particular instruction during 
simulation, specifically during the Execute (EX), Memory (MEM) 
and Write Back (WB) stages. In EX, the type of ALU operation 
(e.g., memory reference, register to register, register to immediate, 
or branch), the type of operation (e.g., basic arithmetic, logical 
comparison, shifting, conversion, move, or comparison) and the 
type of registers (e.g., immediate, floating-point or double 
precision) are all stated. Instructions may include additional 
details such as the sign of the result (e.g., signed, unsigned or 
floating-point) and the type of the extension (e.g., sign or zero). 
This is primarily due to the differences in the way instructions are 
executed. Thus, their parameters also vary. In the MEM portion, it 
is noted if the instruction is active during the MEM stage. For 
active instructions such as Load/Store instructions, the length of 
data to be loaded or stored (e.g., byte, halfword, word, single-
precision floating point or double-precision floating point), 
together with the type and sign of the destination register, is 
indicated. Evidently, entries for other instructions inactive during 
this stage do not include such parameters. In WB, the type of 
operation done (e.g., register-to-register integer, register-to-
register floating-operation, register to immediate, among others) is 
specified. All information indicated in EX, MEM and WB portions 
of the library entries are accessed later on during simulation and 
are used as bases in the methods that are to be performed. 
Once the corresponding mnemonic is found, a library, called 
type.lib, which contains the different formats for each R-type, I-
type and J-type instruction, is accessed. The library is searched for 
the corresponding mnemonic in order to find the correct format of 
that particular instruction, and compare the instruction against it. 
For r-type instructions, the format is mnemonic <operandtype 
datatype>,<operandtype datatype>,<operandtype datatype>;. 
Operandtype may be rd(destination register), rs1 (source register 
1) or rs2 (source register 2). Datatype may be i (integer), f (single 
precision floating point) or d (double precision floating point). 
Operands are enclosed in brackets and are separated by commas. 
For i-type instructions, instruction formats vary for every 
instruction available. For instructions with memory access, the 
immediate is checked if it has been declared. The temporary array 
previously initialized is searched for a match. If the label is not 
found, it is then checked if it decimal, binary, or hexadecimal, by 



checking the first character. # denotes a decimal immediate, while 
$ denotes a binary immediate. In any case, the immediate is 
treated as hexadecimal. 
Aside from ensuring that the instructions in the program code are 
of correct format, the validity of the operands used is also 
verified. Registers are ensured to reach until R31 only, and that 
R0 is not the destination field. For branch instructions, it is first 
determined whether the target address exists or not. For double 
precision floating point instructions, only even-numbered 
floating-point registers should be used. 
In general, the Syntax Checker is not case-sensitive. The presence 
of commas and spaces between instruction fields are considered. 
Operands should always be separated by commas. Space in 
between the mnemonic and the first operand is important, while 
those in between commas and operands is negligible. 

4.2.2 Opcode Translator 
After the program code is checked for syntax errors, it is then 
passed on to the Opcode Translator. This sub-module decodes the 
program into codes conforming to the DLX instruction formats.  
For every instruction in the program code, the DLX instruction 
library main.lib is accessed. Each entry in the library contains the 
instruction type and opcode of different instruction mnemonics. 
The format for each entry is mnemonic : instruction type : opcode. 
The mnemonic of the instruction being translated is compared 
against each entry in the library. Once the matching mnemonic is 
found, its corresponding opcode is obtained. If the opcode 
obtained is 00, a separated library, special.lib,  is accessed. This 
library contains the mnemonics and the corresponding opcode of 
DLX instructions that involve general purpose registers. If the 
opcode obtained is 01, the fparith.lib library is accessed. 
Fparith.lib contains entries of DLX instructions using floating-
point registers. The entries contained in special.lib and fparith.lib 
follows the same format as those in the main.lib, each consisting 
of the mnemonic and a corresponding code. The difference is that, 
this code is for the function of that instruction, which constitutes 
the last 11 bits of the code. After obtaining the opcode, the 
operands are translated into their corresponding binary codes. 
To illustrate further the decoding process, suppose the instruction 
ADD R1, R0, R2 is to be decoded into its corresponding code. 
This instruction is an R-type instruction and follows the format, 
illustrated in Figure 3. 

Opcode source1 source2 destination
0 105 6 11 15 16 31

function
20 21

 
Figure 3. R-type instruction format 

 
From main.lib, the entry of the ADD instruction would be ADD : 
R-type : 00. The value of opcode field is then 00. Then, the value 
of the function field is divided into two – the first 5 bits, which is 
unused and has the value of 0, and the last 6 bits, which contains 
the opcode from the special.lib. In this case, the opcode of the 
ADD instruction is 00. Therefore, the final code of the instruction 
in binary code is shown in Figure 4. 

000000 00000 00010 00001
0 105 6 11 15 16 31

00000 000000
20 21

 
Figure 4. Sample ADD code 

If errors are encountered before decoding is finished, the 
translator terminates without completing and error messages are 
displayed to the user. If there is no error, an object file is created. 
This file contains the corresponding binary code of each of the 
instructions in the program and is forwarded to the function 
manager to execute the necessary algorithms. 

4.3 Function Manager 
The function manager serves as the core of the DARC 2 system. It 
handles all the algorithms that the system uses, and implements 
the specifications defined by the user for each algorithm. It 
receives as input the binary codes of all the instructions in the 
program, as generated by the assembler. 
It receives as input the object file generated by the assembler. The 
file contains the binary codes corresponding to each instruction of 
the program. The function manager analyzes the first 6 bits of 
each code and determines the type of instruction that will be 
executed and the type of operands that it will have. There are only 
three types of instruction: ALU operations, Load/Store operations 
and Branch operations. Look-up tables, containing the 
instructions under each type and their corresponding 6-bit code, 
are used in executing the different algorithms since there are 
different executions for different types of instructions. 
The function manager implements pipelining algorithms – 
unpipelined, pipeline 1 and pipeline 2. After creating the codes, 
the count of the clock cycle starts. The memory, as well as 
registers and pipeline registers, are updated every clock cycle and 
whose values are stored in a text file. 
The configurations defined by the user among the simulation 
options have different effects and implementations on the 
algorithms. These differences are reflected more in the data path 
diagrams than the pipeline diagrams, since it is the data flow that 
differs mainly with each pipeline algorithm. The data path 
diagram and pipeline diagrams are illustrated in Figures 5 and 6. 

 
Figure 5. Output Window for Pipelining (Data Path Diagram) 



 

 
Figure 6. Pipeline Diagram of the Output Window  

 
Unpipelined execution, Pipeline 1 and Pipeline 2 are each treated 
as modules. The modules contain different procedures each 
representing the pipeline stages. Each procedure involves only the 
components present within the stage. It accepts input, such as 
register values, from one stage, and the necessary methods are 
performed. The required output produced is then passed on to the 
next procedure. If it is pipelined execution, this does not 
necessarily mean the next pipeline stage. Thus, each stage is 
indifferent of what instruction is currently processed, and is 
concerned only with the methods it needs to accomplish. 
Before the simulation begins, the value of the Program Counter 
(PC) of the last instruction is noted. This is for purposes of 
monitoring the end of the simulation. Then, during the IF stage, 
the first Program Counter (PC) is used as input. The Instruction 
Register (IR) takes the value of the memory location pertained to 
by PC. This is the first instruction, whose first six bits are then 
analyzed in the ID stage. Since instructions differ mainly in the 
EX, MEM and WB stages, each instruction is treated differently. 
The conditions to be followed during these stages are indicated in 
the corresponding entry of each instruction in the library files 
main.lib, special.lib and fparith.lib. Each instruction entry found 
in any of these libraries include the EX After noting these 
conditions, appropriate methods are performed. After the WB 
stage, the Next Program Counter (NPC) is checked and is 
compared against the value of PC of the last instruction noted 
earlier. If the NPC is greater, this means that the end of the 
program code has been reached and that the simulation is 
finished. Else, the next instruction is fetched and the simulation 
continues. 

4.4 Infinite Loop 
An instruction is said to be an infinite loop when it has exceeded 
the intended frequency of execution, usually brought about by 
logical errors made. To ensure accurate results, the system is 
equipped with the ability to detect infinite loops. This facility is 
also presented in the simulation options windows, wherein the 
user defines the number of times a certain instruction is executed 
before it can be considered an infinite loop. This becomes the 

threshold of the frequency of every instruction execution, and is 
applicable to both unpipelined and pipelined algorithms. To 
monitor infinite loops, each instruction is then assigned a counter, 
which counts the number of times that particular instruction is 
executed during simulation. If the counter value exceeds the 
threshold defined, that instruction is said to be an infinite loop. 
Whenever an infinite loop is encountered in either the unpipelined 
or the pipelined algorithms, simulation is terminated for that 
particular algorithm. Simulation of other algorithms continues 
unless an infinite loop is also met. 

For instance, a user defines ten (10) as the frequency threshold in 
the simulation options window. This means that if a certain 
instruction is executed more than 10 times as indicated by the 
instruction’s counter, it will be considered an infinite loop. There 
may be cases wherein an infinite loop is encountered only in one 
pipeline algorithm and not in the others. An instruction may be 
loop infinitely in pipeline 1, but not in the unpipelined execution 
and in pipeline 2. In this case, only the simulation of pipeline 1 
terminates; simulation of unpipelined execution and pipeline 2 
continues. 

4.5 Backtracking and Statistics 
Backtracking allows user to see the values stored in the pipeline 
registers, as well as the other registers, at any clock cycle. The 
user may do so by clicking on the clock cycle desired in the 
pipeline diagram displayed. Once clicked, the DLX data path 
diagram for that clock cycle is shown. During step mode, the 
option for backtracking is always available since instructions are 
processed per clock cycle. However, if the simulation is in one-
pass mode, the user may choose to backtrack only after the whole 
simulation process has finished. 
After program simulation, statistical data is displayed. This 
includes the number of hazards encountered. 
During simulation, the outputs obtained in the data path, along 
with statistics variables, are stored in a text file. This makes 
statistics gathering and backtracking easier since every clock cycle 
is taken into account. Aside from the pipeline states, the data in 
the memory, registers (GPRs and FPs) and pipeline registers are 
stored. For every program code simulated, two text files are 
created – one for the unpipelined execution and another one for 
Pipeline 1 and Pipeline 2. The only difference in text file formats 
of the unpipelined and pipelined execution is the presence of the 
pipeline registers. All other data needed to be stored are included 
in all text files. 
In the first line of the text files, the clock cycle is stored. The 
following lines correspond to the pipeline stages, memory and the 
register values for that clock cycle, including the pipeline register 
values for the pipelined execution. The data to be placed in the 
pipeline stages are the states of the components involved and 
executing at that clock cycle. The instruction currently executing 
at a particular pipeline stage are also noted through the special 
register IR. This is considered as the “block” of data for that clock 
cycle. A blank line is then inserted in the file, signifying the end 
of the “block” for that particular clock cycle. Thus, another 
“block” of data follows the blank line, following the same format 
until the last “block” of data is appended onto the text file. 
Once the user has chosen a clock cycle, the three text files are 
accessed. The “blocks” of data stored in each text file is searched 
by their clock cycle. Upon finding the desired clock cycle, all data 



within the block are acquired and displayed on the output 
window. 
As with the statistical variable included in the text files, they store 
the number of hazards encountered as of the current clock cycle. 
However, statistical data are only displayed after simulation has 
finished and are not shown during backtracking. 
5. CONCLUSIONS AND FUTURE WORK 
DARC 2 provides an effective environment for the simulation and 
exploration of the DLX Architecture. The animation facility in the 
system proves useful for allowing the students to visualize the 
interaction of different components employed in the DLX 
architecture. It allows students to understand better the flow of 
data through the architecture and how each instruction is 
executed, while removing the difficulty that is often experienced 
with manual tracing and redrawing of pipeline and data path 
diagrams.  With all the improvements incorporated in DARC2, it 
is hopeful that new batch of students will have a clearer 
understanding of the pipeline concept.  It is hopeful that this will 
boost the appreciation of studying computer architecture even 
higher and thus, creating great possibilities of constructing new 
architectures.   
Subsequent improvement involves adding advanced concepts 
such as superpipelining, superscalar execution, cache memory, 
branch target buffers and others to the simulators.  Eventually, the 
simulator will evolve to a DLX Virtual machine.  This is similar 
to the “Java machine” concept.  In the virtual machine, actual 
DLX code will be executed in x86 machine.  The DLX Virtual 
Machine projects will involve modules relating to runtime 
operating system, a compiler module to convert high-level 
language to DLX and others.  With the research framework in 
place, our university is excited with the revival of Computer 
Architecture field. 
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Abstract 
 

For the introduction of computer architecture in 
computer science, highly simplified specification of 
CPU, and visualization of CPU operation are 
important. This paper describes a CPU simulator we 
have developed. It has interfaces to show inner state of 
CPU and to manipulate the simulator in several ways, 
which are changed among with progress of students' 
learning. 
 
1. Introduction 
 

The introductory education on the computer 
architecture involves several topics: about the 
relationship between assembly and machine language, 
the connection of data-path and data-path elements as 
the static construction of a processor, the operation for 
instructions as dynamic structure, and the control by 
control unit and control signals. These topics focus 
different aspects of the processor. For example, 
instruction set is focused on the topic about the 
relationship of languages. On the other hand, processor 
block is focused on the topics of static and dynamic 
structure of CPU. And Control unit and control signals 
are focused on the topic about control.  

This paper describes a CPU simulator, "MKit 
simulator" that we have developed. MKit simulator has 
several interfaces for students to check and manipulate 
MKit processor. These interfaces are draw panels in 
the simulator window, and input methods like buttons. 
The draw panel shows inner state of the processor, and 
the input methods are used to manipulate the processor 
and the simulator. These interfaces emphasize 
respectively various aspect of the processor. We 
correspond these interfaces with the topics that have 
same aspect of the processor. Our simulator provides 
students a part of the interfaces for every assignment 
for the corresponding topic. Since there are a number 
of topics students learn during an exercise, our 

simulator switches interfaces to use for every 
assignment.  

The next section gives the specification of CPU for 
our simulator. Section 3 then describes simulator 
designing. Section 4 describes assignments we have 
designed for an exercise class with our simulator. 
Section 5 then describes implementation of the 
simulator. Section 6 discusses the relation of our 
simulator and other simulators that have been proposed 
for introductory education of computer architecture. 
 
2. Specification of MKit 
 

Before we discuss the designing of MKit processor, 
we describe our background of computer architecture 
education in our department. We have one course on 
computer science, and there are three classes closely 
concerned with computer architecture. The first is a 
class on introduction of computer science, where first 
year students learn basic concept of computer 
architecture with a simple CPU, MKit [4]. The second 
is a basic exercise on computer science, where our 
simulator is used. And the third is a class on computer 
architecture, where students learn advanced. The goal 
of the basic exercise class is students’ making certain 
of the basic concept of computer architecture that they 
have learnt at the first year class.  

We adopt MKit as the processor for our simulator. 
In deciding the processor we take care to keep the 
design as simple as possible, and to link the topic of 
first year class and the exercise class closely. When 
students are going to have the basic exercise class, they 
have learnt computer architecture with MKit processor. 
Therefore students are familiar with MKit, and they 
don't take relatively long time learn the specification of 
MKit than new specifications. As the result they can 
concentrate their thought to essential of computer 
architecture and assignments in the exercise. 

MKit CPU is a 16-bit word accumulator machine. It 
has only the direct addressing as the addressing mode 



to access memory. The memory access is 16-bit word 
addressable. Making the machine word addressable 
only simplifies the operation of CPU. Moreover care 
was taken to keep the correspondence between 
assembly language instructions and the machine 
instruction as one-to-one relationship. As the result, 
the address width is reduced to 12 bits, and the 
operation code occupies 4 bits of a word. This 
configuration simplifies the hexadecimal number 
representation in the machine language. MKit only 
supports two instruction formats as shown in Figure 1. 

 

 
 

Figure 1. Instruction encoding formats 
 
 
 

Sort Nmenonic Semantics
Memory LD n ACC <- Mem[n]
access ST n Mem[n] <- ACC
c ADD n ACC+Mem[n]
n SUB n Mem[n]

SFR ACC <- ACC>>1
SFL ACC <- ACC<<1

Jump and JMP n PC <- n
Branch JPZ n PC <- n (if ACC=0)

JPN n PC <- n (if ACC<0)
JPO n PC <- n (overflow)
JPL n PC value is kept,

then PC<-n
RET PC value is restored

Control HLT halt  
 

Table 2. Instruction Set 
 
 
 

 
 

Figure 3. Processor Block Diagram 

The instruction set of MKit consists of arithmetic 
calculations, jump/branch operations and memory 
access (load and store) operations (as shown in Table 
2). It has instructions for a subroutine call “JL” and a 
return operation “RET”. These instructions make the 
processor complicated, but they are straightforwardly 
integrated into the instruction set and the operation of 
the processor. Moreover they encourage students' 
learning of the concept on subroutine call operation 
without stacks.  

The data-paths of the processor are not based on 
bus structure. The data-paths connect the data-path 
elements directly. And the instructions take multiple 
clock cycles to execute. Data are roughly flown 
clockwise along with data-path in a processor block 
diagram shown in Figure 3. One difference from other 
processors for introduction of computer architecture is 
that the processor has a return address register, RAR. 
RAR is used for the subroutine call and return 
operation. Since RAR is not stack, this micro-
architecture does not support multiple subroutine call. 
But the micro-architecture shows an implementation 
for subroutine call, and it can be simply extended by 
replacing a register with a stack for RAR.  
 
3. Simulator Designing 
 

The basic concept of computer architecture for 
introductory education consists of several topics. On 
this paper, we divide the basic concept into following 3 
topics.  

 
z Instruction set architecture, and translation of 

assembly language instructions to machine 
language instructions 

z Data-path connection with data-path elements 
(static construction of the processor except 
control unit), and the operation of the 
processor: instruction fetch and execution 
(dynamic construction) 

z Control unit and control signals. Static and 
dynamic construction of the processor. 



We also assume that assignments are given along with 
these topics. 

The processor is placed as various objects on these 
topics respectively. For example, on the topic about 
instruction set architecture, the processor is regarded as 
a machine that executes instructions. For the topic 
about data-path connection, the processor is regarded 
as a structure represented by the processor block 
diagram. On the topic about control unit, the processor 
is regarded as a structure represented by the diagram 
with the control unit and lines for control signals.  

Moreover these topics have their adequate 
assignments, which need functions to manipulate the 
processor. For example, functions for execution all 
instruction and execution one instruction are helpful to 
make certain of the meanings of instructions. 
Functions for step-by-step execution is useful to learn 
the operation of the processor. 

Interfaces of CPU simulator emphasize the aspects 
of the processor, and they give the functions to 
manipulate. The interfaces are divided in interfaces to 
express inner status of the processor, and interfaces to 
manipulate the processor. These interfaces are often 
implemented as drawing panels or push buttons in a 
same window. 

Our idea for designing a simulator is based on 
multiple uses of the expression interfaces and 
manipulation interface, and it is based on a concept of 
correspondence between the interfaces and the topics. 
Since the processor is regarded various object as the 
topics, we adopt the expression interfaces in order to 
represent the aspects of the processor. We also select 
the manipulation interfaces in order to design 
assignments. 

On this paper, we design following manipulation 
interfaces from M1 to M5. 

 
M1 is for execution all instructions in memory unit. 

It is implemented with one button, which activates 
virtual processor to run a program one by one along 
with clocks. This process stops till the processor 
decodes the halt instruction. This interface is suitable, 
when the processor is regarded as a machine to execute 
instructions. 

M2 is for execution one instruction in memory unit. 
It is same as M1 except the fact that it activates virtual 
processor to run only single instruction.  

M3 is for execution one-step of the process. It is 
same as M1 except the fact that it activates virtual 
processor to run only one step (one clock). Since one 
step of the execution may not be represented in 
semantics of the instructions, this interface is not 
suitable for students to check instruction architecture. 
But it is suitable for checking the inner operation of the 

processor, because it helps students to analyze the 
operation in detail. 

M4 is for assertion of control signals directly. It is 
implemented with buttons, which assert all control 
signals in the processor. This interface is suitable for 
the topic about control unit and signals. It helps 
students learning of control signals and deriving their 
sequence of the fetch and execution operation. 

M5 is for making time chart of control signals for 
instruction fetch and execution operation of all 
instructions, in order to specify the control unit. The 
branch instructions have two time charts for the 
condition of the branch. This interface is also suitable 
to the topic about the control unit and signals. Since 
we assume that students don’t learn the subject of the 
logic circuit designing, there is no interface for 
designing control unit with logic circuit. Instead of 
logic circuit, we adopt time charts. Though we need to 
show how to interpret and write time charts, it doesn't 
take longer time for explanation about time chart than 
about logic circuit designing. Moreover we take 
advantage of supporting education by specifying the 
control unit. That is, combination of the interface M5 
and M2 facilitates students to learn that the control unit 
generates the sequence of control signals automatically 
and these signals activate the operation of the 
processor. 

We also use auxiliary interfaces to reset the 
processor, to suspend the execution and to adjust the 
speed of the execution. 

In order to present the inner state of the processor, 
we make visible/invisible attributes for sorts in the 
processor block, i.e. control unit, path of control 
signals, data-path and data-path elements. By these 
attributes, objects are shown/hidden on the processor 
block diagram. Following list shows the attributes of 
the every sort in the processor.  

 
� Data-path: “data-path” and “data-flow” 

attributes. The former is for static 
representation of data-paths, and the latter is 
for dynamic representation of flowing data. 

� Data-path elements: “elements”, “value”, and 
“flag” attributes. The “value” attribute is used 
to show data kept at registers.  

� Control unit and control signal: “control” 
attributes. The “control” attributes is used to 
show the both of the control unit and the lines 
of control signals. 

 
We design the expression interfaces from E1 to E5 

by specifying all attributes of the sorts in the processor 
block. 



 
E1: “data-path-flow”, “elements”, “value” and 

“flag” of primary data-path elements are visible. 

 
Figure 4. The Interface for Assignment of 

Instruction Set 
 

 
Figure 5. The Interface for Assignment of 

Processor Block 
 

 
Figure 6. The Interface for Assignment of 

Control Unit 
 

E2: all attributes except "control" are visible. 
E3: all attributes are visible. 
E4: all attributes except "control" are visible. 
E5: all attributes except "control" and "value" 
 

As addition of these interfaces, we also use a message 
box for explanation of the operation. In order to design 
the expression interface we define the word "primary 
data-path elements" for elements referred in the 
semantics of the instruction set architecture. The 
primary data-path elements of MKit are the program 
counter, the instruction register, the accumulator, and 
the memory unit.  

All attributes specify simply their visibility, that is, 
if an attribute of a sort is visible, objects of the sort are 
always drawn in same position of the simulator 
window. This specification of the expression interface 
makes it simple to represent the inner status of the 
processor and makes it easy for students to grasp the 
operation. 
 
4. Interface and Assignment Design 
 

We introduced interfaces to express status and 
manipulate CPU simulator in previous section. In 
practically use of the simulator, the expression 
interfaces and the manipulation interfaces are 
combined along with assignments for the topics of 
computer architecture. We discuss with the 
assignments and combinations of interfaces we have 
designed. The assignments are assumed to given in the 
following order. 

 
4.1 An assignment about the instruction set 
architecture 
 

On this assignment, students translate assembly 
language instructions to machine language instructions. 
Then students make certain of the semantics of the 
instructions they have learnt. During the assignment, 
students write instructions into memory unit of our 
simulator, and execute instructions by MKit virtually.  

We choose the interface E1, M1 and M2 for the 
assignment (Figure 4). Since the interface E1 draws 
only flowing data and primary data-path elements, E1 
facilitate students to concentrate the semantics of 
instructions during the assignment. And because E1 
does not draw whole processor block diagram, it is 
also suitable for students who have not learnt the 
processor block as micro architecture yet. 



The interface M1 and M2 is used to execute 
instructions. These interfaces make students to confirm 
the semantics and a part of the processor operation, by 
checking flowing data on the simulator window. We 
note that the there is not the interface M3, which is 
used for executing step by step along with the clock. 
Since there are steps that don’t bring any change of the 
primary data-path elements, the step-by-step execution 
is not suitable for the interface E1. 

 
Figure 7. The Interface to Assert Signals 

 
 

 
Figure 8. The Interface where register 

values are hidden 
 

 
Figure 9. The Interface for Assignment of 

Making Time Chart 
 

 
4.2 An assignment about the processor block 
 

On this assignment, students confirm the static 
structure of the processor by the processor block 
diagram. Then students execute instructions in the 
memory unit, and make certain of the processor 
operation on the processor block diagram. This 
assignment supports students to confirm that there are 
registers and data-path among the primary data-path 
elements in order to propagate data. 

We choose the interface E2, M1, M2 and M3 for 
the assignment (Figure 5). The interface E2 draws the 
processor block diagram except the control unit. E2 
makes students concentrate to learn the processor 
block. Students can also execute instructions and check 
the operation of the processor by the interface M1. 
When students want to check the detail of the process, 
they can use M2 and M3 too. 

 
4.3 An assignment about the control unit 
 

We design three assignments for the topic on the 
control unit: an assignment about the static 
construction of control unit, two assignments about the 
operation of the control. These three assignments are 
described from this section to the section 4.5. 

On this assignment, students make certain of the 
control unit and the lines of control signals. The goal 
of the assignment is that students confirm the existence 
and roles of the control unit and control signals.  

We choose the interface E3 for the assignment 
(Figure 6). The interface E3 shows all sorts of the 
processor including the control unit and the lines of 
control signals. The minutest diagram of processor 
block makes students to learn and remember that the 
process of CPU arises from the control unit and signals. 

Since there is no interface for manipulation, all 
students can do is to confirm the static construction of 
the processor block diagram. The next assignment 
makes demands of students for more active learning. 

 



4.4 An assignment to control CPU by asserting 
control signals directly 

 
Figure 10. The Interface to Make Time Chart

 
On this assignment, students derive the sequence of 

control signals for fetch and execution of all 
instructions. We aim students make certain of the 
instruction fetch, decode, and execution in the CPU 
process, through this assignment. 

We adopt the interface E4 (or E5) and M4 (Figure 
7). In order to assign student to derive the sequence of 
control signals, we make students assert the signals via 
buttons provided by M4. In order to execute 
instructions, they derive the correct sequence of 
control signals on the basis of their knowledge they 
have learnt the first 2 assignments. 

The interface E4 draws the processor block diagram 
except the control unit and the lines for signals. We 
indicate the lack of the control unit, and students have 
to perform the role of the control unit. 

The use of the interface E5 (Figure 8) makes this 
assignment more difficult, because E5 does not show 
values kept by registers. Therefore students check only 
OPcode and flags, and then they assert control signals 
with the use of E5. The interface E5 helps students to 
learn the control unit has only these values as their 
input. 

5. Simulator Implementation 
 

We have implemented MKit simulator with Java 
1.4. Our implementation is based on object-oriented 
concept, where the parts of the processor (data-path, 
data-path elements, control units, control signals) are 
treated as objects. Each object has its attribute for the 
expression interface. And each object has methods to 
implement the manipulation interfaces. 

The interface M4 provides buttons for all control 
signals. The buttons are drawn of the processor block 
diagram at the draw panel. Drawing the buttons on the 
diagram makes manipulation of the buttons intuitive. 

 
4.5 An assignment to control CPU with time 
chart 

Objects have their own positions on the simulator 
window respectively. If the current interface is 
changed, objects are drawn/hidden at the positions 
according to the attributes. As an advantage of this 
behavior of object, it makes students' grasp of CPU 
status easier, because a part of the single processor 
block diagram is always drawn, and no object changes 
it's position among the interfaces. 

 
On this assignment, students make time charts for 

fetch and execution of all instructions. Then they 
execute instructions in the memory unit with the time 
charts they specified. The goal of this assignment is 
that students summarize the sequences of control 
signals, and they confirm the role of control unit that 
works automatically. 

In order to design other exercises and assignments, 
we can change the order of the interfaces and the 
attributes of the interfaces. But in order to change the 
interfaces, we need to modify Java programs on 
current status of our implementation. There is other 
root for refinement of the current implementation. That 
is, our source package will be divided into three 
modules, i.e. the virtual processor, interfaces for 
expression and interfaces for manipulation. This 
refinement will make the simulator more flexible and 
highly extendable for modification of the interfaces 
and the virtual processor. 

The virtual processor in the previous assignment 
was incomplete in the sense of the control unit absence. 
On this assignment, students make the processor 
complete by the time charts for the control unit.  

We choose the interface E3 and M5 (Figure 9). The 
interface E3 is used in order for students to check the 
values of control signals, and to make it easy to try and 
error for specifying time charts. The interface M5 
shows time charts of all control signals for fetch and 
execution of all instructions. And it accepts mouse 
clicks to modify signals (Figure 10). 
 

 



6. Related Works 
 

In order to support computer architecture education, 
several CPU simulators and simple specifications of 
CPU have been proposed [1,2,3]. These simple 
specifications are designed deliberately for first or 
second-year students to learn essential of computer 
architecture, and to put advanced usage for operating 
system or compiler in their perspective. 

Following is a list of policies for designing 
processor. 

 
1) The specification is designed simple enough 

for first or second year students to learn 
essential of CPU operation. 

2) The specification is designed in order to put 
advanced application for operating system or 
compiler in the perspective. 

3) The specification that students have already 
learnt is adopted 

 
In studies on CPU simulator, the items 1,2 are 

treated important factors. But our policy to decide the 
specification of processor is based on the item 1,3. 
This fact gives rise to a difference between ours and 
other specifications. That is, our specification is 
designed as a simple accumulator machine, while the 
specifications are based on register machines with 
load-store architecture. Since our idea is the 
correspondence between the interfaces of simulator 
and assignments, we can essentially apply the same 
idea to other CPU simulators for the introductory 
education of computer science. 

The interfaces we designed are also used in CPU 
simulators. For example, the expression interface, E3 
is same as the simulator for The Simple CPU [1]. The 
manipulation interface, M4 is same as one of interfaces 
of RTLsim [3]. One of differences between these 
simulators and our simulator is that these simulators 
use their own interfaces, while our simulator have a 
number of interfaces and use some of them along with 
assignments. 
 
7. Conclusions 
 

This paper describes a CPU simulator for 
introductory education of computer architecture. Our 
approach to design the simulator is based on the 
correspondence between the interfaces of our simulator 
and assignments of an exercise class on computer 
architecture. The simulator selects and provides a part 
of the interfaces for students along with an assignment. 
The simulator has single virtual CPU to simulate, and 

single processor block diagram to express the status of 
CPU. This framework helps teachers to design various 
assignments and exercises with CPU simulator on 
uniformed framework, and it also reduce students' 
extra learning overhead for CPU specification and use 
of the simulator.  

We are applying the simulator to an exercise class 
at our Department of Takushoku University. We are 
going to evaluate the simulator with the practical use in 
the exercise class. 
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Abstract

Computer architecture embraces a tremendous num-
ber of ever-changing inter-connected concepts and in-
formation, yet computer architecture education is very
often static, seemingly motionless. Computer archi-
tecture is commonly taught using simple piecewise
methods of explaining how the hardware performs a
given task, rather than characterizing the interaction of
software and hardware. Visualization tools allow stu-
dents to interactively explore basic concepts in com-
puter architecture but are limited in their ability to en-
gage students in research and design concepts. Like-
wise as the development of simulation models such
as caches, branch predictors, and pipelines aid stu-
dent understanding of architecture components, such
models have limitations in the workloads that can be
examined because of issues with execution time and
environment. Overall, to effectively understand mod-
ern architectures, it is simply essential to experiment
the characteristics of real application workloads. Like-
wise, understanding program behavior is necessary to
effective programming, comprehension of architecture
bottlenecks, and hardware design. Computer archi-
tecture education must include experience in analyz-
ing program behavior and workload characteristics us-
ing effective tools. To explore workload characteristic
analysis in computer architecture design, we propose
usingPIN, a binary instrumentation tool for computer
architecture research and education projects.

1 Introduction

New applications and programming models are con-
stantly emerging to complement new and improving
hardware technology and paradigms. It is becoming
essential to understand the workload characteristics
of applications in order to design effective architec-
tures. Often, in order to understand program behav-
ior on a specific processor, students must have a sig-
nificant amount of knowledge of the underlying hard-
ware and the control and data flow of the application.
For instance, modern performance is a confluence of
many components working together - branch predic-
tors, caches, pipelines, etc. Even with a deeply rooted

understanding of the architecture, it is often extremely
difficult to comprehend the flow and resource usage of
the program because of the immense amount of data
that needs to be collected and analyzed in order to
study such behavior.

There are various tools available for computer ar-
chitecture education. These tools can be divided into
several categories, architecture visualization systems,
simulation environments, and hardware event monitor-
ing programs. Each of these categories play a role in
bridging the divide between pedantic methods of illus-
trating computer architecture and real-world dynamic
examination of architecture concepts. There are sev-
eral areas of knowledge and skills that these tools ad-
dress. For instance, architecture simulators provide in-
sight into microarchitecture design and the behavior of
the individual hardware components. These simulators
are usually designed so that students can integrate ad-
ditional emulated hardware components into the over-
all simulation system and analyze the impact of design
parameters on the simulated processor. Likewise, per-
formance monitoring support allows students to real-
ize the performance impact of the different architec-
ture components and compiler optimizations have on
the overall system. Most importantly, monitoring sys-
tems provide accurate feedback on real workload ap-
plications.

Simulators and performance monitoring systems
may not be sufficient for computer architecture edu-
cation because they do not allow large amounts of in-
formation to be collected on a per-instance level at the
instruction granularity. Likewise, profiling techniques,
such asgprof and pixie, only provide coarse-grain
profiling information and are not suitable for detailed
computer architecture concept exploration. Rather it is
necessary for students to attribute profile information
to the instruction level of the program. Thus, tools that
provide infrastructure for performing data analysis of
both software and hardware events can be extremely
valuable to the computer architecture fundamentals of
performance analysis, design, and architecture valida-
tion. Overall, such integrated computer architecture
examination results in a deeper and more detailed com-
prehension of the collected data.

In this paper, we present PIN, a binary instrumen-
tation tool that can be used as a teaching aid by in-
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structors in computer organization education to facil-
itate the study of real-world workloads and their im-
pact on the design of architectures. In addition to dis-
cussing the benefits of using PIN in the area of edu-
cation, this paper includes a complete description of
PIN’s extended profiling features and methods of op-
eration. Overall, we demonstrate that PIN can be used
to replace the time and complexity of using trace files
and software simulators to explore computer architec-
ture concepts and design.

In the following section, we present an overview
of tools that have been used in computer architecture
courses, followed by the motivation of using PIN in
computer architecture education in Section 3. In Sec-
tion 4 we present some projects to illustrate how PIN
can be used to teach. Following that we present our
conclusion.

2 Background in Computer Ar-
chitecture Education Tools and
Methods

Although various tools are integrated into computer ar-
chitecture curriculum, we believe that the best systems
for computer architecture education should primarily
involve:

• Simulated Design Environments

• Performance Analysis

• Workload Characterization

We elaborate on each of the above points and
present arguments for and against them as we percieve
fit in the classroom environment.

Simulated Design Environments:Instructors often
place much emphasis on designing architectural mod-
els in the classroom. Simulators are used as a means
of getting the students to explore design issues or are
even as models to deepen the students understanding
of architecture concepts.

Design simulators such as the Liberty Simulation
Environment [7] allow students to design architectural
components that interact within simulation modeling
framework. Such simulators allow them to gain a
deep understanding of how various components inter-
act with one another and could potentially create a bot-
tleneck. Others such as MipsIt[2], DLXide[12] etc. are
used in the classroom because they help students better
understand the theoretical concepts taught and open up
research ideas. There exist numerous other simulators
that could be used in the classroom, [5] has a lengthy
listing of such tools which could very effectively be
integrated into the coursework. Building a simulation
environment allows students to comprehend the details
of real hardware and provides greater understanding
of the subtlties which give rise to complex designs.

However, when designing simulators, significant time
is spent developing software rather than doing the ac-
tual performance analysis on their simulator. Simu-
lation environments often abstract the concept of real
workloads on real hardware too much. Some students
have difficulty relating the effect of the simulation en-
vironment to the actual program and hardware.

The simulators students develop are often trace
driven which are severly limiting as we elaborate
here. The trace files used for simulation can be im-
mensely large, several megabytes per benchmark, and
are therefore difficult to distribute as inputs for pro-
grams. On average, for ASCII trace file formats with
simple execution information (program counter, op-
code, 1 field of behavior), for every 2 million instruc-
tions there is overhead of about 80MBytes of trace file.
Burtscher[11] reports that even with specifically tai-
lored trace-compression algorithms applied to the ex-
ecution trace, real workloads will exceed several giga-
bytes of space.

Trace files already reflect control flow of the pro-
gram which was used to generate the traces. Thus,
it voids the students an opportunity to investigate
changes to both the application (compilation, re-
writing algorithms) and the underlying architecture.
Another issue with trace-based simulators is the prob-
lem of simulation time, generally such simulators take
days to model the entire run of a real program. Our
own evaluation of trace-based efficiency has deter-
mined that trace-reading (parsing and I/O) consumes
nearly 40% of a simple cache simulator program.

Performance Analysis: Hardware event monitors
are currently being extensively invested into by chip
developers. The Itanium Processor Family (IPF), IA-
32, POWER, and Alpha systems provide various event
monitors for use. However only a few combinations
may be active at any given time; the combinations are
often limiting in the events that can be simultaneously
monitored. Nevertheless, providing hardware coun-
ters has facilitated the development of interesting tools.
Tools such as Perfmon[6] and PAPI[10] access the un-
derlying event counters to develop applicaton profiles
and other interesting reports that are valuable in per-
forming program analysis.

In the classroom, awareness of hardware event mon-
itoring tools is essential because they are actively be-
ing used in the industry to study the performance of
programs on the underlying hardware. As mentioned
previously, current architectures currently come heav-
ily armed with an arsenal of hardware counters.

Interesting works such as vertical profiling[14], dy-
namic optimizations and code caches [8] take advan-
tage of event monitors to perform performance criti-
cal analysis on programs to help boost the applications
performance.

The primary limitation of simply showing absolute
counter values to students would not prove effective
as a method of teaching because the students lack an



insight on how the various performance counters could
be co-related. A very basic example is to realize that
using a counter to realize the total instruction count for
a program divided by the total execution time of the
program in cycles results in getting the average cycles
per instruction.

Hardware event monitors are not flexible in that they
come as part of the hardware and are not easily cus-
tomizable to suit the users needs. The event monitors
usually perform sampling, they do not guarantee se-
quence of execution as outputs. Their inflexbility lim-
its their use in the classroom.

Workload Characterization: The arguments pre-
sented thus far are to bring forth the realization that
minimal emphasis if any has been placed on presenting
students with real workloads in the classroom, an es-
sential component to the coursework. Simulators and
hardware event monitors though valuable are limited
in their contributions to the class environment. The so-
lution to their limitations is using tools that facilitate
a means of observing real program behavior on real
hardware. Tools that facilitate binary instrumentation
- PIN[13], Dyninst[3], Atom[1], etc.

The use of such tools requires no compiliation of
the source, any binary application can be directly used
as input into the program. This gives the flexibility
of being able to study the nature of numerous pro-
grams since the only requirement is the binary itself. It
voids the requirement of traces for simulators or source
codes for studying program behavior.

Since these programs along with their binary input
sets run directly on the machine, their execution times
are short which allows the study of programs for their
entire run. It opens up new venues of concepts that
may be presented in the classroom, concepts such as
phase behavior. Phase behavior requires that programs
be run for a very long period of time, a requirement
that cannot be met by simulators, but one that binary
instrumentation tools can.

Furthermore, instrumentation tools allow quick im-
plementation of ideas and do not require complex in-
frastructure. This would be suitable in the classroom
because students may quickly implement new con-
cepts and test the concept’s effectiveness. This fosters
a research oriented environment in the class which mo-
tivates students to investigate deeper into the subject.
The instrumentation tools would allow students to ex-
plore real workloads of varying characteristics, from
scientific and engineering programs and even to com-
mercial products.

There exist varied tools that could be incorportated
into the architecture curriculum; the essential note is
that instructors should realize that it is extremely ben-
eficial for students to have a broad idea of the tools
available for teaching and performing real workload
studies. The idea is much similar to making a de-
cision in selecting the appropriate programming lan-
guage when designing a softare applicaton. Thus it is

essential for instructors to design their course material
such the students are exposed to multiple tools through
the run of their computer architecture coursework.

3 PIN - An Approach to using Bi-
nary Instrumentation Tools in
Education

3.1 About PIN

A tool that we believe fills in the missing pieces of the
previously described tools is PIN[13]. PIN is provided
free of charge from Intel. It currently runs on the Ita-
nium systems, but work is under way to support ARM
and the IA32 architectures. It provides a functionality
similar to the ATOM[1] tool for Compaq Tru64 Unix.

The user writes instrumentation and analysis rou-
tines. Instrumentation routines insert calls to analy-
sis routines into an application. They determine how
an application is instrumented. The analysis routines
are called while the program executes and can record
information like the effective address of a memory
instruction or the direction of a branch instruction.
The instrumentation is customizable; the user decides
where analysis calls are inserted, the arguments to the
analysis routines, and what the analysis routines do.

PIN inserts instrumentation into an application at
run time. It sees every instruction in the user process
that is executed, including the dynamic loader and all
shared libraries. The instrumentation and analysis ex-
ecute in the same address space as the application, and
can see all the application’s data.

PIN passes instructions or a sequence of instructions
(trace) to an instrumentation routine. The instrumenta-
tion routine can inspect the instructions, looking at the
opcode class and its register and literal arguments. The
instrumentation routine may insert a call to an analysis
routine before or after an instruction. PIN tries to make
the instrumentation and its own execution transparent
to the application. It does not use the same memory
stack or heap area (brk) as the application, and maps
addresses in a special area. Addresses of local vari-
ables (stack) and addresses returned by calls to brk,
malloc and mmap will not be changed when PIN is
active.

3.2 Using PIN

Presented in Table 1 is a simple example that gives the
instruction count of a program including all the shared
library calls made by the application program. The
sample program is run by executing:$ pintool – /bin/ls
at the shell prompt.

Lines 13 and 14 register callback functions with
PIN. The function ”Instrument Instruction” is theIn-
strumentationfunction that is called on every instruc-
tion and ”Finish” is the function called upon termi-



/* Analysis Function */
1 void AnalyzeInstruction() {
2 icount++;
3 }
4

/* Instrumentation Function */
5 void InstrumentInstruction(INS ins, void *v) {
6 PIN_InsertCall(

/* Call analysis func. before instr. is executed */
IPOINT_BEFORE,
/* Current instruction */
ins,
/* Call analysis func. before instr. is executed */
(AFUNPTR) AnalyzeInstruction,
/* End of PIN_InsertCall’s argument list */
IARG_END);

7 }
8

/* Executed at end of program */
9 VOID Finish(int n, void *v) {
10 cout << "ICount : " << icount;
11 }

/* Register callback functions */
12 int main(int argc, char *argv[]) {
13 PIN_AddInstrumentInstructionFunction(Instruction, 0);
14 PIN_AddFiniFunction(Finish, 0);
15 PIN_StartProgram();
16 }

Table 1: PIN tool to count the total number of instruc-
tions in a program

1 void InstrumentInstruction(INS ins, VOID *v) {
2 /* Query the opcode */
3 switch(INS_Category(ins)) {
4 case TYPE_CAT_BRANCH:
5 PIN_InsertCall(IPOINT_BEFORE,

ins,
/* Call the branch prediction program */
(AFUNPTR) Branch_Predictor,
/* The instruction address */
IARG_IP_SLOT,
/* Non-zero if branch will be taken; otherwise 0 */
IARG_BRANCH_TAKEN,
IARG_END);

6 break;

7 case TYPE_CAT_STORE:
8 case TYPE_CAT_LOAD:
9 PIN_InsertCall(IPOINT_BEFORE,

ins,
/* Call the data cache program */
(AFUNPTR) Data_Cache,
/* The memory address */
IARG_EA,
IARG_END);

10 break;

11 default:
12 break;
13 }

Table 2: PIN tool that interfaces with Data cache and
Branch prediction simulators

nation of execution of an application. TheAnaly-
sis function for every instruction is specified through
PIN InsertCall on line 6. The instrumentation function
is called only the first time an instruction is executed.
The analysis function, AnalyzeInstruction() is called
every time the instruction is executed.

Data Cache & Branch Predictor Simulation Inter-
face: The pin tool in Table 1 can be changed to sup-
port simulations easily by changing the instrumenta-
tion function. The instrumentation function in Table
2 easily integrates a data cache and a branch predic-
tion simulator into one tool while still providing the
previous instruction count analysis. Detailed opcode
analysis is avoided here for simplicity. Precise opcode
detail is available in the actual source at [13].

The simulator codes for cache and branch prediction
can be written in entirely separate modules, compiled
and linked with the pin tool. Also, due to PIN’s inher-
ent interface with the hardware, simulator code sizes

IPOINT
IPOINT BEFORE Call before the instruction/procedure is executed.
IPOINT AFTER Call after the instruction/procedure is executed.
IPOINT TAKEN BRANCH Call after the instruction executes and before the target is

executed. Only supported for IP relative branches.

Table 3: Instrumentation Points (IPOINTs) for
PIN InsertCall(IPOINT, INS, AFUNPTR, iarg1,
iarg2, ..., iargN, IARGEND)

are small in relation to real simulators. The data cache
and branch predictor simulator code size are approxi-
mately only 20 lines. The development time is dramat-
ically shortened because the need to build surrounding
infrastructure to understand the instruction set archi-
tecture (ISA) is no longer required.

The PIN InsertCall(IPOINT, INS, AFUNPTR,
iarg1, iarg2, ..., iargN, IARGEND) function is the
key to instrumenting any binary in the PIN environ-
ment. Details of the various instrumentation points
(IPOINT’s) that can be placed for every instruction
or every procedure call are provided in Table 3. The
function can take up to a maximum of eight arguments
to facilitate various types of instrumentation and is
capable of instrumenting both procedures and instruc-
tions. Table 4 describes the various Instrumentation
Arguments (IARG’s) that may be passed into the
analysis function. The type AFUNPTR defines the
analysis function to be called during the run of the
program. Only a few of the IARG’s and IPOINT’s are
listed for conciseness.

4 In the Classroom

4.1 Students and Projects

Understanding concepts allows the principles of many
different disjoint areas to be leveraged in solving prob-
lems and developing skillful intuition. In turn, teach-
ing is about exposing the underlying principles of ideas
in ways that are both clear and logical. A good ap-
proach to teaching computer architecture is to be able
to teach a concept and immediately illustrate a working
system to students. The PIN infrastructure can be used
to illustrate such ideas and allow students to cultivate
and exercise their creativity and intuitions in projects.
Often, course projects are limited in scope because of
time, however, by integrating PIN with existing tools
for use in a project, more structured ideas can be real-
ized. Furthermore, it is evident that the act of learning
an existing tool for a project is similar to real engineer-
ing situations in becoming assimilated to a particular
design team.

One of the most common projects in computer ar-
chitecture is to build concept simulators to enhance un-
derstanding. These projects include instruction cache,
data cache and branch prediction simulators. Such as-
signments are very costly in the amount of time the stu-
dents spend building the interface to reading the trace



IARG
IARG IP SLOT Memory address of an instruction, where the low 4 bits encode the slot number (e.g. 0, 1, 2).
IARG IP Memory address of the bundle containing this instruction.
IARG EA For a load or store, the effective address of the memory location accessed by an instruction. Only valid for IPOINTBEFORE.
IARG QP VALUE The value of the qualifying predicate for this instruction. Only valid for IPOINTBEFORE.
IARG REG VALUE The value of a register, register name follows.
IARG BRANCH TAKEN Non-zero if the branch will be taken, otherwise 0. Only valid for IPOINTBEFORE.
IARG BRANCH TARGET ADDR The target address of a branch.
IARG FALLTHROUGH ADDR The IP and slot of the next instruction to be executed. If this instruction is a branch, it is assumed that the branch is not taken.
IARG THREAD ID Thread id, first thread is 0, successive threads are 1, 2, ...

Table 4: Instrumentation Arguments (IARGS) for PINInsertCall(IPOINT, INS, AFUNPTR,iarg1, iarg2, ...,
iargN, IARG END)

format. This often results in students being limited to
building only one or two simulators per semester due
to time constraints, furthermore the time is spent on
details of programming/software engineering and not
on analyzing the results of the architecture simulators.

However, if the students had an opportunity to first
interact with the various simulators as the class pro-
gresses and are assigned simple assignments of opti-
mizing a pre-built simulator by changing the parame-
ters etc. they would be able to get a good feel of how
design parameters affect performance. Further more,
it would allow the instructor to design the course such
that at the end of the semester a project could be as-
signed where the students could pick a simulator that
intrigued them and build it from bottom up. The ad-
vantage of that is that students often reach deep into
their work when they are keenly interested in it. Ex-
ploiting that in them would guarantee that they extract
the most from the class.

4.2 Applying PIN

In Section 2 we gave a brief introduction to PIN as a
tool and hereby wish to reflect upon why PIN would
prove effective in the classroom environment. PIN
has certain characteristics which we believe makes it a
unique experience for projects in the classroom. They
are as follows:

Unique simulation environment:PIN’s simulation
environment is perceived uniquely by students because
they realize the input program are binary tools that they
use regularly such as ls, sort, grep etc. instead of pre-
senting their simulators with traces. The students run
the programs on real hardware rather than on an ab-
stract software layers which limit some students from
understanding how a simulator is working.

Reduced development time:The development time
for simulators is dramatically cut short and thus allows
students to focus more on actual data analysis; students
often loose precious time in just building the simulator
infrastructure.

Flexibility: PIN is a valuable teaching tool because
of its flexibility in being able to support simulation en-
vironments as well as being to monitor compiled bi-
naries both statically and dynamically. Often students
are expected to cope with multiple tools because no
one tool provides enough flexibility to be able to last
through the run of the course. The students could use

PIN all through their computer architecture without
having to change tracks to using a new environment.

To give a generic view of how PIN could be used
in the classroom; we present through Figure 1 the
various analysis that students can do as part of their
class projects in computer architecture coursework.
The example illustrates cache and value profile mod-
ules being used on the entire program. This can
be achieved by instrumenting every single instruc-
tion in the program using the PIN callback func-
tion PIN AddInstrumentInstructionFuction(...). In
procedural level instrumentation for callA() and
call C(), instrumentation is injected again by using
the PINAddInstrumentInstructionFuction(...) func-
tion; however the instrumentation range is dedicated
only to the range of instructions that fall in the scope of
those procedure calls. Detailed application program-
ming interface (API) is available online at [13]. We
see that callA() and callC(); data capture varies from
collecting fine grained opcode statistics to generic pro-
filing.

The currently released PIN kit contains various tools
for use, a few of which are the data cache, branch pre-
dictor simulators, a tool to measure instruction counts
and to analyze the latency of load instructions. Also
contained are tools that perform profiling of the pro-
gram; time spent in procedural calls etc.. A tool to
collect detailed program traces is also available. De-
tails of all the tools mentioned are available at the pin
website [13].

4.3 PIN’s accessory tools/libraries

PIN provides fine-grained analysis with excellent flex-
ibility however a limitation that often tends to exist is
with students being unable to analyze the data being
collected. Thus we provide complementary tools to
help the students.

Statistical analysis package.The students are pro-
vided with data analysispackages. These play a sig-
nificant part in using PIN as a teaching tool because
it voids the students from having to analyze raw data
by hand. Collected data that has been processed as in
Table 5 and Figure 2 make it easy for students to com-
prehend their program behavior better.

CUT - Colorado Utility Tool: Data generated in
Table 5 shows detailed analysis of a load instruction at
memory address 0x200000000000db20 that was pro-



Figure 1: Instruction and Program level data capture

Colorado Utility Package (CUT): Data Analysis
0x200000000000db20-samples 7
0x200000000000db20-mean 119
0x200000000000db20-stddev 220.596
0x200000000000db20-conf90 175.095
0x200000000000db20-conf95 220.724
0x200000000000db20-conf99 335.541
0x200000000000db20-quantile-samples 7
0x200000000000db20-Samples-6 3
0x200000000000db20-Percent-6 42.8571
0x200000000000db20-CumPercent-6 42.8571
0x200000000000db20-Samples-12 1
0x200000000000db20-Percent-12 14.2857
0x200000000000db20-CumPercent-12 57.1429
0x200000000000db20-Samples-45 1
0x200000000000db20-Percent-45 14.2857
0x200000000000db20-CumPercent-45 71.4286
0x200000000000db20-Samples-158 1
0x200000000000db20-Percent-158 14.2857
0x200000000000db20-CumPercent-158 85.7143
0x200000000000db20-Samples-604 1
0x200000000000db20-Percent-604 14.2857
0x200000000000db20-CumPercent-604 100

Table 5: Program level statistical analysis of a load
instruction at address 0x200000000000db20

Figure 2: Dynamically generated load latency his-
togram

filed through the entire run of the program. The data
is interpreted as follows: The first five lines reflect
the samples, mean, standard deviation followed by the
confidence intervals respectively. Thereafter the data
reflects each of the individual samples; the load laten-
cies every time the instruction was executed.quantile-
samplesis the total number of occurrences of this load
instruction. Samples-x and its corresponding entry
represent the frequency of occurrence of the load for
latencyx. Respectively followed by the percentage and
cumulative percentages of occurrences of that latency
for the given load instruction. The graph in Figure 2
reflects another data set; the graph was generated au-
tomatically through our CUT package.



Our analysis’s package allows students to easily cre-
ate digestible reports and graphs for post-run analysis.

Profiling structure library: Aside from PIN stu-
dents are provided with a number of code modules for
increasing the flexibility of the system as well as re-
ducing development time. First, a set of data structure
modules are provided that include generic caches, hash
tables, time-line event record books, and symbol ta-
bles. In addition, a library module for value and mem-
ory address profiling is available for seamless integra-
tion with PIN instrumentation calls. The value profiler
can be directed to keep a topN value (TNV) table for
register operand values. The address profiler can track
constant, stride, and finite-context matched patterns of
addresses for load and store instructions.

Sampling interface: PIN provides a sampling in-
terface that directs the binary instrumentation pro-
cess. There are several management controls (known
as PIN-pointing) which support triggering of the user-
inserted instrumentation calls after an initialization pe-
riod of instruction execution events or for periodic
sampling. More detailed controls allow the instru-
mented code events to be called for a set interval of in-
struction executions after each periodic point has been
reached.

4.4 PIN Projects

Numerous projects could be given out to students to
select. The following are a few of those that could be
used as a guide line:

Architectural models:It is helpful for students to
see how the various architecture units of the system
are performing while a program is running. A student
could select/write the modules of interest such as: a
Register Stack Engine(RSE), branch predictor, cache
simulator etc.

Profiling: Profiling is a very common occurrence
when studying program behavior. It serves as the fun-
damental step prior to doing in depth analysis. Thus
profiling in conjunction with the data analysis pack-
ages would facilitate the study and generation of re-
ports that reflect how the system performed through
the run of the program based on the analysis the user
has asked for. Some of the profiling tools could ex-
tend from simply collecting the opcode frequencies
to observing the load referencing patterns where stu-
dents may study how far ahead loads were fetched and
record the actual use of the load. Yet another profil-
ing tool could be one that looked for redundant loads
and stores to the same location. PIN can facilitate this
by looking at the source and destination registers and
comparing them to see if the values are identical.

Trace collection:PIN is able of collecting traces of
the programs as they execute. While there exist many
tools that facilitate such a feature; the uniqueness of
PIN is that the trace could actually consist of register
values that are present at the time the instruction is be-

ing executed.

4.5 Future Development

Run-time program analysis is vital to understanding
the essence of computer programming and not limited
to comprehending the effectiveness of modern archi-
tecture designs. It applies to program writers at all
levels, from students to software developers and espe-
cially to those involved in that area of research. It is
vital to understand how a high level language such as
C/C++ gets transformed into low-level code that runs
on the underlying modern architecture since it affects
the performance of the machine.

Lately interest has been growing in optimizing pro-
gramming dynamically during their execution time -
dynamic optimizations. With binary instrumentation
tools, interesting research topics such as code caches,
feed-back directed optimizations etc. may be simpli-
fied and presented in the classroom as projects to en-
courage research interests in students. Students are not
aware of such concepts and presenting them with such
ideas could give way to newborn interests in pursing
the field further.

5 Conclusion

Instrumentation tools can be a vital teaching tool in the
classrooms. We propose PIN as such a tool because it
presents the students with live runs real compiled bina-
ries on real hardware on a custom simulator if desired
while also facilitating fine/coarse grained analysis and
instrumentation functions. We believe that the ability
to be able to merge all those into one program to be
used as a teaching tool is of tremendous significance.

The tool would be extremely vital in helping stu-
dents understand how programs are to be analyzed and
how how their behavior can be monitored while still
being able to teach them and making them understand
the architecture upon which their computer programs
run.
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Abstract

We have developed a function-level processor simulator,
SimCore/Alpha Functional Simulator Version 2.0 (SimCore
Version 2.0), for processor architecture research and pro-
cessor education. This paper describes the design and im-
plementation of SimCore Version 2.0. The main features of
SimCore Version 2.0 are as follows: (1) It offers many func-
tions as a function-level simulator. (2) It is implemented
compactly with 2,800 lines in C++. (3) It separates the
function of the program loader. (4) No global variable is
used, and so it improves the readability and function. (5)
It offers a powerful verification mechanism. (6) It operates
on many platforms. (7) Compared with sim-fast in the Sim-
pleScalar Tool Set, SimCore Version 2.0 attains a 19% im-
provement in simulation speed.

1 Introduction

Various processor simulators [1, 2] are used as tools for
processor architecture research or processor education. The
environment in which a processor simulator can perform is
improving dramatically due to the increased speed of PCs
and the growing use of PC clusters. However, the time
needed for simulator construction increases as the architec-
tural idea to be implemented increases in complexity. In
many cases the evaluation with a simulator can be finished
in several weeks, although several months are needed for
the construction of the simulator, even if the simulator is
developed with existing tools.
SimpleScalar Tool Set [3] and SPIM [4] are well-known

processor simulators used for such purposes as processor
research and education. But, since SimpleScalar can be im-
plemented as a high-speed simulation, it is not a code that
can easily be modified. Similarly, SPIM may not be read-
able 1. Although there has been much research on processor
simulator speedup [5], there are few simulators which make
readability a priority.

1We say readable to mean enjoyable and easy to read.

In addition to its utilization in processor research and ed-
ucation, a processor simulator is vital as a module in a par-
allel computer simulator, embedded system emulator, and
so on. In these various uses, in addition to high speed, a
process simulator must have high readability and be easy to
use.
We previously constructed an Alpha [6] processor simu-

lator named SimAlpha [7]. Its design policy was to keep the
source code readable and simple. This paper describes the
design and implementation of a new generation of proces-
sor simulator named SimCore/Alpha Functional Simulator
Version 2.0 (SimCore Version 2.0) derived from SimAlpha.
SimCore Version 2.0 is a function-level simulator, which
satisfies the requirements of high readability and high-speed
execution simultaneously. In general, function-level sim-
ulators cannot be used to measure processor performance.
However, it can be used to collect basic data, such as the
number of executed instructions, the hit ratio of a branch
prediction and cache, and the ideal instruction level paral-
lelism of a program. It is also vital as a base for preliminary
evaluation of detailed clock-level simulation and as a mod-
ule for verification.
The rest of this paper is organized as follows. Section 2

describes the design and implementation of SimCore. Sec-
tion 3 reports our quantitative evaluation results. Section 4
is a discussion of related works. Section 5 contains some
concluding remarks.

2 Design and implementation

SimCore Version 2.0 features the addition of various
functions, an increased number of platforms, and simula-
tion speedup, while inheriting the high readability of Ver-
sion 1.0. In this section, the function of SimCore is sum-
marized, then the design and implementation issues are dis-
cussed.

2.1 Functions

SimCore offers many functions as a function-level or
instruction-level simulator. Except for the fact that the tar-



1 # SimCore-Loader a.out > aout.txt
2 # SimCore aout.txt
3 SimCore/Alpha Functional Simulator Ver 2.0
4 hello, world
5
6 ============================================
7 == SimCore Version 2.0 2004-01-08
8 == 0 million code ( 2070 code) 0.019 MIPS
9 == SimCore takes 0 min 0 second(109375 usec)

10 == SimCore starts at Wed Apr 7 18:34:20 2004

Figure 1. A sample output of the "hello, world"
program.

get architecture is fixed to the Alpha processor, it has almost
the same function as sim-fast in SimpleScalar.
A fundamental function is to simulate an application pro-

gram for each instruction. As an example, the commands
to simulate the well-known program which prints ”hello,
world” and its output are shown in Figure 1. Part of the
output is formatted so that it is easy to see. The 1st line
is a command to translate the application program into a
SimCore input file (see Section 2.3). The 2nd line is the
command to start SimCore. The 4th line is the output of the
application program. The 6th through 10th lines are a report
of the simulation. In this example, 2,070 instructions were
executed and 109,375 µsecwas required for the simulation.
Other implemented functions are enumerated below:

• The function to measure the frequency of appearance
of the executed instructions (instruction mix).

• The function to display the history of the executed sys-
tem calls.

• The interactive debugging function to display the con-
tents of the memory or register at a specified time.

• The debugging support function to output the contents
of the main registers for all executed instructions.

2.2 Compact description

A compact description was one goal of the design pol-
icy of SimCore. SimCore is written in C++ and the code
size containing the include file is small at 2,764 lines. The
number of lines of each file is summarized in Figure 2. Be-
cause functions are somewhat different, a direct comparison
cannot be made, but the number of lines of other simulators
are given for reference. The code for compiling sim-fast in
SimpleScalar is 15,566 lines. The code of SPIM is 14,213
lines.
The main reason why such a compact description was

attained is that the fundamental software architecture differs
from a conventional simulator design.
The part of the main loop in SimpleScalar which pro-

cesses one instruction is shown in Figure 3. Only a portion

1 lines words bytes filename
2 19 54 525 sim.cc
3 75 188 2067 chip.cc
4 231 833 6833 instruction.cc
5 297 872 7221 memory.cc
6 468 1711 12817 arithmetic.cc
7 168 401 3915 debug.cc
8 578 1100 12783 syscall.cc
9 378 1021 9865 etc.cc

10 550 1724 16565 define.h
11 2764 7904 72591 ---- total ----

Figure 2. The number of lines, words and
bytes of SimCore code.

1 switch (op){
2 case ADDQ:
3 regs.regs_R[(inst & 0x1f)] =
4 regs.regs_R[(inst >> 21) & 0x1f] +
5 regs.regs_R[(inst >> 16) & 0x1f];
6 break;
7 case MULQ:
8 regs.regs_R[(inst & 0x1f)] =
9 regs.regs_R[(inst >> 21) & 0x1f] *

10 regs.regs_R[(inst >> 16) & 0x1f];
11 break;
12 }

Figure 3. The main loop implementation of
sim-fast.

of an add instruction (ADDQ) and a multiply instruction
(MULQ) is shown.
The type of instruction to be processed is distinguished

in the switch sentence of the 1st line in Figure 3. Then, the
block from the case sentence of the 2nd line through the
6th line describes the operation of addition. The sum of the
value of the registers is calculated in the 4th and 5th lines,
and the result is stored in a register in the 3rd line. The block
from the 7th line through the 11th line describes the oper-
ation of multiplication. This style, which describes the op-
eration of each instruction independently, is named an un-
folded description style. This style permits an easy change
of operation of an instruction, and the addition of a new in-
struction. Since the processing which is necessary for each
instruction is described, there is the advantage that a high-
speed simulation is possible. On the other hand, because
the same description appears in two or more parts, there are
the drawbacks that management of the source code becomes
complicated and the amount of code becomes large.
In order to remove these drawbacks, a style can be con-

sidered which extracts the common part of the operation of
each instruction and describes its operation gradually with
reference to the pipeline structure of a microprocessor. We
name this style a folded description style.
SimCore adopts a folded description style. The code of

themethod step which processes one instruction in SimCore



1 int simple_chip::step(){
2 p->Fetch(&ev->as->pc); /* pipe stage 0 */
3 p->Slot(); /* pipe stage 1 */
4 p->Issue(); /* pipe stage 3 */
5 p->RegisterRead(); /* pipe stage 4 */
6 p->Execute(); /* pipe stage 5 */
7 p->Memory(); /* pipe stage 6 */
8 p->WriteBack();
9 return ev->sys->running;

10 }

Figure 4. The main loop implementation of
SimCore. SimCore adopts a folded descrip-
tion style.

1 /* SimCore 1.0 Image File */
2 /*** Registers ***/
3 /@reg 16 0000000000000003
4 /@pc 32 0000000120007d80
5 /*** Memory ***/
6 @11ff97000 00000003
7 @11ff97008 1ff97138

Figure 5. A sample SimCore execution image
file.

is shown in Figure 4. The class instruction which holds the
information for processing one instruction is defined. The p
in Figure 4 is the object of the class instruction. The values
of the private variables are gradually determined by call-
ing the method (Fetch, Slot, Issue, RegisterRead, Execute,
Memory, or WriteBack) of object p which corresponds to
the pipeline stage.
A folded description style is close to the description of

the microprocessor implemented in a hardware description
language such as verilog-HDL. For this reason, the advan-
tage is that the operation of the hardware can be easily
captured. Since the common operation is described in one
place, management of the code becomes easy. On the other
hand, compared with the unfolded description style which
describes the operation of each instruction independently,
the folded description style is a disadvantage with respect
to extendibility and simulation speed.

2.3 SimCore and program loader

SimCore does not have the function of a program loader,
which may be regarded as an additional function of a pro-
cessor simulator.
A simulation is started using the execution image of the

original format. An example of the execution image file
of SimCore is shown in Figure 5. This execution image
file is in text format and consists of two parts. In the first
part, values are assigned to some of the registers. In the
example of Figure 5, the hexadecimal value 3 is assigned to
the 16th register, and the value of 120007d80 is assigned to

the program counter. In the second part, the value of some
memory is assigned in the same manner. In the example of
Figure 5, the value 1ff97138 is assigned to the memory of
address 11ff97008.
The execution image file is created from the Alpha bi-

nary file with a program named SimCore-Loader [8]. As an
example, the command to simulate li (lisp interpreter) from
SPEC CINT95 on sim-fast of SimpleScalar is shown.

1 $ sim-fast li train.lsp

The corresponding command of SimCore is shown. The
command in the 1st line generates the execution image file.
The simulation is started by the command in the 2nd line.

1 $ SimCore-Loader li train.lsp > aout.txt
2 $ SimCore aout.txt

The simulation of an identical application is repeated
many times with various simulation parameters. In Sim-
Core, once an execution image file is created, only the name
of the execution image file is specified to run the simula-
tor. This mitigates any mistake at the time the simulation
starts. Moreover, in the utilization of SimCore, knowledge
of the executable file form of ELF or COFF[9] is not re-
quired. This is an advantage because users can concentrate
on the description of the behavior of the processor simula-
tor.

2.4 Elimination of global variables

No global variable is used in the SimCore code. On the
other hand, many global variables are used in SimpleScalar
and SPIM.
The readability of the source code is improved by elim-

inating global variables. In addition, elimination of global
variables is important from the viewpoint of the function of
a simulator. For example, let’s consider the measurement of
the branch prediction and the cache behavior when switch-
ing two or more tasks or threads in a processor. In this case,
it is necessary to switch the application at a fixed interval.
Since SimCore does not use a global variable, it is possible
to describe such behavior compactly.
The main function to switch two applications with a

5,000-instruction interval is shown in Figure 6. In the 5th
line and 6th lines, the simple chip type objects p1 and p2 are
generated. Then, 5,000 instructions of one application are
processed by the for loop in the 9th line. The method step
called in the 9th line is described in Figure 4. Similarly,
5,000 instructions of another application are processed by
the for loop in the 10th line. It becomes possible to mea-
sure the behavior of the branch prediction or cache in the
task-switching environment by inserting a branch or cache
module in the code shown in Figure 6.
As shown in Figure 6, SimCore can generate two or more

simulation images with a compact description. This makes
it easy to use SimCore as a module of a complicated com-
puter system or a parallel computer system. In contrast, it
is difficult to generate two or more simulation images in a



1 int main(int argc, char *argv[]){
2 char *p1 = argv[argc-1]; /* program name*/
3 char *p2 = argv[argc-2]; /* program name*/
4
5 simple_chip *c1=new simple_chip(p1, argv);
6 simple_chip *c2=new simple_chip(p2, argv);
7
8 for(int i=0; i<100; i++){
9 for(int j=0; j<5000; j++) c1->step();

10 for(int j=0; j<5000; j++) c2->step();
11 }
12
13 delete c2;
14 delete c1;
15 return 0;
16 }

Figure 6. The main function, which switches
two applications with a 5,000-instruction in-
terval.

single process with a conventional simulator implemented
using global variables.

In addition to the elimination of global variables, in order
to make it readable, neither goto statements nor conditional
compilation is used.

2.5 Verification feature

A processor simulator is complicated software and there
is the possibility that it may have various bugs. At the time
of development, sufficient verification is necessary.

In conventional simulators, it was difficult to make two
or more simulation images in one process due to the exis-
tence of global variables. For this reason, the correct exe-
cution result was saved to a file and another simulator was
verified by comparison with this file. As a means of high-
speed verification, SimCore offers a function which embeds
the object of SimCore for another simulator such as Sim-
pleScalar. We offer the C language interface to realize this
feature.

At the time of development of SimCore Version 2.0, the
behavior was verified using this verification feature. When-
ever the simulator executed one instruction, all values of the
architecture state (a program counter, 32 integer registers,
32 floating point registers) of SimCore and the architec-
ture state of SimpleScalar were compared andwe confirmed
that the two architecture states were identical during the 20
benchmark simulations of SPEC CINT95 and CINT2000.

Two or more simulation images can easily be generated
in one process, as shown in Figure 6. By using this feature,
any bug of new simulators under development is discovered
at an early stage. Also, by using the feature, developers can
prove the validity of their simulator.

2.6 Platforms

SimCore Version 2.0 operates on more platforms than
did the previous version. The platforms where the correct-
ness of operation has been verified are enumerated. On
seven platforms, operation has been verified with dhrystone
and 20 programs from SPEC CINT95 and CINT2000.

• Pentium 4, RedHat 7.3, GCC version 2.96
• Pentium 4, RedHat 7.3, Intel C++ 7.1/8.0
• Pentium 4, RedHat 7.3, PGI Compiler 5.1
• Pentium 4, Cygwin version 2.340, GCC 3.2
• Pentium 4, FreeBSD 4.9, GCC 2.95.4
• Opteron, Turbo Linux 8, GCC version 3.2.2
• Alpha 21264, Tru64, GCC version 2.95.2
On two platforms, operation has been verified with dhry-

stone.

• UltraSPARCIII, Solaris, GCC version 2.95.3
• MIPS R14000, IRIX6.5, MIPSpro C++
SimCore operates on these major platforms. Because

a processor simulator is used in various environments, it
needs to support many platforms. In contrast, SimpleScalar
Version 3.0 has not been compiled with either an Intel com-
piler or a MIPSpro compiler.

2.7 Simulation speedup

This section discusses the tuning technique implemented
in the main loop of SimCore while keeping the high read-
ability of the source code.

2.7.1 Pipeline frontend reuse

A simple main loopwithout optimization is shown in Figure
7. As discussed in Section 2.2, one instruction is executed
by calling seven methods corresponding to the instruction
pipeline from the 3rd line through the 9th line of Figure 7.
Three methods, Fetch, Slot and Issue, in the simple main

loop in Figure 7 take charge of fetching the 32-bit instruc-
tion code, decoding, and calculating an immediate value, re-
spectively. These methods correspond to the pipeline fron-
tend. If the simulator is processing the statically same in-
struction, identical processing is repeated each time in these
methods. Therefore, the calculation result obtained is saved
in memory and it is possible to improve the simulation
speed using the calculation result. This speedup technique
is called pipeline frontend reuse.
The main loop with the pipeline frontend reuse is shown

in Figure 8. The pointer array ib of the type instruction
(the 3rd line), which contains the past calculation result,



1 void simple_chip::loop_simple(){
2 while(ev->sys->running){
3 p->Fetch(&ev->as->pc); /* pipe stage 0*/
4 p->Slot(); /* pipe stage 1*/
5 p->Issue(); /* pipe stage 3*/
6 p->RegisterRead(); /* pipe stage 4*/
7 p->Execute(); /* pipe stage 5*/
8 p->Memory(); /* pipe stage 6*/
9 p->WriteBack();

10
11 ev->e->retired_inst++;
12 house_keeper(p);
13 }
14 }

Figure 7. A simple implementation of the Sim-
Core main loop.

is prepared in the same way as the direct-mapped instruc-
tion cache. The number specified by the constant IMSK is
the number of entries of the array, and is set as a 64K en-
try. The index of the array is generated from the program
counter (the 9th line). If the program counter from the array
(the 10th line) and from the instruction currently executed
differs (the 12th line), Fetch, Slot, and Issue (from the 13th
line through the 15th line) are executed. Otherwise, the past
history is used and the pipeline frontend (from the 13th line
through the 15th line) is omitted.

In the method implemented in Figure 8, the rate at which
the pipeline frontend can be omitted is the same as the high
hit ratio of the direct-mapped instruction cache of the 64K
entry. Therefore, in the execution of most instructions, it is
possible to eliminate the processing of the pipeline frontend
for Fetch, Slot, and Issue.
This method is not new in software engineering. How-

ever, the fact that this technique can be implemented with-
out lessening readability is important.

2.7.2 Function call overhead elimination

By adopting pipeline frontend reuse, most of the execution
time of SimCore is spent in the pipeline backend. At this
time, the function call overhead in the 17th line through
the 20th line in Figure 8 becomes notable. In order to re-
duce this overhead, processing of the four methods which
organize the pipeline backend is described as one method,
named BackEnd. The code after elimination of the function
call overhead, which corresponds to the main loop from the
8th line through the 24th line in Figure 8, is shown in Fig-
ure 9. The code is replaced with the method BackEnd in the
10th line.

In SimCore Version 2.0, the main loop shown in Figure
9 is adopted in order to simultaneously attain a compact de-
scription and an improvement in speed.

1 #define IMSK 0x0ffff /* mask of inst_buf */
2 void simple_chip::loop_reuse(){
3 instruction **ib=new instruction*[IMSK+1];
4 for(int i=0; i<IMSK+1; i++){
5 ib[i] = new instruction(ev);
6 }
7
8 while(ev->sys->running){
9 int index = (ev->as->pc>>2) & IMSK;

10 instruction *pt = ib[index];
11
12 if(pt->Cpc!=ev->as->pc){
13 pt->Fetch(&ev->as->pc);
14 pt->Slot();
15 pt->Issue();
16 }
17 pt->RegisterRead();
18 pt->Execute();
19 pt->Memory();
20 pt->WriteBack();
21
22 ev->e->retired_inst++;
23 if(ev->sc->slow_mode) house_keeper(pt);
24 }
25 }

Figure 8. A main loop with pipeline frontend
reuse.

3 Evaluation of simulation speed

In this section, as a quantitative evaluation of SimCore,
the simulation speed of SimCore Version 2.0 is measured
and compared with sim-fast in SimpleScalar. Moreover, the
influence of the technique discussed in Section 2.7 is exam-
ined.
A total of eight benchmark programs from SPEC

CINT95 are used to evaluate the simulation speed of Sim-
Core. An input parameter is adjusted so that the number
of simulated instructions is reduced from about 100 million
to 200 million instructions. The binary of the benchmark
programs is generated using a DEC C compiler with the op-
timization option O4.
The data in this section is measured using a PC with two

Pentium4 Xeon 2.8 GHz processors and 2 GB main mem-
ory running RedHat Linux 7.3.

3.1 Simulation speed comparison

In this section, the simulation speed of SimCore is mea-
sured and compared with sim-fast in SimpleScalar. For the
evaluation measure, the number of instructions processed
per second (MIPS: Million Instructions processed Per Sec-
ond) is used.
The evaluation result is summarized in Figure 10. The x-

asis indicates benchmark names and the average of 8 bench-
mark programs. SimCore and sim-fast are compiled us-
ing GCC with the optimization option O3. The SimCore
simulation speed is faster than sim-fast in all of the bench-



1 while(ev->sys->running){
2 int index = (ev->as->pc>>2) & IMSK;
3 instruction *pt = ib[index];
4
5 if(pt->Cpc!=ev->as->pc){
6 pt->Fetch(&ev->as->pc);
7 pt->Slot();
8 pt->Issue();
9 }

10 pt->BackEnd();
11
12 ev->e->retired_inst++;
13 if(ev->sc->slow_mode) house_keeper(pt);
14 }

Figure 9. A main loop with pipeline frontend
reuse and the elimination of function call
overhead.

Figure 10. Simulation speeds of sim-fast and
SimCore.

mark programs. In particular, in the simulation of compress
(comp), SimCore attains the highest speed improvement,
which is 50%. In the average of the eight benchmarks, the
simulation speed of SimCore is 14.2 MIPS. A speed im-
provement of 19% is attained compared to the 11.9 MIPS
simulation speed of sim-fast.
Next, the simulation speed measured with various com-

pilers and optimization flags are summarized in Figure 11.
Five sets of data are shown in this figure for each bench-
mark. The 1st and 2nd bars from the left are the same data
shown in Figure 10.
The 3rd from the left is the data using the Intel C++ Ver-

sion 7.1 compiler (icc) with optimization option O3 and op-
timization between files. The simulation speed in this case
is an average of 15.3 MIPS. Sim-fast was not able to be
compiled using the Intel C++ compiler. SimCore compiled
using Intel C++ Version 7.1 compiler with optimization op-

Figure 11. Simulation speed measured with
various compilers and optimizations.

tion O3 attains a 28% speed improvement compared with
sim-fast compiled using GCC.
The 4th from the left is the data adding the optimization

with profile information. As the profile data, the execution
history of the dhrystone of a 10,000-times loop is used. The
compile time including the execution time for acquiring this
profile is very short at less than 5 seconds. The simulation
speed becomes an average of 18.0MIPS by using the profile
optimization of the Intel C++ compiler. In this configura-
tion, SimCore attains a 51% speed improvement compared
with sim-fast.
The 5th data (on the right end) is the result of using a

commercial PGI Compiler 5.1 (pgCC) with the -fast option.
The simulation speed in this case is an average of 9.3 MIPS
and is slower than the case using GCC.
From the evaluation results summarized in Figure 11, we

confirm that when GCC is used, SimCore attains a 19%
speed improvement compared with the simulation speed of
sim-fast. When the profile information and the Intel C++
compiler is used, SimCore attains a 51% speed improve-
ment.

3.2 Influence of the tuning methods

In this section, the influence of the tuning methods dis-
cussed in Section 2.7 is evaluated quantitatively.
The simulation speed of SimCore with versions of the

main loop is summarized in Figure 12. The simulation
speed shown here is the average of the eight benchmarks
of SPEC CINT95.
The uppermost data in Figure 12 is the simulation speed

with the main loop of the simple implementation shown in
Figure 7. The simulation speed of this version of SimCore
is 7.1 MIPS.



Figure 12. Influence of the tuning methods on
SimCore.

The 2nd data is the simulation speed of SimCore with
the main loop shown in Figure 8, in which pipeline frontend
reuse is used. The simulation speed of this version is 16.7
MIPS. A speed improvement of more than twice is attained
by using this technique.
The 3rd data is the simulation speed of SimCore Ver-

sion 2.0 (Figure 9), in which pipeline frontend reuse and
function call overhead elimination are used. The function
call overhead elimination brings about a 7% improvement
in speed compared to the 2nd data. The simulation speed of
SimCore Version 2.0 reaches 18.0 MIPS.
As shown with these results, pipeline frontend reuse and

function call overhead elimination attain the highest im-
provement in simulation speed, even though these are tech-
niques which can be implemented compactly.

4 Related work

Various processor simulators are used as tools for pro-
cessor architecture research or processor education. In ad-
dition, the demand for a faster processor simulator has been
growing in recent years with the diversification of proces-
sors, including reconfigurable devices such as FPGAs. The
focus of some research [10, 11] has been on speed improve-
ment of various instruction set architectures. However, Sim-
Core avoids complicating the source code in order to sup-
port many instruction sets. One of the features of SimCore
is that it operates as a practical simulator with about 2,800
lines of code, which is a small amount.
There is much research on improving the speed of the

processor simulator. In some research [12, 13], speed im-
provement is attained by lowering the accuracy of the simu-
lation. However, the lower simulation accuracy makes ver-
ification difficult. Therefore, lessening the simulation accu-
racy is not allowed in the design policy of SimCore.
Concerning the speed improvement using reuse or mem-

orization, a FastSim simulator [5] and scheduling calcula-
tion reuse have been proposed. In SimCore, pipeline fron-
tend reuse is used as a technique which is realized with little

changing of the code. Although this technique is not new,
one of the features of SimCore is that techniques are se-
lected in order to prioritize code readability and compact
implementation.
SimpleScalar Tool Set [3] and SPIM [4] are well-known

processor simulators used for purposes such as processor
research and education. But, since SimpleScalar can be im-
plemented in high-speed simulations, it is not a code that
can easily be modified. Similarly, SPIM cannot be said to
be readable. On the other hand, SimCore Version 2.0 sat-
isfies the requirements of high readability and high-speed
execution at the same time.
Historically, the development of SimCore for the C ver-

sion began in March, 1999. Development of SimCore for
the C++ version began in June, 1999. A processor simu-
lator is an important tool, and it is advantageous to choose
the most suitable tool, given many choices. As a tool for
processor research and education, SimCore offers another
choice.

5 Conclusions

We have developed a function-level processor simulator,
SimCore/Alpha Functional Simulator Version 2.0 (SimCore
Version 2.0), for processor architecture research and pro-
cessor education. It satisfies the requirements for high read-
ability and high-speed execution at the same time.
In this paper, we discussed the design and implementa-

tion of SimCore Version 2.0 in detail. The main features of
SimCore Version 2.0 are as follows: (1) It offers many func-
tions as a function-level simulator. (2) It is implemented
compactly with 2,800 lines in C++. (3) It separates the func-
tion of the program loader. (4) Global variables are not used
in order to improve the readability and function. (5) It offers
a powerful verification mechanism. (6) It operates on many
platforms. (7) Compared with sim-fast in the SimpleScalar
Tool Set, SimCore Version 2.0 attains a 19% improvement
in simulation speed.
For quantitative evaluations with SPEC CINT95 bench-

marks, the simulation speed of SimCore Version 2.0 was
measured and compared with sim-fast in the SimpleScalar
Tool Set. We confirmed that when GCC is used, SimCore
attains a 19% speed improvement compared with the simu-
lation speed of sim-fast. And, when profile information and
the Intel C++ compiler are used, SimCore attains a 51%
speed improvement.
SimCore/Alpha Functional Simulator Version 2.0 is free

software. The source code is downloadable from the fol-
lowing URL.
http://www.yuba.is.uec.ac.jp/˜kis/SimCore/
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Abstract

We present a microprocessor lab that is accessible re-
motely, i.e. students can control the hardware in the lab
from their computer at home. At the same time the lab
also provides the features of a virtual lab, i.e. students
conduct experiments on simulators. Both modes of the
lab are run under a common user interface. This lab
is suited especially for distance education, as students
can develop and test their code offline, while still con-
ducting their experiments on real hardware. This lab is
thought to replace a traditional lab course where stu-
dents had to be present on campus for one week full-
time, which is quite difficult to realize in distance edu-
cation.

1 Introduction

FernUniversiẗat is Germany’s Distance Teaching Uni-
versity, serving also Austria and Switzerland and Ger-
man speaking students in other parts of the world.
The Computer Science Department offers study pro-
grammes leading to Bachelor, Master, and PhD de-
grees, respectively. Course texts are made available to
the students in electronic form, preferably pdf, via a
portal where students can access the courses they are
enroled in. The course pages also provide study mate-
rials in addition to course texts, such as applets, link
lists, multimedia enhancements, and the like. Addi-
tionally, paper copies of the course texts are sent via
regular mail to the students. Assignments are submit-
ted either in paper by mail or electronically, prefer-
ably via a system called WebAssign [9] that provides
a web interface to the students and achieves automatic
distribution of assignments to correctors and notifica-
tion of submitting students about results and solutions
when the assignments are corrected. WebAssign also
allows to add modules for automatic grading of sub-
missions, for simple cases such as multiple choice, but
even for the submission of circuit schematics [5]. Stu-
dents can ask questions or seek help over a number

∗This Research was partly funded by FernUniversität’s Innova-
tion Fund 2003.

of communication channels: telephone, telefax, email,
newsgroups, and (partly) video conferences over the
Internet. Our method of teaching allows students to
follow their study programme at any place and at any
time. As more than 85% of our students work, this
is a necessity in order to give these students a chance
of success, as regular attendance of meetings at fixed
times (even via Internet), is difficult or impossible for a
majority of them.

Yet, the German computer science curriculum requires
laboratory courses as part of the undergraduate study
programme. For the reasons mentioned above, labora-
tory sessions on-campus are difficult to realize, even if
they are compressed to a single one-week session close
to the end of the semester, where that session is pre-
ceded by studies and preparations at home. This calls
for virtual laboratories. While a virtual programming
lab can be achieved with usage of the internet and tools
for student collaboration, a virtual microprocessor lab
proves more difficult.

First, while a number of simulator tools are available
to create a virtual lab, they necessitate the installation
of software on the student’s computer. Yet, FernUni-
versiẗat’s students access the Internet frequently from
their workplace, where they often do not have rights to
install software. This would call for a lab with browser
access, where all software is available as applets. How-
ever, students at home suffer from the amount of online
time necessary in this case, and all students would suf-
fer from the applet download times. Second, simulators
never give a complete picture. Especially in applica-
tions where signals are to be checked or produced in
a manner that includes a certain real-time behavior, a
simulator is clearly not sufficient. While this can be
cured by a remote lab, where a physical device is in
the lab at FernUniversität and can be programmed, run
and observed remotely, this again incurs long online
times. Additionally, in order to serve a large number
of students, the necessary amount of hardware instal-
lation would be enormous. We overcome these contra-
dicting requirements and constraints by establishing a
microprocessor lab that is both remotely accessible and
virtual.



Laboratory experiments are indispensable parts of most
universities’ engineering education programs. Dur-
ing the last decade different kinds of remote labs
were developed. They can be divided into three cate-
gories: 1. electronic devices, 2. control engineering and
robotics laboratories, and 3. digital logic and micropro-
cessor systems. In the first category, the main focus is
to measure the electrical characteristics of semiconduc-
tor devices. A good overview of current remote labora-
tories of this kind can be found in [4, 8]. In [1] remote
laboratories for electrical and mechanical engineering
are described. In [10] a control engineering laboratory
is proposed where the students have to design, imple-
ment and test a discrete controller on a real plant that
can be remotely accessed. Examples of remote labora-
tories for digital logic and microprocessor systems can
be found in [6, 7]. In this paper we propose a new mi-
croprocessor lab that provides not only remote access
but also an integrated simulation facility to prepare ex-
periments while not being connected to the internet. To
conduct the experiments remotely, the students can use
thesamegraphical interface as used for the simulation.
We are not aware of any other lab that tries to combine
both modes under a single user interface. Also, our ap-
proach is in contrast to known online labs as it tries to
reduce online time. Hence, we believe our approach to
be novel.

The remainder of the paper is organized as follows. In
Section 2, we detail the requirements and constraints
of a microprocessor lab in distance education. In Sec-
tion 3, we describe the implementation of our lab.
In Section 4, we present some case studies of how
our installed infrastructure will actually be used in lab
courses. In Section 5, we give a conclusion and an out-
look on further applications and activities.

2 Requirements and constraints for a vir-
tual and remote microprocessor lab

If students want to get familiar with microprocessor
programming and deployment, they must have access
to a software development environment and a target
system. Our computer engineering lab course1 is di-
vided into three phases. First of all, the students work
through a course text that describes the basics for the
experiments. For instance, the processors to be pro-
grammed are described, and the pitfalls and fallacies of
assembler programming are explained. In the second
phase they use development tools to practice machine
language programming. The development system con-
sists mainly of an editor and an assembler for compil-
ing machine programs into the microprocessor’s object
code. These tools — cross-assemblers in particular —

1In the German curriculum, a basic computer engineering educa-
tion is part of the computer science programme.

are widely and freely available, and are either installed
locally at the students’ computer or accessed remotely.
In the third phase the students test their programs on a
target system. For this purpose, we had to develop an
appropriate target system that operates and looks like
the real microprocessor system which is used in our
laboratory on campus.

The target system should provide not only a simula-
tor but also serve as a remote control for a real mi-
croprocessor system in Hagen, so that the execution of
students’ programs can be observed in real-time. In
the simulator mode the students can use the target sys-
tem as avirtual laboratory for testing the object code
at home. Although they can test the functionality of
their programs in this phase by simulation, they are not
able to either check the real-time behavior, nor can they
control external hardware that is connected to a real mi-
croprocessor system. In order to provide these facilities
the students should be able to connect via the Internet
to a real target microprocessor system located at the lab
on the Hagen campus, i.e. they use aremotelaboratory.
By switching into the remote control mode the students
will be able to remotely control an experimental setup
in the lab, consisting of the processor itself and some
additional hardware. By means of additional measure-
ment devices that can also be controlled remotely the
students can conduct experiments with external hard-
ware (e.g. a traffic light panel). In addition to the soft-
ware tools, web cams provide live pictures of how the
setup in the lab behaves, e.g. which lights are on or off.

Students thus develop their programs locally and test
them on a simulator. If they do not have the rights to
install software on the computer they are using, they
can also use a development system on a computer in
Hagen via the Internet. When a student is confident that
his program works, then he accesses the remote lab,
uploads his program to the target system, and conducts
his experiment on real hardware. If an error occurs or
the real-time behavior differs from what is expected or
required, he corrects the program until he is satisfied.
In the end, he submits his results and his program via
the WebAssign system to the correctors for grading. In
this manner, the virtual lab mode saves valuable online
time for many students, as they can develop at home in
an offline mode. This also distinguishes our approach
from online labs.

Despite the two modes of operation, students should
not be required to learn two sets of user interfaces,
as this would incur a lot of additional learning time.
Hence, the virtual lab and the remote lab should share a
common user interface. For example, a student should
be aware whether he is running code on a simulator or
on real hardware, but the controls for starting the pro-
gram run should be the same.



Figure 1: Structure of the microprocessor lab.

3 Implementation of the microprocessor
lab

The remote laboratory is realized by a client-server ap-
proach. Students who want to use the remote lab have
to download a number of client programs that serve as
remote controls for the microprocessor system and the
measurement equipment, such as an oscilloscope or a
web cam. These clients connect to server processes that
run on a server computer (named telematics server) in
the laboratory at Hagen. Some of those clients also
have simulator functionality (e.g. the microprocessor
client), so students can seamlessly switch between the
virtual lab and the remote lab. The server computer
in turn is connected to the hardware devices in the lab:
microprocessor card, oscilloscope, web cam, and so on.
The microprocessor card itself is connected to some ad-
ditional hardware such as a traffic light kit. The server
also provides a central installation of the development
software and the simulator for students who are not al-
lowed to install software on their local computer. Those
students may access the server either via a remote shell
or session, or web-based via VNC [11]. Figure 1 out-
lines the scenario of our microprocessor lab.

To accomplish more complex experiments with at-
tached devices, such as a radio controlled clock (see
next section), the simulator establishes a TCP/IP-
connection via the internet to the server at our labo-
ratory, thus allowing students to switch seamlessly to
the remote lab. After authentication, the user gets ac-
cess to the remote control software of different com-
ponents of the experimental setup. These components
include one or more oscilloscopes, function generators
and mainly the microprocessor system hardware. At-
tached to this system will be different devices, e.g. the
above mentioned radio controlled clock or a model of
a traffic light.

The user is able to upload his programs to the remote
microprocessor system via the user interface and to

start them there. He can adjust the already mentioned
instruments remotely, perform different measurements,
and gets back the results. To give him the possibility of
observing the experiments, and thus the feeling of be-
ing in the laboratory room, all instruments and devices
— but also the whole laboratory — are accessible by
controllable web cams.

The client programs are preferably programmed in
Java. The software is programmed in two parts: one
part that is independent of the particular device for
which the client is the frontend, and one part which
realizes the particular device’s frontend. The former
part can be re-used for all devices, the latter part is pro-
grammed in a way that realization of an additional de-
vice can be done with the least possible effort. Using
Java also had the advantage of being more independent
from the type of computer the students have locally,
than with any other realization. Figure 2 depicts the
microprocessor user interface in a close-up.

Of course, the implementation of the lab is not re-
stricted to the particular microprocessor card. There
are also cards with a microcontroller and a digital sig-
nal processor, respectively, that can be accessed in the
same manner. Also several other experiments can be
realized, see Section 5.

4 Case studies

In this section we want to demonstrate how the virtual
and remote lab can be used by the students. When the
students have worked through the course text, which
describes the basics for the experiments, they can con-
duct the experiments. In all cases they use the micro-
computer simulator depicted in Figure 2. Note, that the
graphical interface of this simulator can also used as
a remote control during the remote laboratory exper-
iment. By means of a pull down menu the user can



Figure 2: Microcomputer simulator with integrated re-
mote control.

switch between the two modes. For the remote mode
the IP of the remote lab server must be entered.

4.1 Decimal counter

In this experiment the students have to write a assem-
bler program for a decimal counter that is incremented
every second. At first, the experiment should be con-
ducted by means of the microcomputer simulator. The
students enter, edit and assemble the program on their
home PC and load it into the simulator. Then the ob-
ject code is launched and a four digit starting value is
entered via the keyboard. The counter will be started by
pressing the character ‘+’ and the current counter value
will be displayed on the LED display. If the experiment
has been successfully conducted in the virtual labora-
tory, the students can switch to the remote laboratory
by using the corresponding pull down menu. They en-
ter the server IP and will get connected to a real micro-
computer system located in the computer engineering
laboratory at Hagen (see Figure 3). Now, the program
runs on the real microcomputer while the display can
be observed by means of a web cam.

4.2 Radio controlled clock signal

The objective in this experiment consists of writing a
program that should emulate the signal of a radio con-
trolled clock signal. While the development cycle is
identical to that for the decimal counter experiment, we
need an additional measurement device here to watch
the generated signal. For this purpose we implemented
a client-server program suite that allows to remotely
control an oscilloscope at Hagen and to display the
measured curves on the student’s PC (see Figure 4).

5 Conclusions and outlook

We have realized a microprocessor lab course that
serves the requirements of students in distance educa-
tion: minimization of online time, avoidance of down-
loads and local installations if possible, and access to
real hardware. At the same time, we fulfilled our cur-
ricular requirements: performing experiments complex
enough to teach the students low-level programming of
microprocessor hardware. This is accomplished by two
modes of operation: virtual lab and remote lab. The
switching between these modes is seamless, relieving
the students from having to learn several user interfaces
for the same device. Our own software development
has been reduced to a minimum by re-use wherever
possible. The achievements so far have resulted in a
shortening of the on-campus phase from one week to
two days for the next offering the lab course in spring
2005.

There are further experiments, for which virtual and
remote versions have been developed, and which will
complete the virtualization of the microprocessor lab
in the future. These are: digital logic, where a GAL
can be programmed remotely, a digital signal proces-
sor, which is used to implement a filter for a signal
which is generated by a function generator, and a mi-
crocontroller which is programmed for a control task.
The function generator can be controlled remotely in
the same manner as the oscilloscope. The digital signal
processor and the microcontroller can, in principle, be
accessed in the same way as the microprocessor. How-
ever, the simulator for the digital signal processor was
not freely available in Java, but provided with the de-
velopment software for a particular operating system.
Also, the user interface for the card itself is separate
from the development software and not freely avail-
able. Hence, we did not find a way so far to provide
students with a seamless switch between virtual and
remote modes for this experiment. Furthermore, the
control of the hardware necessitates a remote session
or use of VNC.

The (partial) virtualization of the microprocessor lab
continues our transformation to a web-based computer
engineering education, as set out in [2], which started
by integrating a circuit design tool, submission of as-
signments via the Internet, and semi-automatic assess-
ment and grading of assignments with student circuits
in a beginners course [5]. The integration of the simple
scalar tool set [3] into a course on advanced computer
architecture is still underway.

We still have to accomplish a kind of reservation
scheme for the physical devices. Currently, the remote
lab is allocated on a first-come-first-serve basis, which
is not the optimal choice at times close to deadlines for
assignments. We also plan to extend this type of lab
access to other computer engineering lab courses.



Figure 3: Real microcomputer at Hagen university.

Figure 4: Remote control for the oscilloscope.
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Open Forum on Textbook Pricing 
 
Students have always complained about the price of textbooks.  What's new about 
that?  Why should you care?  

With students actually staging protests on major campuses and both state legislatures 
and congress looking into the issue as parents take up the claims of their college-age 
children, it may be useful to take a closer look at the players, their interests, and at the 
true costs of publishing a first-rate textbook.  

Denise Penrose, Senior Editor for Morgan Kaufmann Publishers invites you to spend 
some time with her discussing these issues.  Here are some questions we will 
consider:  

• Are students right that publishers are just greedy corporations taking more 
than their "fair share" of profits? 

• How much does it really cost to develop a solid teaching text? 
• Who wins and who loses in a used book exchange. 
• What are “international student editions,” why are they priced less than 

“domestic editions,” and what's fair about that? 
• How might you be unwittingly increasing the cost of books, increasing the 

price for your students? 
• Why is it important for you to know the price of the books you select for your 

students? What are publishers doing to address these issues today?  
 
Denise Penrose has more than 25 years of professional publishing experience including 
developing and acquiring university texts for computer science and engineering curricula, text 
references for computing professionals, and computer trade books for users; managing a 
production staff for a monthly high technology magazine; writing and editing stories for high-
technology computer trade books for users; managing a production staff for a monthly high 
technology magazine; writing and editing stories for high-technology magazines; and 
developing an academic journal. She joined Morgan Kaufmann in 1996 in time to develop 
and publish the second edition of Computer Organization and Design: The 
Hardware/Software Interface. She publishes the computer architecture and the artificial 
intelligence programs for Morgan Kaufmann. She graduated cum laude from Smith College 
with a Bachelor or Arts degree in Comparative Literature.  
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