
The SimCore/Alpha Functional Simulator

Kenji Kise†,‡, Takahiro Katagiri†,‡, Hiroki Honda†, and Toshitsugu Yuba†
† Graduate School of Information Systems
The University of Electro-Communications

‡ PRESTO, Japan Science and Technology Agency (JST)
{kis, katagiri, honda, yuba}@is.uec.ac.jp

Abstract

We have developed a function-level processor simulator,
SimCore/Alpha Functional Simulator Version 2.0 (SimCore
Version 2.0), for processor architecture research and pro-
cessor education. This paper describes the design and im-
plementation of SimCore Version 2.0. The main features of
SimCore Version 2.0 are as follows: (1) It offers many func-
tions as a function-level simulator. (2) It is implemented
compactly with 2,800 lines in C++. (3) It separates the
function of the program loader. (4) No global variable is
used, and so it improves the readability and function. (5)
It offers a powerful verification mechanism. (6) It operates
on many platforms. (7) Compared with sim-fast in the Sim-
pleScalar Tool Set, SimCore Version 2.0 attains a 19% im-
provement in simulation speed.

1 Introduction

Various processor simulators [1, 2] are used as tools for
processor architecture research or processor education. The
environment in which a processor simulator can perform is
improving dramatically due to the increased speed of PCs
and the growing use of PC clusters. However, the time
needed for simulator construction increases as the architec-
tural idea to be implemented increases in complexity. In
many cases the evaluation with a simulator can be finished
in several weeks, although several months are needed for
the construction of the simulator, even if the simulator is
developed with existing tools.

SimpleScalar Tool Set [3] and SPIM [4] are well-known
processor simulators used for such purposes as processor
research and education. But, since SimpleScalar can be im-
plemented as a high-speed simulation, it is not a code that
can easily be modified. Similarly, SPIM may not be read-
able 1. Although there has been much research on processor
simulator speedup [5], there are few simulators which make
readability a priority.

1We say readable to mean enjoyable and easy to read.

In addition to its utilization in processor research and ed-
ucation, a processor simulator is vital as a module in a par-
allel computer simulator, embedded system emulator, and
so on. In these various uses, in addition to high speed, a
process simulator must have high readability and be easy to
use.

We previously constructed an Alpha [6] processor simu-
lator named SimAlpha [7]. Its design policy was to keep the
source code readable and simple. This paper describes the
design and implementation of a new generation of proces-
sor simulator named SimCore/Alpha Functional Simulator
Version 2.0 (SimCore Version 2.0) derived from SimAlpha.
SimCore Version 2.0 is a function-level simulator, which
satisfies the requirements of high readability and high-speed
execution simultaneously. In general, function-level sim-
ulators cannot be used to measure processor performance.
However, it can be used to collect basic data, such as the
number of executed instructions, the hit ratio of a branch
prediction and cache, and the ideal instruction level paral-
lelism of a program. It is also vital as a base for preliminary
evaluation of detailed clock-level simulation and as a mod-
ule for verification.

The rest of this paper is organized as follows. Section 2
describes the design and implementation of SimCore. Sec-
tion 3 reports our quantitative evaluation results. Section 4
is a discussion of related works. Section 5 contains some
concluding remarks.

2 Design and implementation

SimCore Version 2.0 features the addition of various
functions, an increased number of platforms, and simula-
tion speedup, while inheriting the high readability of Ver-
sion 1.0. In this section, the function of SimCore is sum-
marized, then the design and implementation issues are dis-
cussed.

2.1 Functions

SimCore offers many functions as a function-level or
instruction-level simulator. Except for the fact that the tar-

1 # SimCore-Loader a.out > aout.txt
2 # SimCore aout.txt
3 SimCore/Alpha Functional Simulator Ver 2.0
4 hello, world
5
6 ==
7 == SimCore Version 2.0 2004-01-08
8 == 0 million code (2070 code) 0.019 MIPS
9 == SimCore takes 0 min 0 second(109375 usec)

10 == SimCore starts at Wed Apr 7 18:34:20 2004

Figure 1. A sample output of the "hello, world"
program.

get architecture is fixed to the Alpha processor, it has almost
the same function as sim-fast in SimpleScalar.

A fundamental function is to simulate an application pro-
gram for each instruction. As an example, the commands
to simulate the well-known program which prints ”hello,
world” and its output are shown in Figure 1. Part of the
output is formatted so that it is easy to see. The 1st line
is a command to translate the application program into a
SimCore input file (see Section 2.3). The 2nd line is the
command to start SimCore. The 4th line is the output of the
application program. The 6th through 10th lines are a report
of the simulation. In this example, 2,070 instructions were
executed and 109,375 µsec was required for the simulation.

Other implemented functions are enumerated below:

• The function to measure the frequency of appearance
of the executed instructions (instruction mix).

• The function to display the history of the executed sys-
tem calls.

• The interactive debugging function to display the con-
tents of the memory or register at a specified time.

• The debugging support function to output the contents
of the main registers for all executed instructions.

2.2 Compact description

A compact description was one goal of the design pol-
icy of SimCore. SimCore is written in C++ and the code
size containing the include file is small at 2,764 lines. The
number of lines of each file is summarized in Figure 2. Be-
cause functions are somewhat different, a direct comparison
cannot be made, but the number of lines of other simulators
are given for reference. The code for compiling sim-fast in
SimpleScalar is 15,566 lines. The code of SPIM is 14,213
lines.

The main reason why such a compact description was
attained is that the fundamental software architecture differs
from a conventional simulator design.

The part of the main loop in SimpleScalar which pro-
cesses one instruction is shown in Figure 3. Only a portion

1 lines words bytes filename
2 19 54 525 sim.cc
3 75 188 2067 chip.cc
4 231 833 6833 instruction.cc
5 297 872 7221 memory.cc
6 468 1711 12817 arithmetic.cc
7 168 401 3915 debug.cc
8 578 1100 12783 syscall.cc
9 378 1021 9865 etc.cc

10 550 1724 16565 define.h
11 2764 7904 72591 ---- total ----

Figure 2. The number of lines, words and
bytes of SimCore code.

1 switch (op){
2 case ADDQ:
3 regs.regs_R[(inst & 0x1f)] =
4 regs.regs_R[(inst >> 21) & 0x1f] +
5 regs.regs_R[(inst >> 16) & 0x1f];
6 break;
7 case MULQ:
8 regs.regs_R[(inst & 0x1f)] =
9 regs.regs_R[(inst >> 21) & 0x1f] *

10 regs.regs_R[(inst >> 16) & 0x1f];
11 break;
12 }

Figure 3. The main loop implementation of
sim-fast.

of an add instruction (ADDQ) and a multiply instruction
(MULQ) is shown.

The type of instruction to be processed is distinguished
in the switch sentence of the 1st line in Figure 3. Then, the
block from the case sentence of the 2nd line through the
6th line describes the operation of addition. The sum of the
value of the registers is calculated in the 4th and 5th lines,
and the result is stored in a register in the 3rd line. The block
from the 7th line through the 11th line describes the oper-
ation of multiplication. This style, which describes the op-
eration of each instruction independently, is named an un-
folded description style. This style permits an easy change
of operation of an instruction, and the addition of a new in-
struction. Since the processing which is necessary for each
instruction is described, there is the advantage that a high-
speed simulation is possible. On the other hand, because
the same description appears in two or more parts, there are
the drawbacks that management of the source code becomes
complicated and the amount of code becomes large.

In order to remove these drawbacks, a style can be con-
sidered which extracts the common part of the operation of
each instruction and describes its operation gradually with
reference to the pipeline structure of a microprocessor. We
name this style a folded description style.

SimCore adopts a folded description style. The code of
the method step which processes one instruction in SimCore

1 int simple_chip::step(){
2 p->Fetch(&ev->as->pc); /* pipe stage 0 */
3 p->Slot(); /* pipe stage 1 */
4 p->Issue(); /* pipe stage 3 */
5 p->RegisterRead(); /* pipe stage 4 */
6 p->Execute(); /* pipe stage 5 */
7 p->Memory(); /* pipe stage 6 */
8 p->WriteBack();
9 return ev->sys->running;

10 }

Figure 4. The main loop implementation of
SimCore. SimCore adopts a folded descrip-
tion style.

1 /* SimCore 1.0 Image File */
2 /*** Registers ***/
3 /@reg 16 0000000000000003
4 /@pc 32 0000000120007d80
5 /*** Memory ***/
6 @11ff97000 00000003
7 @11ff97008 1ff97138

Figure 5. A sample SimCore execution image
file.

is shown in Figure 4. The class instruction which holds the
information for processing one instruction is defined. The p
in Figure 4 is the object of the class instruction. The values
of the private variables are gradually determined by call-
ing the method (Fetch, Slot, Issue, RegisterRead, Execute,
Memory, or WriteBack) of object p which corresponds to
the pipeline stage.

A folded description style is close to the description of
the microprocessor implemented in a hardware description
language such as verilog-HDL. For this reason, the advan-
tage is that the operation of the hardware can be easily
captured. Since the common operation is described in one
place, management of the code becomes easy. On the other
hand, compared with the unfolded description style which
describes the operation of each instruction independently,
the folded description style is a disadvantage with respect
to extendibility and simulation speed.

2.3 SimCore and program loader

SimCore does not have the function of a program loader,
which may be regarded as an additional function of a pro-
cessor simulator.

A simulation is started using the execution image of the
original format. An example of the execution image file
of SimCore is shown in Figure 5. This execution image
file is in text format and consists of two parts. In the first
part, values are assigned to some of the registers. In the
example of Figure 5, the hexadecimal value 3 is assigned to
the 16th register, and the value of 120007d80 is assigned to

the program counter. In the second part, the value of some
memory is assigned in the same manner. In the example of
Figure 5, the value 1ff97138 is assigned to the memory of
address 11ff97008.

The execution image file is created from the Alpha bi-
nary file with a program named SimCore-Loader [8]. As an
example, the command to simulate li (lisp interpreter) from
SPEC CINT95 on sim-fast of SimpleScalar is shown.

1 $ sim-fast li train.lsp

The corresponding command of SimCore is shown. The
command in the 1st line generates the execution image file.
The simulation is started by the command in the 2nd line.

1 $ SimCore-Loader li train.lsp > aout.txt
2 $ SimCore aout.txt

The simulation of an identical application is repeated
many times with various simulation parameters. In Sim-
Core, once an execution image file is created, only the name
of the execution image file is specified to run the simula-
tor. This mitigates any mistake at the time the simulation
starts. Moreover, in the utilization of SimCore, knowledge
of the executable file form of ELF or COFF[9] is not re-
quired. This is an advantage because users can concentrate
on the description of the behavior of the processor simula-
tor.

2.4 Elimination of global variables

No global variable is used in the SimCore code. On the
other hand, many global variables are used in SimpleScalar
and SPIM.

The readability of the source code is improved by elim-
inating global variables. In addition, elimination of global
variables is important from the viewpoint of the function of
a simulator. For example, let’s consider the measurement of
the branch prediction and the cache behavior when switch-
ing two or more tasks or threads in a processor. In this case,
it is necessary to switch the application at a fixed interval.
Since SimCore does not use a global variable, it is possible
to describe such behavior compactly.

The main function to switch two applications with a
5,000-instruction interval is shown in Figure 6. In the 5th
line and 6th lines, the simple chip type objects p1 and p2 are
generated. Then, 5,000 instructions of one application are
processed by the for loop in the 9th line. The method step
called in the 9th line is described in Figure 4. Similarly,
5,000 instructions of another application are processed by
the for loop in the 10th line. It becomes possible to mea-
sure the behavior of the branch prediction or cache in the
task-switching environment by inserting a branch or cache
module in the code shown in Figure 6.

As shown in Figure 6, SimCore can generate two or more
simulation images with a compact description. This makes
it easy to use SimCore as a module of a complicated com-
puter system or a parallel computer system. In contrast, it
is difficult to generate two or more simulation images in a

1 int main(int argc, char *argv[]){
2 char *p1 = argv[argc-1]; /* program name*/
3 char *p2 = argv[argc-2]; /* program name*/
4
5 simple_chip *c1=new simple_chip(p1, argv);
6 simple_chip *c2=new simple_chip(p2, argv);
7
8 for(int i=0; i<100; i++){
9 for(int j=0; j<5000; j++) c1->step();

10 for(int j=0; j<5000; j++) c2->step();
11 }
12
13 delete c2;
14 delete c1;
15 return 0;
16 }

Figure 6. The main function, which switches
two applications with a 5,000-instruction in-
terval.

single process with a conventional simulator implemented
using global variables.

In addition to the elimination of global variables, in order
to make it readable, neither goto statements nor conditional
compilation is used.

2.5 Verification feature

A processor simulator is complicated software and there
is the possibility that it may have various bugs. At the time
of development, sufficient verification is necessary.

In conventional simulators, it was difficult to make two
or more simulation images in one process due to the exis-
tence of global variables. For this reason, the correct exe-
cution result was saved to a file and another simulator was
verified by comparison with this file. As a means of high-
speed verification, SimCore offers a function which embeds
the object of SimCore for another simulator such as Sim-
pleScalar. We offer the C language interface to realize this
feature.

At the time of development of SimCore Version 2.0, the
behavior was verified using this verification feature. When-
ever the simulator executed one instruction, all values of the
architecture state (a program counter, 32 integer registers,
32 floating point registers) of SimCore and the architec-
ture state of SimpleScalar were compared and we confirmed
that the two architecture states were identical during the 20
benchmark simulations of SPEC CINT95 and CINT2000.

Two or more simulation images can easily be generated
in one process, as shown in Figure 6. By using this feature,
any bug of new simulators under development is discovered
at an early stage. Also, by using the feature, developers can
prove the validity of their simulator.

2.6 Platforms

SimCore Version 2.0 operates on more platforms than
did the previous version. The platforms where the correct-
ness of operation has been verified are enumerated. On
seven platforms, operation has been verified with dhrystone
and 20 programs from SPEC CINT95 and CINT2000.

• Pentium 4, RedHat 7.3, GCC version 2.96

• Pentium 4, RedHat 7.3, Intel C++ 7.1/8.0

• Pentium 4, RedHat 7.3, PGI Compiler 5.1

• Pentium 4, Cygwin version 2.340, GCC 3.2

• Pentium 4, FreeBSD 4.9, GCC 2.95.4

• Opteron, Turbo Linux 8, GCC version 3.2.2

• Alpha 21264, Tru64, GCC version 2.95.2

On two platforms, operation has been verified with dhry-
stone.

• UltraSPARCIII, Solaris, GCC version 2.95.3

• MIPS R14000, IRIX6.5, MIPSpro C++

SimCore operates on these major platforms. Because
a processor simulator is used in various environments, it
needs to support many platforms. In contrast, SimpleScalar
Version 3.0 has not been compiled with either an Intel com-
piler or a MIPSpro compiler.

2.7 Simulation speedup

This section discusses the tuning technique implemented
in the main loop of SimCore while keeping the high read-
ability of the source code.

2.7.1 Pipeline frontend reuse

A simple main loop without optimization is shown in Figure
7. As discussed in Section 2.2, one instruction is executed
by calling seven methods corresponding to the instruction
pipeline from the 3rd line through the 9th line of Figure 7.

Three methods, Fetch, Slot and Issue, in the simple main
loop in Figure 7 take charge of fetching the 32-bit instruc-
tion code, decoding, and calculating an immediate value, re-
spectively. These methods correspond to the pipeline fron-
tend. If the simulator is processing the statically same in-
struction, identical processing is repeated each time in these
methods. Therefore, the calculation result obtained is saved
in memory and it is possible to improve the simulation
speed using the calculation result. This speedup technique
is called pipeline frontend reuse.

The main loop with the pipeline frontend reuse is shown
in Figure 8. The pointer array ib of the type instruction
(the 3rd line), which contains the past calculation result,

1 void simple_chip::loop_simple(){
2 while(ev->sys->running){
3 p->Fetch(&ev->as->pc); /* pipe stage 0*/
4 p->Slot(); /* pipe stage 1*/
5 p->Issue(); /* pipe stage 3*/
6 p->RegisterRead(); /* pipe stage 4*/
7 p->Execute(); /* pipe stage 5*/
8 p->Memory(); /* pipe stage 6*/
9 p->WriteBack();

10
11 ev->e->retired_inst++;
12 house_keeper(p);
13 }
14 }

Figure 7. A simple implementation of the Sim-
Core main loop.

is prepared in the same way as the direct-mapped instruc-
tion cache. The number specified by the constant IMSK is
the number of entries of the array, and is set as a 64K en-
try. The index of the array is generated from the program
counter (the 9th line). If the program counter from the array
(the 10th line) and from the instruction currently executed
differs (the 12th line), Fetch, Slot, and Issue (from the 13th
line through the 15th line) are executed. Otherwise, the past
history is used and the pipeline frontend (from the 13th line
through the 15th line) is omitted.

In the method implemented in Figure 8, the rate at which
the pipeline frontend can be omitted is the same as the high
hit ratio of the direct-mapped instruction cache of the 64K
entry. Therefore, in the execution of most instructions, it is
possible to eliminate the processing of the pipeline frontend
for Fetch, Slot, and Issue.

This method is not new in software engineering. How-
ever, the fact that this technique can be implemented with-
out lessening readability is important.

2.7.2 Function call overhead elimination

By adopting pipeline frontend reuse, most of the execution
time of SimCore is spent in the pipeline backend. At this
time, the function call overhead in the 17th line through
the 20th line in Figure 8 becomes notable. In order to re-
duce this overhead, processing of the four methods which
organize the pipeline backend is described as one method,
named BackEnd. The code after elimination of the function
call overhead, which corresponds to the main loop from the
8th line through the 24th line in Figure 8, is shown in Fig-
ure 9. The code is replaced with the method BackEnd in the
10th line.

In SimCore Version 2.0, the main loop shown in Figure
9 is adopted in order to simultaneously attain a compact de-
scription and an improvement in speed.

1 #define IMSK 0x0ffff /* mask of inst_buf */
2 void simple_chip::loop_reuse(){
3 instruction **ib=new instruction*[IMSK+1];
4 for(int i=0; i<IMSK+1; i++){
5 ib[i] = new instruction(ev);
6 }
7
8 while(ev->sys->running){
9 int index = (ev->as->pc>>2) & IMSK;

10 instruction *pt = ib[index];
11
12 if(pt->Cpc!=ev->as->pc){
13 pt->Fetch(&ev->as->pc);
14 pt->Slot();
15 pt->Issue();
16 }
17 pt->RegisterRead();
18 pt->Execute();
19 pt->Memory();
20 pt->WriteBack();
21
22 ev->e->retired_inst++;
23 if(ev->sc->slow_mode) house_keeper(pt);
24 }
25 }

Figure 8. A main loop with pipeline frontend
reuse.

3 Evaluation of simulation speed

In this section, as a quantitative evaluation of SimCore,
the simulation speed of SimCore Version 2.0 is measured
and compared with sim-fast in SimpleScalar. Moreover, the
influence of the technique discussed in Section 2.7 is exam-
ined.

A total of eight benchmark programs from SPEC
CINT95 are used to evaluate the simulation speed of Sim-
Core. An input parameter is adjusted so that the number
of simulated instructions is reduced from about 100 million
to 200 million instructions. The binary of the benchmark
programs is generated using a DEC C compiler with the op-
timization option O4.

The data in this section is measured using a PC with two
Pentium4 Xeon 2.8 GHz processors and 2 GB main mem-
ory running RedHat Linux 7.3.

3.1 Simulation speed comparison

In this section, the simulation speed of SimCore is mea-
sured and compared with sim-fast in SimpleScalar. For the
evaluation measure, the number of instructions processed
per second (MIPS: Million Instructions processed Per Sec-
ond) is used.

The evaluation result is summarized in Figure 10. The x-
asis indicates benchmark names and the average of 8 bench-
mark programs. SimCore and sim-fast are compiled us-
ing GCC with the optimization option O3. The SimCore
simulation speed is faster than sim-fast in all of the bench-

1 while(ev->sys->running){
2 int index = (ev->as->pc>>2) & IMSK;
3 instruction *pt = ib[index];
4
5 if(pt->Cpc!=ev->as->pc){
6 pt->Fetch(&ev->as->pc);
7 pt->Slot();
8 pt->Issue();
9 }

10 pt->BackEnd();
11
12 ev->e->retired_inst++;
13 if(ev->sc->slow_mode) house_keeper(pt);
14 }

Figure 9. A main loop with pipeline frontend
reuse and the elimination of function call
overhead.

Figure 10. Simulation speeds of sim-fast and
SimCore.

mark programs. In particular, in the simulation of compress
(comp), SimCore attains the highest speed improvement,
which is 50%. In the average of the eight benchmarks, the
simulation speed of SimCore is 14.2 MIPS. A speed im-
provement of 19% is attained compared to the 11.9 MIPS
simulation speed of sim-fast.

Next, the simulation speed measured with various com-
pilers and optimization flags are summarized in Figure 11.
Five sets of data are shown in this figure for each bench-
mark. The 1st and 2nd bars from the left are the same data
shown in Figure 10.

The 3rd from the left is the data using the Intel C++ Ver-
sion 7.1 compiler (icc) with optimization option O3 and op-
timization between files. The simulation speed in this case
is an average of 15.3 MIPS. Sim-fast was not able to be
compiled using the Intel C++ compiler. SimCore compiled
using Intel C++ Version 7.1 compiler with optimization op-

Figure 11. Simulation speed measured with
various compilers and optimizations.

tion O3 attains a 28% speed improvement compared with
sim-fast compiled using GCC.

The 4th from the left is the data adding the optimization
with profile information. As the profile data, the execution
history of the dhrystone of a 10,000-times loop is used. The
compile time including the execution time for acquiring this
profile is very short at less than 5 seconds. The simulation
speed becomes an average of 18.0 MIPS by using the profile
optimization of the Intel C++ compiler. In this configura-
tion, SimCore attains a 51% speed improvement compared
with sim-fast.

The 5th data (on the right end) is the result of using a
commercial PGI Compiler 5.1 (pgCC) with the -fast option.
The simulation speed in this case is an average of 9.3 MIPS
and is slower than the case using GCC.

From the evaluation results summarized in Figure 11, we
confirm that when GCC is used, SimCore attains a 19%
speed improvement compared with the simulation speed of
sim-fast. When the profile information and the Intel C++
compiler is used, SimCore attains a 51% speed improve-
ment.

3.2 Influence of the tuning methods

In this section, the influence of the tuning methods dis-
cussed in Section 2.7 is evaluated quantitatively.

The simulation speed of SimCore with versions of the
main loop is summarized in Figure 12. The simulation
speed shown here is the average of the eight benchmarks
of SPEC CINT95.

The uppermost data in Figure 12 is the simulation speed
with the main loop of the simple implementation shown in
Figure 7. The simulation speed of this version of SimCore
is 7.1 MIPS.

Figure 12. Influence of the tuning methods on
SimCore.

The 2nd data is the simulation speed of SimCore with
the main loop shown in Figure 8, in which pipeline frontend
reuse is used. The simulation speed of this version is 16.7
MIPS. A speed improvement of more than twice is attained
by using this technique.

The 3rd data is the simulation speed of SimCore Ver-
sion 2.0 (Figure 9), in which pipeline frontend reuse and
function call overhead elimination are used. The function
call overhead elimination brings about a 7% improvement
in speed compared to the 2nd data. The simulation speed of
SimCore Version 2.0 reaches 18.0 MIPS.

As shown with these results, pipeline frontend reuse and
function call overhead elimination attain the highest im-
provement in simulation speed, even though these are tech-
niques which can be implemented compactly.

4 Related work

Various processor simulators are used as tools for pro-
cessor architecture research or processor education. In ad-
dition, the demand for a faster processor simulator has been
growing in recent years with the diversification of proces-
sors, including reconfigurable devices such as FPGAs. The
focus of some research [10, 11] has been on speed improve-
ment of various instruction set architectures. However, Sim-
Core avoids complicating the source code in order to sup-
port many instruction sets. One of the features of SimCore
is that it operates as a practical simulator with about 2,800
lines of code, which is a small amount.

There is much research on improving the speed of the
processor simulator. In some research [12, 13], speed im-
provement is attained by lowering the accuracy of the simu-
lation. However, the lower simulation accuracy makes ver-
ification difficult. Therefore, lessening the simulation accu-
racy is not allowed in the design policy of SimCore.

Concerning the speed improvement using reuse or mem-
orization, a FastSim simulator [5] and scheduling calcula-
tion reuse have been proposed. In SimCore, pipeline fron-
tend reuse is used as a technique which is realized with little

changing of the code. Although this technique is not new,
one of the features of SimCore is that techniques are se-
lected in order to prioritize code readability and compact
implementation.

SimpleScalar Tool Set [3] and SPIM [4] are well-known
processor simulators used for purposes such as processor
research and education. But, since SimpleScalar can be im-
plemented in high-speed simulations, it is not a code that
can easily be modified. Similarly, SPIM cannot be said to
be readable. On the other hand, SimCore Version 2.0 sat-
isfies the requirements of high readability and high-speed
execution at the same time.

Historically, the development of SimCore for the C ver-
sion began in March, 1999. Development of SimCore for
the C++ version began in June, 1999. A processor simu-
lator is an important tool, and it is advantageous to choose
the most suitable tool, given many choices. As a tool for
processor research and education, SimCore offers another
choice.

5 Conclusions

We have developed a function-level processor simulator,
SimCore/Alpha Functional Simulator Version 2.0 (SimCore
Version 2.0), for processor architecture research and pro-
cessor education. It satisfies the requirements for high read-
ability and high-speed execution at the same time.

In this paper, we discussed the design and implementa-
tion of SimCore Version 2.0 in detail. The main features of
SimCore Version 2.0 are as follows: (1) It offers many func-
tions as a function-level simulator. (2) It is implemented
compactly with 2,800 lines in C++. (3) It separates the func-
tion of the program loader. (4) Global variables are not used
in order to improve the readability and function. (5) It offers
a powerful verification mechanism. (6) It operates on many
platforms. (7) Compared with sim-fast in the SimpleScalar
Tool Set, SimCore Version 2.0 attains a 19% improvement
in simulation speed.

For quantitative evaluations with SPEC CINT95 bench-
marks, the simulation speed of SimCore Version 2.0 was
measured and compared with sim-fast in the SimpleScalar
Tool Set. We confirmed that when GCC is used, SimCore
attains a 19% speed improvement compared with the simu-
lation speed of sim-fast. And, when profile information and
the Intel C++ compiler are used, SimCore attains a 51%
speed improvement.

SimCore/Alpha Functional Simulator Version 2.0 is free
software. The source code is downloadable from the fol-
lowing URL.
http://www.yuba.is.uec.ac.jp/˜kis/SimCore/

References

[1] Shubhendu S. Mukherjee, Sarita V. Adve, Todd
Austin, Joel Emer, and Peter S. Magnusson. Perfor-

mance simulation tools. IEEE Computer, 35(2):38–
39, 2002.

[2] The microlib project. http://www.microlib.org/.

[3] Doug Burger and Todd M. Austin. The simplescalar
tool set, version 2.0. Technical Report CS-TR-1997-
1342, University of Wisconsin, Madison, June 1997.

[4] David A. Patterson and John L. Hennessy. Computer
organization and design the hardware/software inter-
face. Morgan-Kaufmann Publishers, 1998.

[5] Eric Schnarr and James R. Larus. Fast out-of-order
processor simulation using memoization. In Proceed-
ings of the eighth international conference on Archi-
tectural support for programming languages and op-
erating systems, pages 283–294, 1998.

[6] R. E. Kessler. The alpha 21264 microprocessor. IEEE
Micro, 19(2):25–36, 1999.

[7] Kenji Kise, Hiroki Honda, and Toshitsugu Yuba.
simalpha version 1.0: simple and readable alpha pro-
cessor simulator. Lecture Note in Computer Science
(LNCS), 2823:122–136, September 2003.

[8] Kenji Kise, Hiroki Honda, and Toshitsugu Yuba.
Implementation of simalpha-loader and construction
of cross-development environment. Technical Re-
port UEC-IS-2003-5, Graduate School of Information
Systems, The University of Electro-Communications,
2003.

[9] John R. Levine. Linkers and loaders. Morgan-
Kaufmann Publishers, 1999.

[10] Wai Sum Mong and Jianwen Zhu. A retargetable
micro-architecture simulator. In Proceedings of the
40th conference on Design automation, pages 752–
757, 2003.

[11] Achim Nohl, Gunnar Braun, Oliver Schliebusch,
Rainer Leupers, Heinrich Meyr, and Andreas Hoff-
mann. A universal technique for fast and flexible
instruction-set architecture simulation. In Proceedings
of the 39th conference on Design automation, pages
22–27, 2002.

[12] Bob Cmelik and David Keppel. Shade: a fast
instruction-set simulator for execution profiling. In
Proceedings of the 1994 ACM SIGMETRICS confer-
ence on Measurement and modeling of computer sys-
tems, pages 128–137, 1994.

[13] Thomas M. Conte, Mary Ann Hirsch, and Kishore N.
Menezes. Reducing state loss for effective trace sam-
pling of superscalar processors. In Proceedings of the
1996 International Conference on Computer Design
(ICCD), 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

