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Abstract

At the University of Edinburgh we have used
a Hierarchical Computer Architecture design
and Simulation Environment (HASE) to build
a number of architectural models for use in re-
search and teaching. Within HASE, the Java-
HASE facility allows models to be translated
into applets which can be accessed via the
WWW.

The Edinburgh Microcodable Microproces-
sor Applet (EMMA) was created in response
to a need to provide students with a reliable
practical experiment on processor design in a
Computer Design course. There are currently
two versions, a Basic model that can execute
single-cycle arithmetic operations and an En-
hanced model that can also execute multiply
and divide. The Basic model was used suc-
cessfully by a class of about 80 students in
2003.

I. INTRODUCTION

At the University of Edinburgh we have used
a Hierarchical Computer Architecture design
and Simulation Environment (HASE) to build
a number of architectural models for use
in research and teaching. Within HASE,
the JavaHASE facility [1] allows models to
be translated into applets which can be ac-
cessed via the WWW!. JavaHASE applets
are programmable simulation models with vi-
sualisation capabilities that allow activities
taking place within the model (data move-
ments, state changes, register/memory con-
tent changes, etc) to be displayed on-screen
dynamically. Models of Tomasulo’s algorithm
and the DLX [2] and DASH [3] architectures
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and, most recently, a microcodable processor
(the Edinburgh Microcoded Microprocessor
Applet (EMMA)), are currently being used in
teaching at Edinburgh. Each model is sup-
ported by a web site describing the architec-
ture and the model.

In order for students to be able to carry out
exercises using the models, the applets require
access to cut and paste facilities, using the
clipboard, on the client machine. Although
standard security managers for applets do not
allow access to the clipboard, the security
manager can be configured using a Java policy
file to allow clipboard access to applets from
specified URLs.

According to Wolffe et al's classification
[4], most of the JavaHASE DLX applets [5]
are Enhanced Microarchitecture Simulators.
These applets are designed to show students
what happens inside a processor as programs
are executed in a simple pipelined system, in
a system with a scoreboard and in a dual-
issue (VLIW) system with predication. In
a practical exercise involving the DLX with
Scoreboard applet shown in Figure 1, for ex-
ample, students are given an assembly code
sequence representing a simple implementa-
tion of a scalar (dot) product loop and are
asked to run the simulation and note where
hazards occur. They are then asked to re-
order the code to eliminate or at least reduce
the effects of these hazards. As a further op-
timisation they are asked to unroll the loop to
include two iterations of the algorithm in one
program loop.

The JavaHASE Tomasulo’s algorithm ap-
plet (Figure 2) is both an Enhanced Microar-
chitecture Simulator and a Historical Machine
Simulator in Wolffe et al’s classification, since
it models closely the original system used in
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Figure 1: DLX with Scoreboard

the IBM System/360 Model 91 Floating-point
Unit [6]. The algorithm is difficult to explain
to students without a dynamic demonstration,
so the applet is designed to show, in partic-
ular, how the tags move around the system
during program execution. The 360 processor
and memory are represented in the model by
an Instruction/Data Source Unit which stores
a sequence of instructions and a set of data
values. These are sent to the Floating-point
Operation Stack in sequence. The website ex-
plains the operation of the algorithm in terms
of the sequence of instructions contained in
the applet when it is downloaded but instruc-
tors and students can load their own code and
data into the applet’s memories.

The JavaHASE DASH Cluster Model is
also, in a sense, a Historical Machine Simula-
tor, though it was designed to show the opera-
tion of the DASH snoopy bus cache coherence
protocol rather than to be a complete histor-
ical model and is therefore better thought of
as a Multi-Processor Simulator in Wolffe et
al’s classification scheme. The cluster consists
of four nodes attached via a cluster bus to a
memory. Each node contains a primary cache,
a secondary cache and processor that is sim-
ply modelled as a source of addresses.

In a practical exercise, students are asked
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Figure 2: Tomasulo’s Algorithm Applet

to display the contents of the processors (i.e.
the lists of addresses) and the caches and, by
running the animation in single shot mode, to
observe what happens as the simulation pro-
ceeds. They are then asked to submit listings
of the addresses in each of the four processors,
annotated to show the responses of the caches
to each access.

EMMA was created in response to a need
to provide students with a reliable practical
experiment on processor design in a Com-
puter Design course and falls into Wolffe et
al’s Simple Hypothetical Machine Simulator
category. It exists in two versions, the Basic
version (EMMA-1) can execute single-cycle
arithmetic operations whilst the Enhanced
version (EMMA-2) can also execute multiply
and divide. Of the simulators identified in
[4], only the MicroArchitecture Simulator? ap-
pears to offer similar facilities to EMMA but
it is not web-based and requires the use of Ma-
cOS. Most currently available processor sim-
ulation applets are targeted at demonstrat-
ing processor operation at the register transfer
level by allowing students to enter their own
assembly code, e.g. the Little Man Computer?
and cpu-sim*. cpu-sim shares some charac-
teristics with EMMA in that it shows the
movement of information inside a processor by
means a ‘worm’ moving along the data paths

*www.dslextreme.com /users/fabrizioo/msim.html
3www.acs.ilstu.edu/faculty/javila/lmc/
“www.cs.gordon.edu/courses/cs111/



as assembly code instructions are executed,
but the micro-execution sequence for each in-
struction is predefined within the model.

II. EMMA

A. Processor Architecture

EMMA is a load/store, register-register arith-
metic processor implemented as shown in Fig-
ure 3. It was designed with simplicity and el-
egance in mind but was nevertheless intended
to give students a feel for issues which can
arise in the design of real systems. It uses a
Harvard architecture, with separate instruc-
tion and data memories. This is not only
convenient from a simulation perspective (in-
structions are represented using a C++ struct
which allows them to be displayed in read-
able assembly code format whilst data is rep-
resented in 32-bit integer format) but also re-
flects the use of separate instruction and data
caches in most real microprocessors. The mi-
crocode word is also 32 bits, divided up into
eight hex characters, with one or more hex
characters being assigned to each unit.
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Figure 3: Basic EMMA

The units making up the processor itself
are two data buses (BUS 1 and BUS 2), an
ALU, a Register Unit (containing 16 32-bit
registers, with RO always set to 0), a Pro-
gram Counter, a Microcode Program Counter
and a Microcode Unit (which also contains the
Microcode Memory). The Program Counter
(PC) is, in effect, the memory address reg-

ister for the Instruction Memory with the In-
struction Memory buffer register being the In-
struction Register (IR) in the Microcode Unit.
The Data Memory has built-in Memory Ad-
dress and Memory Buffer Registers (MAR and
MBR) connected to BUS 1 and BUS 2 respec-
tively.

EMMA operates on a two phase clock
(shown as PO and P1 in the Clock entity dis-
play). In clock cycles in which they are ac-
tive, each unit executes its internal actions in
the first phase of the clock (P0) and sends
out a result packet in the second phase (P1).
The Microcode Unit, for example, reads its
microcode memory in PO and sends the ap-
propriate microcode fields to other units, if
they are to be activated, in P1.

B. Instruction Set

The instruction set is prefined in the applets.
In the Basic version it includes absolute
jumps (JUMP and JREG) and relative
branches (BEQZ and BNEG), loads (LD,
LDL, LDX) and stores (ST and STX),
register-register operations (ADD, SUB,
AND, OR, XOR, SLL, SRL, SRA) and
register-literal arithmetic operations (ADDL,
etc), as shown in Table 1, and a STOP
instruction, which stops the simulation. RD
is the destination register, RS, RS1 and
RS2 are source registers and L is a Literal
(immediate) operand.

JUMP PC=1L
JREG PC = (RS)

BEQZ PC=PC+LifALU =0
BNEG PC =PC + L if ALU -ve

LD RD = Memory(RS)
LDL RD =L

LDX  RD = Memory(RS + L)
ST Memory(RD) = RS
ADD RD = RS1 + RS2
ADDL RD =RS1+ L

Table 1: Basic Instruction Set

The Enhanced version also includes multi-
ply (MUL, MULL) and divide (DIV, DIVL)
operations and two undefined register-register
operations (OP1 and OP2) which can be used
for functions of the student’s own choice, e.g.
RD = RD + (RS1 * RS2).



C. Processor Design

1) Microcode Unit: The Microcode
Unit has one input from the Instruction Mem-
ory and one from the Microprogram Counter
(MPC). (There is also an input, not shown
in the display, carrying the Condition Code
from the ALU.) The microcode memory con-
tained in the Microcode Unit is addressed by
the function field of the Instruction Register
in the clock cycle in which a new instruction
is received from the Instruction Memory and
by the Microcode Program Counter (MPC)
in subsequent clock cycles. (Erroneous mi-
crocode can cause both to occur simultane-
ously; this is automatically detected and dis-
played as an error.)

The Microcode Unit has an output control
path to each of the units it controls and three
output data paths, one to the MPC and one
to each of the buses. These data paths are
activated by bits in the most significant hex
character in the microcode word (Table 2).
This position was chosen because it leaves the
most significant bit unused and thus avoids
problems with negative numbers.

The second hex character controls condi-
tional execution. The Microcode Unit always
sends a control code to the MPC but only
sends to the other units if

e neither conditional bit is set

e the execute if condition is true bit is set
and the condition is true

e the ezecute if condition is false bit is set
and the condition is false

Conditional branches can thus be imple-
mented by executing either a microcode in-
struction that adds the Literal operand to PC
or an instruction that adds +1 to PC.

2)  PC and MPC: The Program
Counter and Microprogram Counter units be-
have identically. They contain the relevant
register together with an adder which receives
one input from the register itself and the other
from a multiplexer (MPX) which has inputs of
+1 or a value taken from BUS 2 in the case of
PC or the Microcode Unit in the case of MPC.
Each has two outputs: Outputl is connected

back to the adder (and is permanently en-
abled), Output2 is enabled under microcode
control.

Whenever PC or MPC is activated by re-
ceipt of a microcode packet (it should also
have received appropriate data packets), it
enables the appropriate inputs to the multi-
plexer and sends the result of the addition to
Outputl, and thence back to its own adder in-
put and to Output2 if the corresponding mi-
crocode bit is set.

3) The Buses: The buses (BUS 1 and
BUS 2) have a number of input connections
but should of course receive data from only
one of them in any one clock period (in P1).
Inputs which do not receive data are set to
zero. The inputs are internally ORed together
(simulating a wired-OR bus) and the result
sent to all the outputs.

4)  Data Memory:  The microcode for
the Data Memory contains two bits which
control its input registers (MAR and MBR),
one bit which activates its output register
(MBR) and a Read/Write bit. For a read
operation (Read/Write = 0), the address re-
ceived from BUS 2 in P1 of one clock period is
copied into MAR in PO of the next clock pe-
riod, the memory is read and the result copied
into MBR. In P1 the value in MBR is sent to
BUS 1. For a write operation (Read/Write
= 1), the address sent from BUS 2 is copied
into MAR in PO of next clock period, the data
value sent from BUS 1 is copied into MBR and
the value is written into the memory.

5)  Registers:  The Registers unit con-
tains 16 general purpose registers, with R0
being permanently set to 0. It receives input
values from the ALU and has two outputs con-
nected to BUS 1 and BUS 2. Whenever the
Microcode Unit sends a microcode command
to the Registers, it appends the appropriate
source and destination register numbers ex-
tracted from the instruction in IR. In an in-
struction such as ADD RD RS1 RS2, the value
in register RS1 is sent to BUS 1 and that in
RS2 to BUS 2.



6) ALU: In the Basic version of
EMMA, the ALU has two microcode control
fields, one to control its inputs (one from each
of BUS1 and BUS2) and outputs (one to the
Registers and one to BUS2) and one for the
function. It executes Add, Subtract, AND,
OR, XOR, Shift Left Logical, Shift Right Log-
ical and Shift Right Arithmetic. At the end
of each operation it sets the Condition Code
bits: CCO = 0 if the result is 0, CC1 = 1 if
the result is negative.

D. Microcode Format

The Microcode Unit contains a 128-word
microcode memory, with each word having
the following format:

‘ Label ‘ Microcode Word ‘ Address ‘

The Label is a string of characters used
only for readability purposes. The Microcode
Word is represented in hexadecimal format
and is structured as shown in Table 2. The
bits are clustered into hex characters, two for
the Microcode Unit itself, one each for the
MPC and PC units, one for the Registers,
one for the Memory and two for the ALU.

The (integer) Address field is used for
jumps within the microcode memory. The
first 32 locations form a jump table indexed
by the function number, except for location
0 which contains the (one) microcode word
needed to implement the JUMP instruction.

If MPC is loaded with a new address (i.e.
not MPC+1), there is a 1-clock delay before
the new value is returned to the Microcde
Unit. In this branch slot, the Microcode unit
sets the microcode word to 0x00D0000, thus
incrementing MPC automatically in the next
clock.

IIT. ENHANCED EMMA

The Enhanced version of EMMA differs
from the Basic version in a number of ways.
The ALU is shown in more detail (Figure
4) and contains an additional counter (D)
which is required for the implementation of
divide. The microcode memory is doubled
in size to 256 words and is logically divided

into two sections, the Standard Microcode
memory (addresses 0-127) and the Alterna-
tive Microcode memory (addresses 128-255).
The Alternative Microcode allows for the
implementation of multi-cycle operations
such as multiply and divide. Address 255 is
special in that when accessed, it halts the
simulation and can thus be used to prevent
an attempt to divide by 0, for example.

Unit Bit | Signal

00 00 | Not used

01 | Addr/Lit to BUS1
Mcode | 02 | Addr/Lit to BUS2
03 | Mcode Addr to MPC
01 04 | Select ~CCO

05 | Select CC1

Mcode 06 | Execute if True

07 | Execute if False

02 08 | Inputl from MPC
09 | Input2 (+ 1)

MPC 10 | Input3 from Mcode
11 | O/p To Mcode

03 12 | Inputl from PC

13 | Input2 + 1

PC 14 | Input3 from BUS2
15 | O/p to I_.Memory
04 16 | Not used
17 | Write
Regs 18 | Sourcel to BUS1
19 | Source2 to BUS2
05 20 | MAR Input
21 | MBR Input
Data 22 | Read/Write
Memory | 23 | MBR Output
06 24 | Inputl
25 | Input2
ALU 26 | O/p to Regs
27 | O/p BUS2
07 28 | Not used
29 | Function
ALU 30 | Function
31 | Function

Table 2: Microcode Format

Words in the Alternative Microcode mem-
ory have the same basic format as words in the
Standard Microcode memory but the Data
Memory field in the standard format is re-
placed by an additional ALU field used to



control the extra facilities needed in the ALU
to implement multiply and divide operations
(Table 3). In addition, the Address field in the
microcode word is sent to the ALU for use as
a Literal (immediate) operand.
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Figure 4: Enhanced EMMA

The Enhanced version of EMMA is up-
wardly compatible with the Basic version,
so microcode written for the Basic version
can be used unchanged in the Standard
Microcode section of the Enhanced version
and will achieve the same effects.

Unit | Bit | Signal

04 16 | Dest. to BUS2
17 | Write

Regs | 18 | Sourcel to BUS1

19 | Source2 to BUS2
05 20 | Inhibit A to alu
21 | Inhibit B to alu

ALU | 22 | Enable ACC to alu
23 | Inhibit B to alu
if A<31> =0
06 24 | Inputl
25 | Input2
ALU | 26 | O/p to Regs
27 | O/p BUS2
o7 28 | Function
29 | Function
ALU | 30 | Function
31 | Function

Table 3: Alternative Microcode Format

Other differences when using the Al-
ternative format are that the Destination

register in the Registers unit can be routed
to BUS 2 and the ALU has extra functions
as shown in Table 4. Four of these functions
operate directly on the two input registers
(A and B) and two manipulate the counter
(D) which can be used to implement Division.

NOP

Reverse Subtract

Negate A

Negate B

Shift A — by literal & set CC
Shift B < by literal

Set D =17

Decrement D & set CC

Table 4: Extra ALU Functions

The shift functions take as their argument
the literal value in the microcode. This ar-
gument can be positive (for use in multiplica-
tion) or negative (for use in division). When
the argument is negative the shift is in the op-
posite direction to that shown in Table 4. In
the case of a left shift on A, the value shifted
into the least significant bit is the inverse of
CC1, (i.e. =1 if the value in ACC is non-
negative). Normally the argument is +1 or -1
but -16 is also required for division.

A.  Muliply and Divide

1)  Multiply:  The ALU is designed to
be able to multiply together the numbers in A
and B by repeatedly adding the value in input
B to the accumulator (ACC). In each cycle, ei-
ther the value in B or zero is added to ACC
according to the value of the least significant
bit of A; A is then shifted right one place and
B is shifted left. The operation stops when
A becomes zero (whenever A is shifted, the
Condition Code bits are set according to the
new value in A). This algorithm only works
for positive values of A. If A is initially neg-
ative, it must first be negated and the final
result negated before being returned to the
destination register.

2)  Divide: The ALU is designed to be
able to divide 16-bit numbers by first shift-
ing the divisor in input B left 16 places and
then repeatedly subtracting it from the value



in ACC, testing for a negative result and shift-
ing B right one place. If the result is negative,
B is added back to ACC before repeating the
cycle. At the start of the operation, the Quo-
tient, in A, is set to zero (this can be done by
loading it from the bus but without sending a
value to the bus beforehand). After each sub-
traction, A is shifted left one place with the
value shifted into the least significant position
being 1 if the value in ACC is non-negative (as
described above). At the end of the operation,
A contains the quotient of the result, whilst
the remainder is in ACC. However, there is no
way in the current version of EMMA to return
each value to a different register.

This algorithm only works for 16-bit pos-
itive numbers. If either value is negative, it
must be negated at the start and the result
negated, if appropriate, at the end. The ALU
simulation code itself checks its inputs and
stops the simulation, with a warning, if a num-
ber is out of range. It is also essential not to
proceed with a divide if the divisor is zero.

IV. USING THE APPLETS

When downloaded, each applet contains the
microcode for the JUMP and LD instructions.
The applet automatically executes a JUMP
0 instruction at the start of each simulation.
The Data Memory contains values in each of
its first 32 locations equal to their address
whilst the assembly code contained in the
Instruction Memory consists of just two
instructions:

LD R2 5
STOP

Suggested exercises for the students are:

e Using the Basic version, implement the
remaining microcode for all single cy-
cle instructions and write an appropriate
assembly code program to demonstrate
that they work.

e Using the Enhanced version, implement
the multiply and divide instructions and
demonstrate that they work on suitable
test data, including all possible combina-
tions of positive and negative numbers.

e Implement OP1 and OP2 with new func-
tions.

The Basic version requires around 100 lines
of microcode in total, including the jump ta-
ble at the start. The arithmetic instruc-
tions (ADD/ADDL, etc) require 3 lines each,
BEQZ, BNEG and JREG each require 2,
while LD, LDL and LDX require 2, 3 and 5
respectively. The Basic version was used by
around 80 students in Autumn 2003. Most
of them got most of the instructions working
correctly, though some had difficulties, partic-
ularly with LDX and STX. Student reaction
to using the applet was positive; they felt that
it gave them a good insight into how a pro-
cesssor works.

In the Enhanced version, MUL/MULL and
DIV/DIVL can be implemented using 18
and 43 microcode instructions respectively.
MULL and DIVL use most of the same code
as MUL and DIV but each requires differ-
ent initial microcode instructions to load the
operands at the start.

V. CONCLUSION

JavaHASE applets have been successfully
used in teaching in a number of courses, either
as demonstrations or for practical exercises.
Because they are accessible via the WWW,
they can be used by students who wish to
work off campus or at times outside normal
hours. The most recent applet (EMMA) has
been used as a replacement for aging labora-
tory equipment.
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