

WebMIPS: A New Web-Based MIPS Simulation Environment
for Computer Architecture Education

Irina Branovic, Roberto Giorgi, Enrico Martinelli

University of Siena, Italy
{branovic,giorgi,enrico}@dii.unisi.it

Abstract

We have implemented a MIPS simulation
environment called WebMIPS. Our simulator is
accessible from the Web and has been
successfully used in introductory computer
architecture course at Faculty of Information
Engineering in Siena, Italy. The advantages of
the Web approach are immediate access to the
simulator, without installation, and a possible
centralized monitoring of students’ activity.
WebMIPS is capable of uploading and
assembling the MIPS code provided by user,
simulating a five-stage pipeline step by step or
completely, and displaying the values of all
registers, input and output data of all pipeline
elements.

1. Introduction

The study of computer architecture is a

challenging field because of the high complexity
involved in any computer system. To ease this
complexity, different tools have been developed
allowing architectures to be simulated and modified.
This approach is beneficial to students approaching
computer architecture for the first time, because it
allows them to see the execution of actual assembly
programs in the architecture. One important step is
that the student makes use of simulation tools to
understand concepts otherwise difficult to
comprehend. Our experience, started with JCachesim
cache simulator [1], indicates that Web-based lab
exercising is effective, sometimes even more
interesting than traditional teaching to our students.
We are not alone in trying to make computer
architecture education more interesting to students, as
can be seen in [5], where the authors used animation
for this purpose.

An extensive survey of computer architecture
simulators is given in [8]. For computer architecture
education, especially interesting is the category of
intermediate-level simulators, targeted at students that
have some background in computer architecture and
need a simulator that covers the principles in more
detail, but are not ready for the simulator that

captures all the features of the current state-of-the-art
in computer research. The simulators in this category
attempt to illustrate and teach two general principles:
the instruction set architecture and the micro-
architecture.

In many universities, MIPS architecture is
studied because it is a RISC architecture that makes
understanding abstract concepts of computer design
easier. Another advantage of MIPS ISA is that it is
used in textbooks [2], [3], which represent a reference
material for teaching computer architecture in many
universities, which is also the case for our faculty.
There are three widely used MIPS architecture
simulators: SPIM, WinDLX and MIPSim.

SPIM [4] is an assembly language simulator for
the MIPS (R2000/R3000) processor that has both a
simple terminal interface and a visual, window-based
interface. It implements almost entire MIPS
assembler-extended instruction set (detailed SPIM
description can be found in [3] with more
documentation available online [4]). SPIM was
extensively used in our teaching, however it lacks
pipeline modeling.

WinDLX [9] and MIPSim [10] are pipeline
simulators developed at the Vienna Institute of
Technology and were described by authors in [11].
WinDLX models the pipeline of the MIPS-like DLX
architecture described in [2]. It allows for displaying
and modifying all of the information relevant to the
CPU (pipeline, registers, I/O, memory),
enabling/disabling pipeline forwarding, changing
memory size. MIPSim [10] models the MIPS
architecture as in [3], with the possibility of changing
memory content, but without hazard detection and
forwarding units in the pipeline.

We have decided to make a five stage MIPS
pipeline simulator capable of displaying the status of
almost all hardware units (more than 25) in the MIPS
pipeline model, as well as hazard detection and
forwarding in the pipeline. Instead of improving
MIPSim, which also would have been a valid
alternative for our goal, we decided to create a
completely new simulator that can be executed from
the Web browser window. Our simulator, called
WebMIPS, eases the process of learning assembly
coding, mastering pipeline, control, and datapath
design. However, its major advantage is the
immediate accessibility to students, without any prior
installing, and the possibility of monitoring their
activity over the Web.

The name WebMIPS indicates that the simulator
is designed for Web use, and indeed it is written in
ASP language [7] and can be started by opening a
simulator Web page [6]. Another advantage of the
Web based service is that the user are not required to
have any special operating system for accessing this
software.

WebMIPS does not support the complete MIPS
instruction set; the user that wants to write assembly
programs on its own must consult the list of
supported instructions in order to simulate the code.
Since our intention was not implementing a whole
assembler, the simulator supports only the basic set of
instructions, which were studied during the
introductory computer architecture course.

The user can load (copy/paste) MIPS assembly
file or use one of the “load-and-play” (built-in)
assembly examples to follow its execution in
simulator. WebMIPS is not a real assembler;
however, it is able to recognize if there are errors in
the provided code, and to display the line with the
error. The simulator is also able of displaying the
program execution step-by-step or all at once. In step-
by-step mode the user can follow advancing of
instructions in each stage of the pipeline, and by
clicking on the constituting elements of the pipeline
can see the corresponding values, input and output
signals in every clock cycle. WebMIPS has
forwarding always enabled, resolves pipeline hazards
and displays the contents of hazard detection and
forwarding units in the pipeline.

2. Detailed description of WebMIPS
simulator

2.1 General structure

WebMIPS is a Web application and it is
executed on remote servers in multiuser mode (users
can execute different code at the same time). To
avoid blocking of the system in case of infinite loops,
erroneous references to memory and other common
programming errors, we limited the execution of each
uploaded program to 1000 clock cycles. On the
server, all simulation parameters can be configured.

When trying to execute unsupported assembly
instructions, an error is displayed and WebMIPS
indicates the corresponding line number. In standard
assembly language the use of directives .text and
.globl is allowed, and in this case the first instruction
to be executed corresponds to the .globl label. The
end of execution is not specified by syscall 10,
instead in WebMIPS the execution stops at the last
code line.

2.2 Loading of the code

To offer the possibility of loading proprietary

code to the users, we made an ASP page section,
where it is possible to program in MIPS assembly and
to verify whether the code is correct. By clicking on
the button “Load/Reload Program” in the upper part
of the WebMIPS browser window (Figure 1), the
MIPS assembler is activated.

Figure 1. WebMIPS window during execution. Note the Load/Reload Program button in the upper part.
The wires can be hidden to have an easier reading of the CPU units.

Not all options of the real assembly were

implemented, since our goal was to demonstrate the
execution of base instructions explained during our
computer architecture course. However, almost all
MIPS instructions can be written by combining the
implemented instructions. We included a set of
simple assembly programs with the scope of
demonstrating its execution in MIPS pipeline.

 The functioning of our simulator can be easily
understood by using some of the simple built-in
(called “load-and-play”) programs. The simulator
keeps track of the code in execution and it can be
easily modified in any moment by clicking on the
“Load/Reload Program” button.

Figure 3: Instruction memory in the middle of

execution.
Figure 2: Registers during execution.

2.2 Program execution

In order to allow users to follow program
execution, the left part of the browser window is
dedicated to information regarding register file, data
and instruction memory. Instruction memory displays
the mnemonic, memory address, type, binary
translation, symbolic representation, field values and
current position in the pipeline for every instruction
in execution (Figures 2, 3).
The page displaying data memory can visualize
single words, a word interval, or the whole memory
contents. The register page demonstrates the binary
content of 32 MIPS registers, which can be identified
either by register number or their symbolic identifier.

The central part of the browser page is dedicated
to five-stage MIPS pipeline. Since the major scope of
the simulator was to facilitate understanding of
pipeline principles, a user can click on any desired
element of the pipeline (for example, ALU, hazard
detection unit, or even a simple multiplexer) to show
its input and output data. A good feature of
WebMIPS is the possibility of tracking every
instruction in each pipeline element by simply
looking at the central graphical screen. Additionally,
displaying of control/data wires can be turned on/off
using a corresponding check-box.

Once loaded, a program can be executed in two
modes: step-by-step or completely. In step-by-step
mode, after each clicking of the “Step-by-Step
Execution” the pipeline stages are updated and the
user can see the changes in memory and detailed
pipeline logic. After the execution has completed, the
total number of clock cycles is calculated and
displayed in the left-hand menu. Complete execution
of the program should be is used only for verifying
the correctness of the assembly code.

2.3 Analyzing pipeline data hazard and
forwarding

In the implementation, branch decision is in the

Decode stage of the pipeline to save one cycle. Data
hazards created in this way are detected in hazard
detection unit, and resolved via forwarding unit,
which are shown in graphic representation of the
pipeline. Among “load-and-play” programs user can
find a simple four-operation calculator; the loading of
this example is shown in Figure 4. We will use this
simple example to illustrate the functioning of hazard
detection and forwarding in the pipeline. The top of
the left-hand menu lists the pipeline stages in stall
during the execution of the program (Figure 5).

Figure 4: A simple calculator program
(among built-in examples) loaded.

Figure 5: The top of the memory window

displays a stage in stall.

Figure 6: Stall passed through the pipeline.

Figure 7: When the execution finishes, the top of

the memory window shows
the total number of clock cycles.

The pipeline with data hazard resolved is

displayed on Figure 6. When the execution of the
program finishes, the simulator displays total number
of cycles (Figure 7). By clicking on the hazard
detection and forwarding units in the pipeline a user
can see the corresponding signals and follow the
propagation of the stall through the pipeline (Figure
8).

Conclusions

We have implemented a Web-based MIPS

pipeline simulator called WebMIPS. Our simulator is
publicly accessible and it displays execution in the
Web browser window, and is capable of detecting
and resolving hazards in the pipeline. The WebMIPS
software was used in introductory computer
architecture course at University of Siena, Italy as an
auxiliary resource for explaining pipeline principles.

We received a good feedback from our students,
who also appreciated its availability from any client
computer (independently from the installed operating
system), the possibility of executing on any Internet-
enabled PC without prior installation, and its ease of
use. Further plans for WebMIPS development include
extending the supported instruction set to include all
MIPS (R2000/R3000) instructions.

Acknowledgements

We are particularly grateful to the students:
Mirko Casini, Riccardo Donati, Alem Gracic, Luca
Peruzzi for the initial implementation and the testing
of WebMips.

Figure 8: Details on forwarding and hazard
detection in the pipeline can be seen by clicking on

the corresponding unit.

References

[1] I. Branovic, R. Giorgi, A. Prete, Web-based

training on computer architecture: The case of
JCachesim, Proceedings of the Workshop on
Computer Architecture Education, pp. 56-60,
May 2002, Anchorage, Alaska.

[2] J. L. Hennessy and D. A. Patterson, Computer
Architecture – A Quantitative Approach, 3rd
edition, Morgan Kaufmann Publishers, 2002.

[3] D. A. Patterson and J. L. Hennessy, Computer
Organization and Design: The
Hardware/Software Interface, 2nd edition,
Morgan Kaufmann Publishers, 1997.

[4] SPIM simulator Home Page,
http://cs.wisc.edu/~larus/spim.html

[5] M. Brorsson, MipsIt - A Simulation and
Development Environment Using Animation for
Computer Architecture Education, Proceedings
of the Workshop on Computer Architecture
Education, pp. 65-72, May 2002. Anchorage,
Alaska.

[6] WebMIPS Home Page,

http://www.dii.unisi.it/~giorgi/WEBMIPS/
[7] C. Payne, Teach Yourself ASP.NET in 21 days,

2nd edition, SAMS, 2003.
[8] W. Yurcik, G. S. Wolffe, M. A. Holiday, A

Survey of Simulators used in Computer
Organization/Architecture Courses, Proceedings
of Summer Conference on Computer
Simulation, pp. 524-529, Orlando, Florida, July
2001.

[9] WinDLX Simulator Download Page,
ftp://ftp.mkp.com/pub/dlx/

[10] MIPSim Simulator Download Page,
http://mouse.vlsivie.tuwien.ac.at/lehre/rechnerarc
hitekturen/download/Simulatoren/

[11] H. Grünbacher, M. Khosravipour, WinDLX and
MIPSim Pipeline Simulators for Teaching
Computer Architecture, Proceedings of IEEE
Symposium and Workshop on Engineering of
Computer Based Systems, pp. 412-417,
Friedrichshafen. Germany, March 1996.

