Teaching Embedded Systems with FPGAs Throughout a
Computer Science Course

Vanderlei Bonato! Ricardo Menotti'
Eduardo Simdes!
'Universidade de Sdo Paulo
ICMC-Dep. Computagdo
Sao Carlos-SP-Brazil
emarques @icme.usp.br

Abstract

Although embedded systems have been around for
quite a long time, just in recent years they have at-
tracted major industry and academic interest. There
is a perception that a computing paradigm shift is tak-
ing place, and so the need to provide computer science
students with the required expertise in the field. In
this paper we describe our experience of using a recon-
figurable computing platform throughout a number of
courses. By doing so we allow students to get acquired
to embedded systems concepts and practices under dif-
ferent contexts in the normal curriculum. The applica-
tion of this strategy have allowed considerable gains
for students taking embedded system courses, research
projects in the field, and also professional activities.

1 Introduction

In recent years embedded computing has emerged as
the new paradigm for the design and implementation of
modern computer systems. They consist in the fastest
growing market share for computing products, already
accounting for the largest number of systems being de-
ployed [15]. In terms of total revenue, they should also
overtake desktop-based systems in just a few years.
Typical examples of embedded systems include digital
cameras, mobile phones, automotive control devices,
and medical equipment, among others.

As it happens during any technology shift period,
skills shortage can be a problem as the current curricu-
Ium may not address the whole set of issues involved.
The range of skills required for embedded systems de-
sign encompass knowledge about hardware devices,
computer architecture, microprocessor, and high-level
language programming, among others [17]. Although
these topics are adequately taught in Computer Science
and Engineering courses, students tend to see them as
isolated units, with little relation to embedded systems.
We believe that reconfigurable computing [6] can be
used as a platform for teaching all of those subjects,
and also to expose students to some of the main con-

Marcio M. Fernandes? Eduardo Marques'

2Universidade Metodista de Piracicaba
FCMNTI-Ciéncia da Computacdo
Piracicaba-SP-Brazil
mmfernan @unimep.br

cepts and practices in that field.

In this paper we describe our experience on how
teaching computer architecture and related courses us-
ing reconfigurable computing allows students for a bet-
ter understanding of key concepts involved in embed-
ded systems design and implementation. The remain-
ing sections discuss related technologies and concepts
(2), the platform and tools employed by our courses
(3), and how key concepts related to embedded sys-
tems are inferred from those disciplines (4). That sec-
tion also describes how this strategy paves the way for
research projects based on embedded systems. Finally,
the last section (5) brings the conclusions of our expe-
rience and future directions.

2 Embedded Systems and Recon-
figurable Computing

An embedded system can be described in general terms
as an application specific system implemented using a
programmable processor, usually integrated with other
hardware devices such as sensors and actuators [4]. As
opposed to desktop-based systems, embedded systems
are designed to deliver the expected functionality and
performance for one (or just a few) task, usually be-
ing part of a larger system. Key characteristics often
required in such systems include real-time constraints,
low-power consumption, and low-production cost. An
important design decision is the so called hardware-
software partitioning, defining the tasks that will be
executed by an ASIC (Application Specific Integrated
Circuit), or a software programmable microprocessor.
The latter approach can be done using off-the-shelf
devices, typically a microcontroller, or developing a
SoC (System-on-Chip), with reusable IP (Intellectual
Property) components. It should be noticed that the
semiconductor industry is shifitting towards SoCs, as
pointed out by the latest version of the International
Technology Roadmap for Semiconductors [9].

An alternative to those approaches is to use recon-
figurable computing [6], a technology based on repro-
grammable integrated circuits, nowadays commonly

known as FPGAs (Field Programmable Gate Arrays).
FPGA based systems allow performance levels compa-
rable to those based on ASICs, but with advantages of
on-site reprogrammabilty, and a shorter development
cycle. Those are key attributes to deal with changing
requirements, and time-to-market pressures, respec-
tively.

In the addition, there are some evidences that the
transistor count for FPGAs may be experiencing a
higher growth rate than microprocessors, being com-
parable to the one observed for memory logic. As a
result, at some point it may be possible to build FPGA
based systems that are more complex than micropro-
cessors. An evidence of this trend has been recently
produced by Xilinx, with the announcement that in
the near future it will make available devices topping
the one billion transistor mark [19]. It should also be
noticed, however, that FPGAs are still considerably
slower and consume more power than ASICs, which
still prevent their use in some scenarios.

3 Teaching Platform

As already said, key concepts and practices for em-
bedded systems design are often taught in a number
of courses with little relation, at least from the stu-
dent’s perspective. For this reason, we have adopted
an FPGA based platform as a core component for those
disciplines, in a attempt to encourage a think embed-
ded” attitude among students. The use of an FPGA
platform to teach computer architecture and related
disciplines has been adopted by many courses, some-
times employing supporting tools specially designed
for that (e.g. [16]). However, to the best of our knowl-
edge, it has not been adopted with the specific goal of
enabling students to practice embedded systems con-
cepts within other courses.

The choice for a reconfigurable computing platform,
as opposed to other alternatives, was mainly due to the
following reasons:

e It does not constrain the student to a particular
microprocessor architecture or simulation tool;

e It accommodates a wide range of complexity lev-
els, from simple logic blocks to a complete SoC
implementation;

¢ Itallows students to get acquired with EDA (Elec-
tronic Design Automation) and high level pro-
gramming language tools.

The adopted teaching platform is based on Altera
FPGA development boards, in particular the UP2 and
Nios Stratix Edition. The UP2 [3] is a low cost board
composed of reconfigurable hardware, with a capacity
of 70K gates. It also includes I/O devices and output
monitoring capabilities.

The Nios Stratix Edition [1] is more sophisticated,
consisting of a FPGA with 1M gates, RAM and Flash

Figure 1: Kit Nios Stratix Edition

memory modules, and support for Ethernet and RS232
communication (Figure 1). The board also comes with
Nios, a 32-bit RISC softcore processor, which can be
easily synthesized into the FPGA. This processor has
has a five-stage pipeline, with independent buses for
data and instructions, respectively. It also allows for
the implementation of custom instructions, a desirable
feature to improve the performance of time critical sec-
tions of code. It is also possible to design logic to gain
access to external resources such as memory and I/0
devices. All these features have proven to be valuable
in the teaching process.

The Quartus-II EDA tool is used during all phases
of an FPGA based project, either with the UP2 or the
Stratix board. In these phases are included design,
compilation, timing analysis, simulation, and chip con-
figuration. Projects are organized as modules, which
facilitates reusing them. Modules can be defined by
a schematic design, or using hardware definition lan-
guages. The languages currently supported are Ver-
ilog, VHDL, and AHDL. Programming the Nios RISC
processor is carried out with an integrated tools chain,
which includes the GnuPro C compiler, an assembler,
and a debugger.

For the students, working on the design of sys-
tems including both hardware and software implemen-
tations have shown to be a key element to tackle em-
bedded system concepts. The teaching projects they
are exposed to are previously designed, implemented
and tested, which allows for the generation of tem-
plate files to be used by students. By doing so, they
are prevented from spending time on repetitive tasks,
common to most practices, and can concentrate on the
important aspects of the work.

4 Main Courses and Activities

In this section we describe the main courses of the
computer science curriculum that have adopted the
reconfigurable computing platform presented in Sec-
tion 3. As seen in Figure 2, during those courses stu-
dents can work with embedded systems under three ba-
sic architecture scenarios: a) the simplest one, consist-
ing of a CPU and memory modules, b) using custom

Nios — Memory Nios — Memory Nios — Memory
modified
inst A
inst B
Custom
Hardware
FPGA FPGA FPGA
a) CPU+ Memory b) CPU + Custom HW + Memory ¢) CPU w/ custom instructions + Memory

Figure 2: Embedded system architecture scenarios for laboratory practices.

hardware blocks to improve performance of key sec-
tions of the application, and ¢) modifying the softcore
CPU to include custom instructions.

Considering that the basic contents of those courses
are homogeneous and well know among academic
staff, we concentrate only on those details that are rel-
evant to teach embedded systems concepts and prac-
tices. Please also notice that, for the sake of general-
ity, the actual name of those courses may differ from
the ones listed in the next section. A particular feature
of some of those courses is the availability of on-line
exams, using the EDA tool they became acquired to.
Students are given a set of requirements and asked to
design a circuit to meet the specification. As an exam-
ple, they are asked to design a circuit to generate the
signals corresponding to a given vector signal. The so-
Iutions are then sent electronically to tutors, in order to
be marked. A poll among approximately one hundred
students have shown that over 80% of them thinks the
methodology is better than traditional ones.

4.1 Digital Systems

This topic is taught in two courses, introducing stu-
dents to basic elements of digital system abstractions,
such as gates, flip-flops, building blocks, binary arith-
metic, multiplexing circuits, and so on. The Quartus-II
EDA tool presented in Section 3 is used to implement
simple lab practices to gain insight on the actual struc-
ture, behaviour, and interaction of those components.
More complex assignments include the design and im-
plementation of an ULA (Logic-Arithmetic Unit), and
memory units. All projects are simulated, debugged
and written to an FPGA, making possible for the stu-
dent to understand timing and synchronization issues.

As an example, we have an assignement consisting
in the design of bus-based communication interface to
be implemented as an FPGA SoC. In this project stu-
dents are asked to create a finite state machine for the
implementation of a communication protocol. This has
an appropriate complextiy level for a second course on
digital logic, allowing students to work on structures
such as fifo queues, memory, registers, etc., in order
to build the design shown in Figure 3. Issues related
to communication networks such as bus contention,
priorities, and transmission delay are also introduced,
paving the way for more elaborated projects in com-
puter network courses (Section 4.6).

Communication
Node J

Communication
Node |

7S 7S
< 16 bits Bus
| i 7S %
7z Z [l 11
Receivin Node Environment Sendine
Bu"erg Acknowledgment Access Bu"erg
Circuit Circuit
\Z U
Receiving Sending
Logic Logic |
Control . o
Node O

Logic Control

1

FIFO

1o
Displays

ROM

FIFO

RAM

Timers

Word
Receiving
Status

Word
Sending
Status

c ication Node K _

Figure 3: A bus-based communication interface.

4.2 Computer Organization

Computer Organization refers to the main units that
compose a Von-Neumann machine, i.e., ALU and con-
trol unit, memory, register file, and buses [14]. The
students can build a basic working system using Ver-
ilog or VHDL, starting from a simple instruction set
architecture, and then expanding the ISA with other
instructions. This is a particularly useful experience as
the use of custom blocks (or instructions, when possi-
ble) is an effective way to execute performance sensi-
tive tasks. Student designs are implemented and tested
into the FPGA platform, which in practice gives them
a feeling of a running embedded system. By doing so
we allow them to practice some key concepts of em-
bedded system design without the overhead of a new
introductory course on the subject.

4.3 Computer Architecture

The theory part of this course concentrates on the usual
topics such as microprocessor and pipeline organiza-
tion, memory hierarchy, interconnection to I/0O de-
vices, etc. During the lab activities, students are asked
to expand the CPU design of the Computer Organi-
zation course, using pipelining techniques to enhance
performance. This helps to give them a better under-
standing on the differences that can be found between
CPUs, even when they implement the same instruc-
tion set. This knowledge can be used to better eval-

1% Atera SOPC Builder -
Fie System Modde View Help

=l81x

System Contents | Nios More “cou” Settings | System Generstion |
'-“;"“"':‘::" 5": - Torget Device Famty: [Strate: =] System Clock Frequency: [<0 Wtz
T ion Meduiee . (= C9u 1 nsiruction_master (valon)
@ Nos Processor - Atera Cor ik i
Sridges [€x_ram _bus (svalon tristete)
- Commmicstion [C1_ide_tr_stae_briige (avakon_jrstate)
EP1C20 Nios Development £ — avaion_master (svelon)
]
elwe [TTTTITLTL] Mot lawme | Descriion [Bese e [Rof
EP20K200E pu Fi03 Proce50r - ARera Corporabon Tx0I20000 0+0Co0F T
Ethernet 1 monkor_rom G- Chip Memory (FRAM o FOM) Ga0920000 070022077
@ cspan |4 & sdram AN Cortroler Gabi000008 T CTTTTIIT
- ox_ram_bus Avalon 11-Siete Ereege
o Lanst onchep ram 64 kbyies B Chs Memory (RAM & FOM) 900000 0/ 00AFTET
+ Memory Compenent Detals Ethernet™Mac TIRRY (RS-253 senel por) TbeiZ0008 OO0 | 35
other el et OX00I0IAD C-0002090F | 16
AHB Modules l;:’:m mrv"--:z.o e tmer OXO0IINICH TxO02030°F | 60
@ Excalbur L rccind Joge_Ethernethiac 0 P 1) TSIO8I | 8
Bridges [~ - ymr 0 (Para 10) [
@ AHB To AvaknBridge | V¢ Ted_pio B0 (Paraiie 10) x00920A08 0:00320A0F
7 Seven seg pio T Paraiiel 1) TOOTIOATT
= Tecontio_f equest_pio 0 (Paral 10) OxD0920AZ O-DDIZ0AZ
- A jde_tri_state_bridge Toveton T Sisle Evidge
= ide_interfsce Trieriace o User Logc Tboazi908 O 00SaT |
T —— of_present_pio B0 Parael 1) O0920AI O-O0II0AT | 35
12 o _power_pio B (Parai 10) Ox00SZ0AMD D-003I0MEE
L Bl _sta_select_pio W5 (el 10) TO0GI0ASF
- oxt_fiash RO 29 V055D Fiash @ 0000000 | OXOOTFFFFF
7 D e ram OT7TVATE SRAM 0xB0500000 0:OCEFTIEF
7 - ETandiciii CAREICTT] Hieriace (Bheme) Tx00310008 O 00SITTIT| 38
- HE | & avalon_master rierince 1o User Logi:
- & avelon_slave Teriace 10 ser Loge Gxbbb00008 Dr0cOFFEE |
Instalied components
KL TE ik g
AJ ._!3:“__] A Move Up W Move Down
B vt » | gewrue |

Figure 4: SoPC Builder: A tool for SoC design and implementation.

uate functionality, performance, and power consump-
tion when choosing a CPU for a given embedded ap-
plication [7].

In this course students have their first experience
with the Nios softcore processor. Simple applications
are implemented in C language, to be executed in the
FPGA CPU implementation (Figure 2a). Then, key
sections of code are implemented with custom logic,
along with the additional code to switch processing
and communicate data between the Nios CPU and the
FPGA hardware blocks (Figure 2b). Comparing the
performance results from both implementations is a
good way for students to learn why hardware-software
partitioning is such an important step of embedded sys-
tems design.

4.4 Compilers

The typical one-semester compiler course tend to
spend more time on front-end concepts, as little time
is left for back-end design and implementation. How-
ever, on a second course (usually at the graduate level)
code generation and optimization techniques are the
main focus, bringing compilers closer to computer ar-
chitecture. We use the rich set of microprocessor
architectures for domain-specific embedded applica-
tions to illustrate how code generation techniques can
take advantage of that to improve performance dra-
matically [11]. We also use the FPGA platform for
some practices aiming to create custom instructions
for the Nios processor (Figure 2c), and then modify
the GnuPro compiler to target those new instructions.
The experience also helps students to have real evi-
dence of a real-world aspect: that useful architecture
feature may be difficult to unlock for the application

code. Evaluating the quality of the tools chain can be
as important as doing so for the architecture itself.

4.5 Operating Systems

Introductory operating systems courses tend to be gen-
eral, not biased towards domain specific concepts.
However, we do try to relate aspects such as interrupts,
concurrency, scheduling, I/O and the device drivers to
the lab platform students are getting used to. Some
simple practices are designed to show the effects of
not having an embedded operating systems running on
the background, which is usually taken for granted on
the desktop environment they are more familiar with.
This experience may help students to understand what
to look in the multitude of embedded operating sys-
tems available [10]. Those practices also help to intro-
duce a new concept to them: code size, which can grow
very quickly with the addition of their custom “operat-
ing system”. We are currently working on a Nios port
for eCos (embedded Configurable operating system),
an open-source, configurable O.S. for embedded sys-
tems [8]. Once it is done we will be able to work with
more elaborated practices, and also research projects.

4.6 Computer Networks

Computer network courses comes in all shapes and
flavours depending on the course orientation. Some of
them concentrates on high level abstractions, being the
Internet an ubiquitous example. Others concentrate on
fundamental aspects, such as the OSI model or wire-
less protocols. Laboratory practices varies according
to the chosen emphasis, and whenever possible we of-
fer a choice of practices on an embedded system sce-

nario. One example is a project aiming to implement
a network connection between two FPGA based SoCs,
letting for the student the use and customization of the
required protocols. That can be made on top of existing
implementations, such as an Ethernet core described in
VHDL. A related research project under development
refers to the integration of ethMac [13], an Ethernet
MAC (Media Access Control) core designed for im-
plementation of CSMA/CD LAN in accordance with
the TEEE 802.3 standards. The ethMac Verilog code
can be integrated with a Nios CPU and other softcore
devices, to create a complete SoC with the required
functionality.

4.7 Embedded Systems Design

We offer specefic courses on embedded systems design
at both, undergraduate and graduate level. Students
enrolling in the introductory undergraduate course
clearly benefit from the previous experience of devel-
oping several small projects on a embedded platform.
By doing so we can concentrate on the real issues of
embedded systems design such as CPU architecture,
and coding more sophisticated applications using high
level languages [4]. It should be noticed that some an-
alysts estimate that the software of embedded systems
account for 80% of the total cost of development [9].
We give special attention to the later as there is a clear
shift in embedded system design from low-level as-
sembly implementations to the use of C or C++ lan-
guage. That is not only due to productivity reasons, but
also due to the emergence of complex architectures,
such as VLIW [18], that can only be fully exploited
by using optimizing compilers specifically targeted to
them [11].

The introductory course uses the FPGA platform de-
scribed in Section 3, and also DSP microcontrollers,
such as the Motorola DSP56800 family. The graduate
courses concentrate on SoC design, using the Altera
SoPC Builder (Figure 4), a tool specially aimed at the
design and implementation of SoCs on programmable
chips [2]. Projects are defined according to the appli-
cation areas of our research programs, which includes
robotics, computer architecture, control and automa-
tion, among others.

5 Interaction with Research

As already stated, the increasing capabilities of the
hardware and software currently employed for embed-
ded systems design also results in a growing interest
from academic research initiatives. That can be the
case in either basic research, or applications. In our
department we have projects in both areas. As an ex-
ample of research on basic aspects of embedded sys-
tems, we have a project called Architect-R. Its aim is
to build a tool for automatic generation of hardware
and software components to implement systems for
robotics [12]. Research on specific applications in-

clude implementations of multimodal interfaces, such
as voice and gestures recognition systems. These can
be used in a number of domains such as robotics, vir-
tual reality, etc. As an example, the system shown in
Figure 5 consists of a CMOS camera connected to an
FPGA, which implements a RAM-based neural net-
work to recognize hand gestures [5]. This embedded
system shown to be robust, is able to meet real-time
constraints (processing rate of 30 frames per second),
and has a high efficiency in the recognition process.
In addition, it also has on-chip training capabilities, a
desirable functionality enabled by the reconfigurable
hardware.

Figure 5: An embedded gesture recognition system

We have been following a number embedded sys-
tems research projects (Master’s level) in our institu-
tion. Some analysis allow us to conclude that students
that have been through those courses described in Sec-
tion 4 are considerably more comfortable to work in
this area than those that have not (typically coming
from other institutions). Obviously a successful re-
search project depend on other factors as well, but the
learning curve to tackle basic concepts and practices
of embedded systems is clearly reduced by using the
approach described in this paper. We believe that grad-
uates going to industry are also better equipped to start
solving problems in the field. That has been confirmed
to us when receiving some informal feedback from for-
mer students.

6 Conclusions

We have described our experience of teaching embed-
ded systems to undergraduate and graduate students
using a reconfigurable computing platform (FPGAs).
Our goal was to devise a strategy to shift (or at least
balance) the emphasis from desktop based to embed-
ded computing, but without overloading the current
curriculum. After some years of developing and ap-
plying the methodology, we understand that satisfac-
tory results have been achieved. That is based on
the increased interest from students to follow research
projects related to embedded systems, the improved

performance of graduates in this domain, and also
some feedback from former students working in the
industry. We are still working to improve practice as-
signments, and also the coordination with the theoret-
ical contents of those courses, trying to accomodate
teaching priorities.

References
[1] Altera Corp. Nios Development
Kit, Stratix Edition, May 2004.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

http://www.altera.com/products/devkits/altera/kit-
nios_1S10.html.

Altera Corp. SOPC Builder, May 2004.
http://www.altera.com/products/software/system-
/products/sopc/.

Altera Corp. UpP2 Design
Laboratory Kit, May 2004.
http://www.altera.com/education/univ/kits/unv-
kits.html.

A. Berger. Embedded Systems Design: An Intro-
duction to Process, Tools, and Techniques. CPM
Books, USA, 2002.

V. Bonato, E. Simes, M. M. Fernandes, and
E. Marques. A gesture recognition system for
mobile robots. In Proceedings of ICINCO-1st In-
ternational Conference on Informatics Automa-
tion, Control, and Robotics, Lisbon, Portugal,
2004 (to appear).

K. Compton and S. Hauck. Reconfigurable com-
puting: a survey of systems and software. ACM
Computing Surveys, 34(2):171-210, June 2002.

S. Cotofana, S. Wong, and S. Vassiliadis. Em-
bedded processors: Characteristics and trends.
In Proceedings of the 2001 ASCI Conference,
Netherlands, 2001.

eCos. eCos Home Page,
http://eCos.sourceware.org/.

May 2004.

D. Edenfeld, A. B. Kahng, M. Rodgers, and
Y. Zorian. 2003 technology roadmap for semi-
conductors. Computer, 37(1):47-56, Jan. 2004.

L. F Friedrich, J. Stankovic, M. Humphrey,
M. Marley, and J. H. Jr. A survey of config-
urable, component-based operating systems for
embedded applications. IEEE Micro, 21(3):54—
68, May/June 2001.

J. Glossner, J. Moreno, M. Moudgill, J. Derby,
E. Hokenek, D. Meltzer, U. Shvadron, and
M. Ware. Trends in compilable dsp architecture.
In Proceedings of The 2000 IEEE Workshop on
Signal Processing Systems, USA, 2000.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

R. Gongalves, J. Cardoso, M. Fernandes, E. Mar-
ques, et al. Architect-R: A system for reconfig-
urable robots design. In Proceedings of SAC-
2003 -The 18th Annual ACM Symposium on Ap-
plied Computing, USA, 2003.

Opencores.org. Ethernet mac
10/100 mbps:overview, May 2004.
http://www.opencores.org/projects.cgi/web/-
ethmac/overview/.

D. Patterson and J. Hennessy. Computer Or-
ganization and Design: The Hardware/Software
Interface. Morgan Kaufmann Publishers, Inc.,
USA, 1997.

B. R. Rau and M. Schlansker. = Embedded
computing: New directions in architecture and
automation. Technical Report HPL-2000-115,
Hewlett Packard Laboratories, Sept. 29 2000.

C. Teuscher, J. O. Haenni, F. J. Gomez, H. F. Re-
strepo, and E. Sanchez. A tool for teaching and
research on computer architecture and reconfig-
urable systems. In Proceedings of the 25th Eu-
romicro Conference, volume 1, pages 343-350,
Milan, Italy, September 8-10 1999. IEEE Com-
puter Society, Los Alamitos, CA.

W. Wolf and J. Madsen. Embedded systems ed-
ucation for the future. Proceedings of the IEEE,
88(1):23-30, Jan. 2000.

K. Wong and N. Topham. OneDSP: A unifying
DSP architecture for systems-on-a-chip. In Pro-
ceedings of ICASSP-2002 - International Confer-
ence on Acoustics Speech and Signal Processing,
USA, 2002.

Xilinx, Inc. Press release no. 03131, May
2004. http://www.xilinx.com/prs_rls/silicon_vir/-
03131 _nextgen.htm.

