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Abstract 
Division and square root are basic operations 
defined by the IEEE Standard 754-1985 for Binary 
Floating-Point Arithmetic [1], and are implemented 
in hardware in most modern processors. In recent 
years however, software implementations of these 
operations have become competitive. The first IEEE-
correct implementations in software of the division 
and square root operations in a mainstream processor 
appeared in the 1980s [2]. Since then, several major 
processor architectures adopted similar solutions for 
division and square root algorithms, including the 
Intel® Itanium® Processor Family (IPF). Since the 
first software algorithms for division and square root 
were designed and used, improved algorithms were 
found and complete correctness proofs were carried 
out. It is maybe possible to improve these algorithms 
even further. 
The present paper gives an overview of the IEEE-
correct division and square root algorithms for 
Itanium processors. As examples, a few algorithms 
for single precision are presented and properties 
used in proving their IEEE correctness are stated. 
Non-IEEE variants, less accurate but faster, of the 
division, square root and also reciprocal and 
reciprocal square root operations are discussed. 
Finally, accuracy and performance numbers are 
given. The algorithms presented here are inlined by 
the Intel and other compilers for IPF, whenever 
division and square root operations are performed. 

Introduction  
One of the design goals for the Intel® Itanium® 
architecture, finalized in the late 1990s, was to 
achieve world-class performance in floating-point 
computations. For this reason, the floating-point 
architecture included many novel features for Intel 
processors: available 82-bit floating-point format (1-
bit sign, 17-bit exponent, and 64-bit significand), 
128 floating-point registers, rotating registers and 
other support for software pipelining, multiple status 
fields, flexible computation modes, and a floating-
point multiply-add instruction with only one 
rounding error in the addition step [3][4][5]. Today 
it is a known fact that this goal was achieved: 
presently, 16 of the 17 top positions (1 through 7 and 
9 through 17) in the SpecFP 2000 ranking list for 
speed of single processor systems are held by 
machines based on Itanium processors.  
The floating-point multiply-add instruction fma was 
at the basis of efficient software implementations of 

the floating-point division and square root 
operations. An important application of this 
instruction is in the calculation of exact remainders. 
For example for a division a/b, where a and b are 
floating-point numbers, a sequence of increasingly 
better approximations q0, q1, … qi–1, qi of the 
quotient a/b can be calculated using the Newton-
Raphson or another equivalent method. A final 
approximation qi can be obtained that can be 
rounded correctly as specified by the IEEE Standard 
754-1985, provided a correction term (remainder) ri-1 
can be calculated exactly based on the penultimate 
approximation qi–1: 

ri-1 = a – b ⋅ qi –1 

If the approximation qi–1 is good enough1, it can be 
shown that ri–1 calculated with an fma instruction 
can be represented always exactly as a floating-point 
number. The floating-point multiply-add operation, 
which is not defined by the current IEEE Standard 
for Binary Floating-Point Arithmetic, is thus 
essential in calculating IEEE-correct results in 
software for division and square root in the three 
most widely used formats defined by the standard: 
single precision, double precision, and double-
extended precision. A brief review of some of the 
IEEE floating-point formats available in the Itanium 
architecture is included here for reference. 
In general, floating-point numbers are represented as 
a concatenation of a sign bit, an M-bit exponent field 
containing a biased exponent, and an N-bit 
significand field (in this context N = 24, 53, or 64). 
Mathematically: 
 f  = σ ⋅ s ⋅ 2e 
where σ = ±1, s ∈ [1,2),  e ∈ [emin, emax] ∩ Z2,          
s = 1 + k/2N-1 ,  k ∈ {0, 1, 2,…, 2N-1-1},  emin  = -2M-1 
+ 2, and emax = 2M-1 – 1. Let FN be the set of floating-
point numbers with N-bit significands and unlimited 
exponent range (no special values such as zeros, 
infinities, or NaNs3 are included). The main 
                                                           
1 It suffices for qi–1 to be accurate to one unit-in-the-last-
place (ulp). A unit-in-the-last-place represents the weight 
of the least significant digit of a floating-point number. For 
a floating-point number f with N bits in the significand, f = 
b0.b1b2…bN–1 ⋅ 2e, the value of one ulp is 1 ulp(f) =    
2e–N+1. 
2 Z is the set of integer numbers. 
3 NaN stands for not-a-number. NaNs are symbolic values 
encoded in floating-point format, used most often to cause 
or be the result of invalid operations. 

 



parameters of the formats used in the software 
implementations discussed in the paper are shown in 
Table 1. 
Table 1. Floating-Point Formats Available in the 
Itanium Architecture (subset) 
Format Precision 

(N) 
Exponent 
Bits (M) 

Exponent Range 

Single 24 8  –126 ≤ e ≤ 127 

Double 53 11   –1022 ≤ e ≤ 1023 

Double 
extended 

64 15  –16382 ≤ e ≤ 16383 

Register 
single 

24 17  –65534 ≤ e ≤ 65535 

Register 
double 

53 17  –65534 ≤ e ≤ 65535 

Register 64 17  –65534 ≤ e ≤ 65535 

 
The division and square root operations discussed 
here have in general two different implementations 
available for every format: one that minimizes 
latency, and one that maximizes throughput. The 
latency-optimized versions minimize the number of 
clock cycles elapsed from the beginning of the 
computation until the result is available. In most 
cases this is easy to determine, because the majority 
of floating-point instructions have a latency of 4 
clock cycles on the Itanium 2 processor. The 
throughput-optimized versions minimize the number 
of clock cycles elapsed between the moments when 
two consecutive floating-point results are generated. 
The latter are intended for use in software-pipelined 
loops, and the resulting throughput depends on the 
number of functional units available. For example, 
the throughput-optimized single precision division 
algorithm uses 7 floating-point instructions, and 
possibly three memory access instructions. The 
limiting factor in this case is the number of floating-
point instructions. On the Itanium 2 processor, 
which has two floating-point units available, it will 
take on average 7/2 = 3.5 clock cycles to generate a 
result with the throughput-optimized algorithm (but 
only if the loop is unrolled once, otherwise the 
throughput will be of 4 clock cycles/result).  

IEEE-Correct Floating-Point 
Division 
Division operations that comply with the IEEE 
Standard 754-1985 have a clearly defined result. In 
general (exceptions are the cases of underflow or 

                                                                                      

 

 

overflow) this is the exact result rounded to the 
destination precision, using the IEEE rounding mode 
currently in effect (rounding to nearest, toward zero, 
toward positive infinity, or toward negative infinity). 
Division for Itanium processors is implemented 
based on iterative algorithms, starting with an 11-bit 
approximation y0 of the denominator’s reciprocal. 
This value is provided by a special instruction 
performing a table lookup, frcpa, and has a 
relative error of at most 2-8.886: 
 y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886    
Multiplying this value by a, a first approximation of 
the quotient is obtained and its relative error e0 can 
be calculated. The symbol rn denotes the IEEE 
round-to-nearest mode, and rnd represents any IEEE 
rounding mode. 
 q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0) 
 e0 = (1 - b ⋅ y0)rn = –ε0 
This approximation can be further improved if the 
value of q0 is multiplied by the polynomial 1 – ε0 + 
ε0

2 – … + (–ε0) k–1, derived from the identity 
    (1 + ε0) ⋅ (1 – ε0 + ε0

2 – … + (–ε0)k–1) = 1 – (–ε0)k 
The result (ignoring for now the rounding errors) 
will be: 

q ≈ a/b ⋅ (1 – (–ε0)k) 
In addition, an optimal way of calculating the 
product of this polynomial by 1+ε0 has to be 
determined for each division algorithm: with the 
lowest latency for latency-optimized operations, and 
with the lowest number of floating-point instructions 
for throughput-optimized operations. 
Consider as a first example the latency-optimized 
single precision division algorithm. 

Single precision division, optimized for 
latency 
The following algorithm calculates the single 
precision value q’3 = (a/b)rnd, where a and b are 
single precision numbers. All the other intermediate 
results are 82-bit floating-point register format 
numbers. The precision used for each step is shown 
too. An approximate value of the result is also 
shown, calculated assuming that the rounding errors 
are negligible. 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 
    table lookup 
(2) q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(4) q1 = (q0 + e0 ⋅ q0)rn ≈ a/b ⋅ (1–ε0

2) 
    82-bit floating-point register format 
(5) e1 = (e0 ⋅ e0)rn ≈ ε0

2 
    82-bit floating-point register format 



(6) q2 = (q1 + e1 ⋅ q1)rn ≈ a/b ⋅ (1–ε0
4) 

    82-bit floating-point register format 
(7) e2 = (e1 ⋅ e1)rn ≈ ε0

4 
    82-bit floating-point register format 
(8) q3 = (q2 + e2 ⋅ q2)rn ≈ a/b ⋅ (1–ε0

8) 
    17-bit exponent, 53-bit significand 
(9) q’3 = (q3)rnd ≈ a/b ⋅ (1–ε0

8) 
    single precision 

This shows that the intermediate approximations q0, 
q1, q2, and q3 are getting increasingly closer to a/b. 
The last step is needed to reduce the precision of the 
result to 24 bits, for the single precision format. As 
steps (2) and (3),  (4) and (5), and (6) and (7) 
respectively can be executed in parallel, the total 
latency on the Itanium 2 processor will be of 6 x 4 = 
24 clock cycles. In software-pipelined form, this 
algorithm could generate on average a result every 
9/2=4.5 clock cycles. However, an algorithm can be 
found that has better throughput characteristics. 

Single precision division, optimized for 
throughput 
The first idea was to modify the latency-optimized 
algorithm so that the first five steps generate 
increasingly better approximations y1 and y2 of 1/b, 
rather than q1 and q2. The subsequent steps would be 
to calculate  
                q0 = (a ⋅ y2)rn 
then an exact remainder  
                r0 = (a – b ⋅ q0)rn  
in the penultimate step, and the correctly rounded 
result  
                q1 = (q0 + r0 ⋅ y2) rnd ≈ a/b ⋅ (1–ε0

8)  
in the last step. This would result in a latency of 7 x 
4 = 28 clock cycles, which is worse than that of the 
previous algorithm, but a better throughput of 8/2 = 
4 clock cycles/result. However, an even better 
algorithm could be found after noticing that         
ε0

8 < 2-71.088 leads to a value q1 before rounding that 
is more accurate than needed for an IEEE-correct 
single precision result. The relative error incurred 
when rounding a real number to single precision is 
less than 2-24, and about twice as much accuracy 
should be enough (as shall be seen in the subsection 
on Correctness Proofs). It suffices for example to 
calculate q ≈ a/b ⋅ (1–ε0

6) where ε0
6 < 2-53.316. The 

best throughput-optimized algorithm is thus: 

   

Proofs were developed to show that the results of the 
division algorithms proposed for single, double, and 
double-extended computations are IEEE-correct for 
any combination of operands and for any of the four 
IEEE rounding modes. This included showing also 
that the floating-point exception status flags are 
always set correctly, and that unmasked exceptions 
trap as specified in the IEEE Standard (using the 
user status field sf0 only in the first and last 
computation steps and the reserved status field sf1 in 
the intermediate steps helps ensure correct IEEE 
exception behavior; note that Itanium processors 
have four status fields available). To prove that the 
results are always numerically correct, three 
properties were used [7]. (The values N of concern 
in this context are N = 24, N = 53, and N = 64.) 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 
    table lookup 
(2) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(3) e1 = (e0 + e0 ⋅ e0)rn ≈ –ε0+ε0

2 
    82-bit floating-point register format 
(4) y1 = (y0 + e1 ⋅ y0)rn ≈ 1/b ⋅ (1+ε0

3) 
    82-bit floating-point register format 
(5) q1 = (a ⋅ y1)rn ≈ a/b ⋅ (1+ε0

3) 

    17-bit exponent, 24-bit significand 
(6) r1 = (a – b ⋅ q1)rn = –a ⋅ ε0

3 
    82-bit floating-point register format 
(7) q = (q1 + r1 ⋅ y1)rnd ≈ a/b ⋅ (1–ε0

6) 
    single precision 

In software-pipelined form, this algorithm can 
generate on average one result every 3.5 clock 
cycles. However, for this the loop would have to be 
unrolled once, so that it will contain an even number 
of floating-point instructions. Then two results will 
be generated on average every 14/2=7 clock cycles. 
Similar algorithms were designed for double and 
double-extended precision division operations. In 
each case, the optimal sequence was selected that 
would still afford sufficient accuracy in the final 
result q ≈ a/b ⋅ (1 – (–ε0)k) to allow for correct IEEE 
rounding in all cases. Of all possible sequences, the 
one that minimized the number of clock cycles was 
chosen for latency-optimized algorithms, and the one 
with the lowest number of floating-point instructions 
for throughput-optimized algorithms. The complete 
set of IEEE-correct algorithms for the division 
operation can be found in [6], where source code for 
all the IPF division algorithms can also be obtained. 

Correctness Proofs 

Theorem 1. Let a, b ∈ FN, such that a/b ∉ FN, q* ∈ 
R, and N1 ∈ N4, N1 ≥ 2 ⋅ N + 1. 
If q* is within 1 ulp of a/b in FN1, then  

(q*)rnd = (a/b)rnd.        
Theorem 2. Let b ∈ FN, with the restriction that the 
significand of b is not 1.11…1. Let y ∈ FN be an 
approximation of 1/b within 1 ulp of 1/b in FN. Then 
the computation: 

e = (1 – b ⋅ y)rn 
y' = (y + e ⋅ y)rn 

                                                           
4 R is the set of real numbers, and N is the set of natural 
numbers. 

 



yields y' = (1/b)rn.                             
Theorem 3. Let a, b ∈ FN. If y ∈ R* is within 1/2 
ulp of 1/b in FN, q ∈ FN, and q ≅ a/b is within 1 ulp 
of a/b in FN, then the computation 
         r = (a – b ⋅ q )rn 
        q' = (q + r ⋅ y)rnd 
yields q' = (a/b)rnd.                                                          
Theorem 1 was applied in proving correctness of the 
latency-optimized single precision division 
algorithm. Relative error evaluations for steps (1) 
through (8) showed that q3 is within 1 ulp of a/b in 
F49. Theorem 1 proves that in step (9), q’3 = (a/b)rnd 
(i.e. a/b is correctly rounded, as specified by the 
IEEE Standard). 
Theorem 3 was applied in proving correctness of the 
throughput-optimized single precision division 
algorithm. First it was shown that y1 is within 1/2 ulp 
of 1/b in F24 and q1 is within 1 ulp of a/b in F24. 
Theorem 3 states that steps (6) and (7): 

                (6) r1 = (a – b ⋅ q1)rn 
                (7) q = (q1+ r1 ⋅ y1)rnd 

yield q = (a/b)rnd.                                                          
Theorem 2 was needed only for the double-extended 
division algorithms, where the operands and the 
result have the same precision as the intermediate 
calculations. This makes it more difficult to rely just 
on simple relative error evaluations to show for 
example that y in the last step is within 1/2 ulp of 1/b 
as required by Theorem 3, but Theorem 2 makes this 
possible. One special case had to be treated 
separately, when the significand of b is 1.11…1 (but 
for this case it could be checked directly that y' = 
(1/b)rn). 
The mathematical proofs of correctness were 
checked further using an automatic proof checker 
written in HOL [8]. 

Non-IEEE Floating-Point Division 
There are applications where strict IEEE accuracy 
for floating-point computations may not be required, 
and instead faster basic operations would be of more 
benefit. To cover such needs, non-IEEE floating-
point division algorithms were derived from the 
IEEE-correct versions, with relative errors not 
exceeding 1 ulp (the IEEE-correct operations have 
relative errors of at most 0.5 ulp). Non-IEEE 
algorithms were designed also for reciprocal 
operations, which are not defined by the IEEE 
Standard. The division operations performed by the 
non-IEEE algorithms are thus slightly less accurate, 
but faster than their equivalent IEEE-correct 
algorithms. 
For example, the non-IEEE single precision division 
algorithm is: 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 

    table lookup 
(2) q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(4) e1 = (e0 + e0 ⋅ e0)rn ≈ –ε0 + ε0

2 
    82-bit floating-point register format 
(5) q1 = (q0 + e1 ⋅ q0)rnd ≈ a/b ⋅ (1+ε0

3) 
    single precision 

The same algorithm can be used both in latency-
optimized as well as throughput-optimized code. 
Only a limited correctness proof is required in this 
case. The maximum relative error of the result has to 
be determined, and it has to be proved that overflow 
and underflow conditions occur reasonably close to 
those for the IEEE-correct algorithm. The exception 
status flag for precision is not checked in this case. 
The algorithm for calculating the non-IEEE single 
precision reciprocal is even simpler: 

(1) y0 = 1/b ⋅ (1+ε0),  |ε0| < 2-8.886 
    table lookup 
(2) e0 = (1 – b ⋅ y0)rn = –ε0 
    82-bit floating-point register format 
(3) e1 = (e0 ⋅ e0 + e0)rn ≈ –ε0 + ε0

2 
    82-bit floating-point register format 
(4) y1 = (y0 + e1 ⋅ y0)rnd ≈ 1/b ⋅ (1+ε0

3) 
    single precision 

Similar algorithms for non-IEEE double precision 
division and reciprocal are given in [9], together 
with source code. 

Latency, Throughput, and 
Accuracy for Division and 
Reciprocal Operations 
Latency and throughput values for the single, 
double, and double-extended IEEE-correct and non-
IEEE division and reciprocal operations on the 
Itanium 2 processor are given in Tables 2a and 2b. 
Table 2a. Latency, Throughput, and Accuracy for 
IPF IEEE Division and Reciprocal Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock cycles/ 
result) 

Accuracy 
(ulps) 

Single 
Precision 
Division 

24 3.5 0.50 

Double 
Precision 
Division 

28 5.0 0.50 

Double-
Extended 
Precision 
Division 

32 7.0 0.50 

Single 
Precision 
Reciprocal 

24 3.5 0.50 

Double 
Precision 
Reciprocal 

28 5.0 0.50 



Theoretical error bounds for the non-IEEE 
operations are given in Table 2b. These are 
guaranteed upper bounds, but might not be reached 
in some cases. For this reason, maximum errors 
observed in testing are also included in the table. 

Table 2b. Latency, Throughput, and Accuracy for 
IPF Non-IEEE Division and Reciprocal Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock 
cycles/ 
result) 

Theoretical 
Accuracy 
(ulps) 

Observed 
Accuracy 
(ulps) 

Single 
Precision 
Division 

16 2.5 0.6585 0.6524 

Double 
Precision 
Division 

20 4.0 0.5018 0.5010 

Double-
Extended 
Precision 
Division 

NA NA NA NA 

Single 
Precision 
Reciprocal 

16 2.0 0.6585 0.6487 

Double 
Precision 
Reciprocal 

20 3.5 0.5010 0.5003 

 

IEEE-Correct Floating-Point 
Square Root 
Square root operations that comply with the IEEE 
Standard 754-1985 return the exact result rounded to 
the destination precision, using the IEEE rounding 
mode currently in effect. The square root operation 
for Itanium processors is implemented based on 
iterative algorithms as well, starting with an 11-bit 
approximation y0 of the reciprocal square root. This 
value is provided by a special instruction performing 
a table lookup, frsqrta, and has a relative error of 
at most 2-8.831: 
 y0 = 1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
Multiplying by a, a first approximation of the square 
root is obtained and its relative error d can be 
calculated: 
 S0 = (a⋅ y0)rn = ◊a ⋅ (1+ε0) 
 d = 1/2 ⋅ (1 – S0 ⋅ y0)rn = –ε0 – 1/2 ⋅ ε0

2 
Note that 1 – 2 d = (1+ε0)2. Just as for division, the 
approximation S0 can be improved further if it is 
multiplied by 1 – ε0 + ε0

2 – … + (–ε0)k–1. The result 
(ignoring the rounding errors) will be: 

S ≈ ◊a ⋅ (1 – (–ε0)k) 
A complication in this case is the fact that the 
relative error d calculated for S0 is not equal to –ε0, 
as it was for the division operation. In order to use 
the identity: 
    (1 + ε0) ⋅ (1 – ε0 + ε0

2 – … + (–ε0)k–1) = 1 – (–ε0)k 

a polynomial in d has to be found, that approximates 
sufficiently well  
    1 – ε0 + ε0

2 – … + (–ε0) k–1 + … = 1/(1 + ε0) 
For this, the value of ε0 is calculated from d = –ε0 – 
1/2 ⋅ ε0

2: 
 ε0 = –1 + ◊ (1 – 2 ⋅ d) 
The McLaurin series expansion for 1/(1 + ε0) =    
1/◊ (1 – 2 ⋅ d) is: 
    1 – ε0 + ε0

2 – ε0
3 + ε0

4 – … = 1 + d + 3/2 ⋅ d2 +  
      5/2 ⋅ d3 + 35/8 ⋅ d4 + 63/8 ⋅ d5 + 231/16 ⋅ d6 + … 
An approximation of the expansion in d consisting 
of a few terms can be used to design an algorithm 
converging toward the square root value. The 
coefficients of some of the higher degree terms in 
this approximation can even be modified to make the 
calculation easier. Because of the truncation, the 
result will be 

S ≈ ◊a ⋅ (1 + O(ε0
k)) 

instead of 
 S ≈ ◊a ⋅ (1 – (–ε0)k) 
where O(ε0

k) denotes a polynomial containing terms 
in ε0 of degree k or higher. 
In addition, an optimal way of calculating the 
product of this polynomial by 1+ε0 has to be 
determined for each square root algorithm: with the 
lowest latency for latency-optimized operations, and 
with the lowest number of floating-point instructions 
for throughput-optimized operations. 
Consider as a first example the latency-optimized 
single precision square root algorithm. 

Single precision square root, optimized 
for latency 
The following algorithm calculates S = (◊a)rnd in 
single precision, where a is a single precision 
number. An approximate value of the result is also 
shown, calculated assuming that the rounding errors 
are negligible. The approximation is expressed in 
terms of ε0 and/or d, as convenient: 

(1) y0 =1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
    table lookup 
(2) H0 = (0.5 ⋅ y0)rn = 1/(2⋅◊a) ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(4) d = (0.5 – S0 ⋅ H0)rn = –ε0 + 1/2 ⋅ ε0

2 = d 
    82-bit floating-point register format 
(5) e = (1 + 1.5 ⋅ d)rn ≈ 1 + 3/2 ⋅ d 
    82-bit floating-point register format 
(6) T0 = (d ⋅ S0)rn ≈ =◊a ⋅ d ⋅ (1+ε0) 
    82-bit floating-point register format 
(7) G0 = (d ⋅ H0)rn ≈ 1/(2⋅◊a) ⋅ d ⋅ (1+ε0) 
    82-bit floating-point register format 
(8) S1 = (S0 + e ⋅ T0)rn ≈  

 



    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) 
    17-bit exponent, 24-bit significand 
(9) H1 = (H0 + e ⋅ G0)rn ≈  
    1/(2◊a) ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) 
    82-bit floating-point register format 
(10) d1 = (a – S1 ⋅ S1)rn ≈  
    a ⋅ (5 ⋅ d3 + 15/4 ⋅ d4 + 9/2 ⋅ d5) 
    82-bit floating-point register format 
(11) S = (S1 + d1 ⋅ H1)rnd ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2 + 5/2 ⋅ d3 + 

35/8 ⋅ d4 + 63/8 ⋅ d5 + 81/16 ⋅ d6 + 27/8 ⋅ d7) 
= ◊a ⋅ (1+ε0) ⋅ (1 – ε0 + ε0

2 – ε0
3 + ε0

4 – ε0
5 + 

    O(ε0
6)) = ◊a ⋅ (1 + O(ε0

6)) 
    single precision 

This shows that approximations S0, S1, and S are 
getting increasingly closer to ◊a. As steps (2) and 
(3), then (5), (6) and (7), and also (8) and (9) can be 
executed in parallel, the total latency on the Itanium 
2 processor will be 7 x 4 = 28 clock cycles. In 
software-pipelined form, this algorithm could 
generate a result every 11/2=5.5 clock cycles. 
However, an algorithm can be found that has better 
throughput characteristics. 

Single precision square root, optimized 
for throughput 
The following algorithm for the calculation of the 
single precision square root has the least number of 
instructions possible, and therefore is best suited for 
software-pipelined loops. It calculates S = (◊a)rnd in 
single precision, where a is a single precision 
number:  

(1) y0 = 1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 

    table lookup 
(2) H0 = (0.5 ⋅ y0)rn = 1/(2⋅◊a) ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(4) d = (0.5 – S0 ⋅ H0)rn = –ε0 + 1/2 ε0

2 = d 
   82-bit floating-point register format 
(5) d' = (d + 0.5 * d)rn ≈ 3/2 ⋅ d 
    82-bit floating-point register format 
(6) e = (d + d * d')rn ≈ d + 3/2 ⋅ d2 
    82-bit floating-point register format 
(7) S1 = (S0 + e * S0)rn ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 d2) 
    17-bit exponent, 24-bit significand 
(8) H1 = (H0 + e * H0)rn ≈ 
    1/(2◊a) ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) 
    82-bit floating-point register format 
(9) d1 = (a – S1 ⋅ S1) rn ≈ 
    a⋅ (5 ⋅ d3 + 15/4 ⋅ d4 + 9/2 ⋅ d5) 
    82-bit floating-point register format 
(10) S = (S1 + d1 ⋅ H1)rnd ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2 + 5/2 ⋅ d3 +  

35/8 ⋅ d4 + 63/8 ⋅ d5 + 81/16 ⋅ d6 + 27/8 ⋅ d7) 
= ◊a ⋅ (1+ε0) ⋅ (1 – ε0 + ε0

2 – ε0
3 + ε0

4 – ε0
5 + 

     O(ε0
6)) = ◊a ⋅ (1 + O(ε0

6)) 
     single precision 

Only steps (2) and (3), and then (7) and (8) can be 
executed in parallel, so the latency of 8 x 4 = 32 
clock cycles is worse than that of the previous 
algorithm. However, its throughput of 10/2 = 5 clock 
cycles/result is better. It can be noticed that even 
though the throughput-optimized sequence differs 
slightly from the latency-optimized one, they both 
calculate practically the same result. The rounding 
errors might accumulate differently, but the end 
result was shown to be IEEE-correct in both cases. 
Similar algorithms were designed for double and 
double-extended precision square root operations. In 
each instance, the optimal sequence was selected that 
would still afford sufficient accuracy in the final step 
to allow for correct IEEE rounding in all cases. 
Similar to the single precision square root, an 
optimal sequence was determined in each case, that 
would lead to a result in the form S ≈ ◊a⋅(1–(–ε0)k). 
Of all possible sequences, the one that minimizes the 
number of clock cycles was chosen for latency-
optimized algorithms, and the one with the lowest 
number of floating-point instructions for throughput-
optimized algorithms. The complete set of IEEE-
correct algorithms for the square root operation can 
be found in [6], where source code for all the IPF 
square root algorithms can also be obtained. 

Correctness Proofs 
Proofs were developed to show that the results of the 
square root algorithms proposed for single, double, 
and double-extended computations are IEEE-correct 
for any combination of operands and for any of the 
four IEEE rounding modes. This included showing 
that the floating-point exception status flags are 
always set correctly, and that unmasked exceptions 
trap as specified in the IEEE Standard (just as for 
division, using the user status field sf0 only in the 
first and last computation steps and the reserved 
status field sf1 in the intermediate steps helps ensure 
correct IEEE exception behavior). To prove that the 
results are always numerically correct, two 
properties were used [7]: 
Theorem 4. Let a ∈FN and ulp (√a) one ulp of √a in 
FN. If √a ∉FN, then for any f∈FN, the distance 
between √a and f satisfies 

| √a – f | > 2-N-1 ⋅ ulp (√a) 
Theorem 5. Let a∈FN and ulp (√a) one ulp of √a in 
FN. For any m∈FN+1–FN  (midpoint between two 
consecutive floating-point numbers in FN), the 
distance between √a and m satisfies   

| √a – m | > 2-N-3 ⋅ ulp (√a) 
These two properties show that if √a cannot be 
represented as a floating-point number with an N-bit 
significand (which is the non-trivial case to check), 



then there are exclusion zones of known minimal 
width around any floating-point number, as well as 
around any midpoint between two consecutive 
floating-point numbers, within which √a cannot 
exist. The minimum distance between √a and f or √a 
and m can be determined analytically, as well as 
values of the argument a for which √a is close to 
points f or m [7] (few points are ‘really close’ and 
they can be determined relatively easily). Excluding 
a number of these points a has the effect of 
increasing the widths of the exclusion zones. This 
can be done until the exclusion zones are more than 
twice wider than the maximum error of the result 
that approximates √a. It means that the exact result 
and the approximation computed by the algorithm 
are on the same side of any floating-point number or 
any midpoint, and therefore they will both round to 
the same floating-point value. For the relatively few 
cases of arguments inside the increased exclusion 
zones, verification was carried out directly. 
Similar to the case of the division algorithms, the 
mathematical proofs of correctness were checked 
further using an automatic proof checker written in 
HOL [10].  

Non-IEEE Floating-Point Square 
Root  
Just as for division, non-IEEE floating-point square 
root algorithms that are less accurate but more 
efficient were derived from the IEEE-correct 
versions, with relative errors not exceeding 1 ulp 
(the IEEE-correct operations have relative errors of 
at most 0.5 ulp). Non-IEEE algorithms were 
designed also for reciprocal square root operations, 
which are not defined by the IEEE Standard. For 
example, the non-IEEE single precision square root 
algorithm is: 

(1) y0 =1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
    table lookup 
(2) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) d = (1 – S0 ⋅ y0)rn = –2 ⋅ ε0 + ε0

2 = 2 ⋅ d 
    82-bit floating-point register format 
(4) e = (0.5 + 0.375 ⋅ d)rn ≈ 1/2 + 3/4 ⋅ d 
    82-bit floating-point register format 
(5) T0 = (d ⋅ S0)rn ≈ 2 ⋅ d ⋅ ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(6) S = (S0 + e ⋅ T0) rnd ≈ 
    ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) = 
    ◊a ⋅ (1 + 5/2 ⋅ ε0

3 + 15/8 ⋅ ε0
4 + 3/8 ⋅ ε0

5) = 
    ◊a ⋅ (1 + O(ε0

3)) 
    single precision 

The same algorithm can be used both in latency-
optimized as well as throughput-optimized code. 
Only a limited correctness proof is required. The 
maximum relative error of the result has to be 

determined, but the exception status flag for 
precision is not checked in this case. 
The algorithm for calculating the non-IEEE single 
precision reciprocal square root is: 

(1) y0 =1/◊a ⋅ (1+ε0),  |ε0| < 2-8.831 
    table lookup 
(2) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(3) d = (1 – S0 ⋅ y0)rn = –2 ⋅ ε0 + ε0

2 = 2 ⋅ d 
    82-bit floating-point register format 
(4) e = (0.5 + 0.375 ⋅ d)rn ≈ 1/2 + 3/4 ⋅ d 
    82-bit floating-point register format 
(5) T0 = (d ⋅ y0)rn ≈ 2 ⋅ d ⋅ 1/◊a ⋅ (1+ε0) 
    82-bit floating-point register format 
(6) S = (y0 + e ⋅ T0) rnd ≈ 
    1/◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) = 
    1/◊a ⋅ (1 + 5/2 ⋅ ε0

3 + 15/8 ⋅ ε0
4 + 3/8 ⋅ ε0

5) = 
    1/◊a ⋅ (1 + O(ε0

3)) 
    single precision 

Similar algorithms for non-IEEE double precision 
square root and reciprocal square root are given in 
[9], together with source code. 

Latency, Throughput, and 
Accuracy for Square Root and 
Reciprocal Square Root Operations 
Latency and throughput numbers for the single, 
double, and double-extended IEEE-correct and non-
IEEE square root and reciprocal square root 
operations on the Itanium 2 processor are given in 
Tables 3a and 3b. 
Table 3a. Latency, Throughput, and Accuracy for 
IPF IEEE Square Root and Reciprocal Square Root 
Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock cycles/ 
result) 

Accuracy 
(ulps) 

Single 
Precision 
Square Root 

28 5.0 0.50 

Double Prec. 
Square Root 

36 6.5 0.50 

Double-Ext. 
Precision 
Square Root 

40 7.5 0.50 

Single 
Precision 
Reciprocal 
Square Root 

52  
(sqrt+div) 

8.5  
(sqrt+div) 

1.0 
(sqrt+div) 

Double Prec. 
Rec. Sq. Root 

64  
(sqrt+div) 

11.5 
(sqrt+div) 

1.0 
(sqrt+div) 

 
Theoretical error bounds and maximum errors 
observed in testing are both included in Table 3b. 
 
 
 

 



Table 3b. Latency, Throughput, and Accuracy for 
IPF Non-IEEE Square Root and Reciprocal Square 
Root Operations  
Operation Latency 

(clock 
cycles) 

Throughput 
(clock 
cycles/ 
result) 

Theoretical 
Accuracy 
(ulps) 

Observed 
Accuracy 
(ulps) 

Single 
Precision 
Square 
Root 

20 3.0 0.9449 0.8194 

Double 
Precision 
Square 
Root 

32 5.5 0.5001 0.5000 

Double-
Extended 
Precision 
Square 
Root 

NA NA NA NA 

Single 
Precision 
Reciprocal 
Square 
Root 

20 3.5 0.9449 0.8860 

Double 
Prec. Rec. 
Square 
Root 

32 6.5 0.5031 0.5007 

Conclusion 
Several factors determined the implementation in 
software of the division and square root operations 
for Itanium processors. A first consideration was 
flexibility, as alternative algorithms can be easily 
substituted for the original ones, should this be 
needed. One example is using non-IEEE algorithms 
instead of IEEE-correct ones when accuracy can be 
relaxed for the benefit of better performance. 
Second, the software implementations of these 
operations inherit the high degree of pipelining in 
the basic floating-point multiply-add operations, 
leading to high-throughput algorithms. Third, as in 
typical applications division and square root are not 
extremely frequent, it may be that the die area on the 
chip that would be dedicated to hardware 
implementations of these operations could be better 
used for some other purpose. 
The Itanium floating-point architecture was designed 
so that its high performance, accuracy, and 
flexibility characteristics make it ideal for technical 
and scientific computing. The present paper showed 
how software implementations of division and 
square root operations based on the fused floating-
point multiply-add instruction support this goal. The 
principles used in designing algorithms for these 
operations were presented together with examples. 
Correctness proofs were outlined and underlying 
properties were stated. Non-IEEE algorithms were 
described in contrast with those that implement the 
division and square root operations mandated by the 
IEEE Standard 754-1985. Finally, performance 
numbers were presented. 
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