
Software Implementations of Division and Square
Root Operations for Intel® Itanium® Processors

Marius Cornea
Intel Corporation

Abstract
Division and square root are basic operations
defined by the IEEE Standard 754-1985 for Binary
Floating-Point Arithmetic [1], and are implemented
in hardware in most modern processors. In recent
years however, software implementations of these
operations have become competitive. The first IEEE-
correct implementations in software of the division
and square root operations in a mainstream processor
appeared in the 1980s [2]. Since then, several major
processor architectures adopted similar solutions for
division and square root algorithms, including the
Intel® Itanium® Processor Family (IPF). Since the
first software algorithms for division and square root
were designed and used, improved algorithms were
found and complete correctness proofs were carried
out. It is maybe possible to improve these algorithms
even further.
The present paper gives an overview of the IEEE-
correct division and square root algorithms for
Itanium processors. As examples, a few algorithms
for single precision are presented and properties
used in proving their IEEE correctness are stated.
Non-IEEE variants, less accurate but faster, of the
division, square root and also reciprocal and
reciprocal square root operations are discussed.
Finally, accuracy and performance numbers are
given. The algorithms presented here are inlined by
the Intel and other compilers for IPF, whenever
division and square root operations are performed.

Introduction
One of the design goals for the Intel® Itanium®
architecture, finalized in the late 1990s, was to
achieve world-class performance in floating-point
computations. For this reason, the floating-point
architecture included many novel features for Intel
processors: available 82-bit floating-point format (1-
bit sign, 17-bit exponent, and 64-bit significand),
128 floating-point registers, rotating registers and
other support for software pipelining, multiple status
fields, flexible computation modes, and a floating-
point multiply-add instruction with only one
rounding error in the addition step [3][4][5]. Today
it is a known fact that this goal was achieved:
presently, 16 of the 17 top positions (1 through 7 and
9 through 17) in the SpecFP 2000 ranking list for
speed of single processor systems are held by
machines based on Itanium processors.
The floating-point multiply-add instruction fma was
at the basis of efficient software implementations of

the floating-point division and square root
operations. An important application of this
instruction is in the calculation of exact remainders.
For example for a division a/b, where a and b are
floating-point numbers, a sequence of increasingly
better approximations q0, q1, … qi–1, qi of the
quotient a/b can be calculated using the Newton-
Raphson or another equivalent method. A final
approximation qi can be obtained that can be
rounded correctly as specified by the IEEE Standard
754-1985, provided a correction term (remainder) ri-1
can be calculated exactly based on the penultimate
approximation qi–1:

ri-1 = a – b ⋅ qi –1

If the approximation qi–1 is good enough1, it can be
shown that ri–1 calculated with an fma instruction
can be represented always exactly as a floating-point
number. The floating-point multiply-add operation,
which is not defined by the current IEEE Standard
for Binary Floating-Point Arithmetic, is thus
essential in calculating IEEE-correct results in
software for division and square root in the three
most widely used formats defined by the standard:
single precision, double precision, and double-
extended precision. A brief review of some of the
IEEE floating-point formats available in the Itanium
architecture is included here for reference.
In general, floating-point numbers are represented as
a concatenation of a sign bit, an M-bit exponent field
containing a biased exponent, and an N-bit
significand field (in this context N = 24, 53, or 64).
Mathematically:
 f = σ ⋅ s ⋅ 2e
where σ = ±1, s ∈ [1,2), e ∈ [emin, emax] ∩ Z2,
s = 1 + k/2N-1 , k ∈ {0, 1, 2,…, 2N-1-1}, emin = -2M-1
+ 2, and emax = 2M-1 – 1. Let FN be the set of floating-
point numbers with N-bit significands and unlimited
exponent range (no special values such as zeros,
infinities, or NaNs3 are included). The main

1 It suffices for qi–1 to be accurate to one unit-in-the-last-
place (ulp). A unit-in-the-last-place represents the weight
of the least significant digit of a floating-point number. For
a floating-point number f with N bits in the significand, f =
b0.b1b2…bN–1 ⋅ 2e, the value of one ulp is 1 ulp(f) =
2e–N+1.
2 Z is the set of integer numbers.
3 NaN stands for not-a-number. NaNs are symbolic values
encoded in floating-point format, used most often to cause
or be the result of invalid operations.

parameters of the formats used in the software
implementations discussed in the paper are shown in
Table 1.
Table 1. Floating-Point Formats Available in the
Itanium Architecture (subset)
Format Precision

(N)
Exponent
Bits (M)

Exponent Range

Single 24 8 –126 ≤ e ≤ 127

Double 53 11 –1022 ≤ e ≤ 1023

Double
extended

64 15 –16382 ≤ e ≤ 16383

Register
single

24 17 –65534 ≤ e ≤ 65535

Register
double

53 17 –65534 ≤ e ≤ 65535

Register 64 17 –65534 ≤ e ≤ 65535

The division and square root operations discussed
here have in general two different implementations
available for every format: one that minimizes
latency, and one that maximizes throughput. The
latency-optimized versions minimize the number of
clock cycles elapsed from the beginning of the
computation until the result is available. In most
cases this is easy to determine, because the majority
of floating-point instructions have a latency of 4
clock cycles on the Itanium 2 processor. The
throughput-optimized versions minimize the number
of clock cycles elapsed between the moments when
two consecutive floating-point results are generated.
The latter are intended for use in software-pipelined
loops, and the resulting throughput depends on the
number of functional units available. For example,
the throughput-optimized single precision division
algorithm uses 7 floating-point instructions, and
possibly three memory access instructions. The
limiting factor in this case is the number of floating-
point instructions. On the Itanium 2 processor,
which has two floating-point units available, it will
take on average 7/2 = 3.5 clock cycles to generate a
result with the throughput-optimized algorithm (but
only if the loop is unrolled once, otherwise the
throughput will be of 4 clock cycles/result).

IEEE-Correct Floating-Point
Division
Division operations that comply with the IEEE
Standard 754-1985 have a clearly defined result. In
general (exceptions are the cases of underflow or

overflow) this is the exact result rounded to the
destination precision, using the IEEE rounding mode
currently in effect (rounding to nearest, toward zero,
toward positive infinity, or toward negative infinity).
Division for Itanium processors is implemented
based on iterative algorithms, starting with an 11-bit
approximation y0 of the denominator’s reciprocal.
This value is provided by a special instruction
performing a table lookup, frcpa, and has a
relative error of at most 2-8.886:
 y0 = 1/b ⋅ (1+ε0), |ε0| < 2-8.886
Multiplying this value by a, a first approximation of
the quotient is obtained and its relative error e0 can
be calculated. The symbol rn denotes the IEEE
round-to-nearest mode, and rnd represents any IEEE
rounding mode.
 q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0)
 e0 = (1 - b ⋅ y0)rn = –ε0
This approximation can be further improved if the
value of q0 is multiplied by the polynomial 1 – ε0 +
ε0

2 – … + (–ε0) k–1, derived from the identity
 (1 + ε0) ⋅ (1 – ε0 + ε0

2 – … + (–ε0)k–1) = 1 – (–ε0)k
The result (ignoring for now the rounding errors)
will be:

q ≈ a/b ⋅ (1 – (–ε0)k)
In addition, an optimal way of calculating the
product of this polynomial by 1+ε0 has to be
determined for each division algorithm: with the
lowest latency for latency-optimized operations, and
with the lowest number of floating-point instructions
for throughput-optimized operations.
Consider as a first example the latency-optimized
single precision division algorithm.

Single precision division, optimized for
latency
The following algorithm calculates the single
precision value q’3 = (a/b)rnd, where a and b are
single precision numbers. All the other intermediate
results are 82-bit floating-point register format
numbers. The precision used for each step is shown
too. An approximate value of the result is also
shown, calculated assuming that the rounding errors
are negligible.

(1) y0 = 1/b ⋅ (1+ε0), |ε0| < 2-8.886
 table lookup
(2) q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0)
 82-bit floating-point register format
(3) e0 = (1 – b ⋅ y0)rn = –ε0
 82-bit floating-point register format
(4) q1 = (q0 + e0 ⋅ q0)rn ≈ a/b ⋅ (1–ε0

2)
 82-bit floating-point register format
(5) e1 = (e0 ⋅ e0)rn ≈ ε0

2
 82-bit floating-point register format

(6) q2 = (q1 + e1 ⋅ q1)rn ≈ a/b ⋅ (1–ε0
4)

 82-bit floating-point register format
(7) e2 = (e1 ⋅ e1)rn ≈ ε0

4
 82-bit floating-point register format
(8) q3 = (q2 + e2 ⋅ q2)rn ≈ a/b ⋅ (1–ε0

8)
 17-bit exponent, 53-bit significand
(9) q’3 = (q3)rnd ≈ a/b ⋅ (1–ε0

8)
 single precision

This shows that the intermediate approximations q0,
q1, q2, and q3 are getting increasingly closer to a/b.
The last step is needed to reduce the precision of the
result to 24 bits, for the single precision format. As
steps (2) and (3), (4) and (5), and (6) and (7)
respectively can be executed in parallel, the total
latency on the Itanium 2 processor will be of 6 x 4 =
24 clock cycles. In software-pipelined form, this
algorithm could generate on average a result every
9/2=4.5 clock cycles. However, an algorithm can be
found that has better throughput characteristics.

Single precision division, optimized for
throughput
The first idea was to modify the latency-optimized
algorithm so that the first five steps generate
increasingly better approximations y1 and y2 of 1/b,
rather than q1 and q2. The subsequent steps would be
to calculate
 q0 = (a ⋅ y2)rn
then an exact remainder
 r0 = (a – b ⋅ q0)rn
in the penultimate step, and the correctly rounded
result
 q1 = (q0 + r0 ⋅ y2) rnd ≈ a/b ⋅ (1–ε0

8)
in the last step. This would result in a latency of 7 x
4 = 28 clock cycles, which is worse than that of the
previous algorithm, but a better throughput of 8/2 =
4 clock cycles/result. However, an even better
algorithm could be found after noticing that
ε0

8 < 2-71.088 leads to a value q1 before rounding that
is more accurate than needed for an IEEE-correct
single precision result. The relative error incurred
when rounding a real number to single precision is
less than 2-24, and about twice as much accuracy
should be enough (as shall be seen in the subsection
on Correctness Proofs). It suffices for example to
calculate q ≈ a/b ⋅ (1–ε0

6) where ε0
6 < 2-53.316. The

best throughput-optimized algorithm is thus:

Proofs were developed to show that the results of the
division algorithms proposed for single, double, and
double-extended computations are IEEE-correct for
any combination of operands and for any of the four
IEEE rounding modes. This included showing also
that the floating-point exception status flags are
always set correctly, and that unmasked exceptions
trap as specified in the IEEE Standard (using the
user status field sf0 only in the first and last
computation steps and the reserved status field sf1 in
the intermediate steps helps ensure correct IEEE
exception behavior; note that Itanium processors
have four status fields available). To prove that the
results are always numerically correct, three
properties were used [7]. (The values N of concern
in this context are N = 24, N = 53, and N = 64.)

(1) y0 = 1/b ⋅ (1+ε0), |ε0| < 2-8.886
 table lookup
(2) e0 = (1 – b ⋅ y0)rn = –ε0
 82-bit floating-point register format
(3) e1 = (e0 + e0 ⋅ e0)rn ≈ –ε0+ε0

2
 82-bit floating-point register format
(4) y1 = (y0 + e1 ⋅ y0)rn ≈ 1/b ⋅ (1+ε0

3)
 82-bit floating-point register format
(5) q1 = (a ⋅ y1)rn ≈ a/b ⋅ (1+ε0

3)

 17-bit exponent, 24-bit significand
(6) r1 = (a – b ⋅ q1)rn = –a ⋅ ε0

3
 82-bit floating-point register format
(7) q = (q1 + r1 ⋅ y1)rnd ≈ a/b ⋅ (1–ε0

6)
 single precision

In software-pipelined form, this algorithm can
generate on average one result every 3.5 clock
cycles. However, for this the loop would have to be
unrolled once, so that it will contain an even number
of floating-point instructions. Then two results will
be generated on average every 14/2=7 clock cycles.
Similar algorithms were designed for double and
double-extended precision division operations. In
each case, the optimal sequence was selected that
would still afford sufficient accuracy in the final
result q ≈ a/b ⋅ (1 – (–ε0)k) to allow for correct IEEE
rounding in all cases. Of all possible sequences, the
one that minimized the number of clock cycles was
chosen for latency-optimized algorithms, and the one
with the lowest number of floating-point instructions
for throughput-optimized algorithms. The complete
set of IEEE-correct algorithms for the division
operation can be found in [6], where source code for
all the IPF division algorithms can also be obtained.

Correctness Proofs

Theorem 1. Let a, b ∈ FN, such that a/b ∉ FN, q* ∈
R, and N1 ∈ N4, N1 ≥ 2 ⋅ N + 1.
If q* is within 1 ulp of a/b in FN1, then

(q*)rnd = (a/b)rnd.
Theorem 2. Let b ∈ FN, with the restriction that the
significand of b is not 1.11…1. Let y ∈ FN be an
approximation of 1/b within 1 ulp of 1/b in FN. Then
the computation:

e = (1 – b ⋅ y)rn
y' = (y + e ⋅ y)rn

4 R is the set of real numbers, and N is the set of natural
numbers.

yields y' = (1/b)rn.
Theorem 3. Let a, b ∈ FN. If y ∈ R* is within 1/2
ulp of 1/b in FN, q ∈ FN, and q ≅ a/b is within 1 ulp
of a/b in FN, then the computation
 r = (a – b ⋅ q)rn
 q' = (q + r ⋅ y)rnd
yields q' = (a/b)rnd.
Theorem 1 was applied in proving correctness of the
latency-optimized single precision division
algorithm. Relative error evaluations for steps (1)
through (8) showed that q3 is within 1 ulp of a/b in
F49. Theorem 1 proves that in step (9), q’3 = (a/b)rnd
(i.e. a/b is correctly rounded, as specified by the
IEEE Standard).
Theorem 3 was applied in proving correctness of the
throughput-optimized single precision division
algorithm. First it was shown that y1 is within 1/2 ulp
of 1/b in F24 and q1 is within 1 ulp of a/b in F24.
Theorem 3 states that steps (6) and (7):

 (6) r1 = (a – b ⋅ q1)rn
 (7) q = (q1+ r1 ⋅ y1)rnd

yield q = (a/b)rnd.
Theorem 2 was needed only for the double-extended
division algorithms, where the operands and the
result have the same precision as the intermediate
calculations. This makes it more difficult to rely just
on simple relative error evaluations to show for
example that y in the last step is within 1/2 ulp of 1/b
as required by Theorem 3, but Theorem 2 makes this
possible. One special case had to be treated
separately, when the significand of b is 1.11…1 (but
for this case it could be checked directly that y' =
(1/b)rn).
The mathematical proofs of correctness were
checked further using an automatic proof checker
written in HOL [8].

Non-IEEE Floating-Point Division
There are applications where strict IEEE accuracy
for floating-point computations may not be required,
and instead faster basic operations would be of more
benefit. To cover such needs, non-IEEE floating-
point division algorithms were derived from the
IEEE-correct versions, with relative errors not
exceeding 1 ulp (the IEEE-correct operations have
relative errors of at most 0.5 ulp). Non-IEEE
algorithms were designed also for reciprocal
operations, which are not defined by the IEEE
Standard. The division operations performed by the
non-IEEE algorithms are thus slightly less accurate,
but faster than their equivalent IEEE-correct
algorithms.
For example, the non-IEEE single precision division
algorithm is:

(1) y0 = 1/b ⋅ (1+ε0), |ε0| < 2-8.886

 table lookup
(2) q0 = (a ⋅ y0)rn = a/b ⋅ (1+ε0)
 82-bit floating-point register format
(3) e0 = (1 – b ⋅ y0)rn = –ε0
 82-bit floating-point register format
(4) e1 = (e0 + e0 ⋅ e0)rn ≈ –ε0 + ε0

2
 82-bit floating-point register format
(5) q1 = (q0 + e1 ⋅ q0)rnd ≈ a/b ⋅ (1+ε0

3)
 single precision

The same algorithm can be used both in latency-
optimized as well as throughput-optimized code.
Only a limited correctness proof is required in this
case. The maximum relative error of the result has to
be determined, and it has to be proved that overflow
and underflow conditions occur reasonably close to
those for the IEEE-correct algorithm. The exception
status flag for precision is not checked in this case.
The algorithm for calculating the non-IEEE single
precision reciprocal is even simpler:

(1) y0 = 1/b ⋅ (1+ε0), |ε0| < 2-8.886
 table lookup
(2) e0 = (1 – b ⋅ y0)rn = –ε0
 82-bit floating-point register format
(3) e1 = (e0 ⋅ e0 + e0)rn ≈ –ε0 + ε0

2
 82-bit floating-point register format
(4) y1 = (y0 + e1 ⋅ y0)rnd ≈ 1/b ⋅ (1+ε0

3)
 single precision

Similar algorithms for non-IEEE double precision
division and reciprocal are given in [9], together
with source code.

Latency, Throughput, and
Accuracy for Division and
Reciprocal Operations
Latency and throughput values for the single,
double, and double-extended IEEE-correct and non-
IEEE division and reciprocal operations on the
Itanium 2 processor are given in Tables 2a and 2b.
Table 2a. Latency, Throughput, and Accuracy for
IPF IEEE Division and Reciprocal Operations
Operation Latency

(clock
cycles)

Throughput
(clock cycles/
result)

Accuracy
(ulps)

Single
Precision
Division

24 3.5 0.50

Double
Precision
Division

28 5.0 0.50

Double-
Extended
Precision
Division

32 7.0 0.50

Single
Precision
Reciprocal

24 3.5 0.50

Double
Precision
Reciprocal

28 5.0 0.50

Theoretical error bounds for the non-IEEE
operations are given in Table 2b. These are
guaranteed upper bounds, but might not be reached
in some cases. For this reason, maximum errors
observed in testing are also included in the table.

Table 2b. Latency, Throughput, and Accuracy for
IPF Non-IEEE Division and Reciprocal Operations
Operation Latency

(clock
cycles)

Throughput
(clock
cycles/
result)

Theoretical
Accuracy
(ulps)

Observed
Accuracy
(ulps)

Single
Precision
Division

16 2.5 0.6585 0.6524

Double
Precision
Division

20 4.0 0.5018 0.5010

Double-
Extended
Precision
Division

NA NA NA NA

Single
Precision
Reciprocal

16 2.0 0.6585 0.6487

Double
Precision
Reciprocal

20 3.5 0.5010 0.5003

IEEE-Correct Floating-Point
Square Root
Square root operations that comply with the IEEE
Standard 754-1985 return the exact result rounded to
the destination precision, using the IEEE rounding
mode currently in effect. The square root operation
for Itanium processors is implemented based on
iterative algorithms as well, starting with an 11-bit
approximation y0 of the reciprocal square root. This
value is provided by a special instruction performing
a table lookup, frsqrta, and has a relative error of
at most 2-8.831:
 y0 = 1/◊a ⋅ (1+ε0), |ε0| < 2-8.831
Multiplying by a, a first approximation of the square
root is obtained and its relative error d can be
calculated:
 S0 = (a⋅ y0)rn = ◊a ⋅ (1+ε0)
 d = 1/2 ⋅ (1 – S0 ⋅ y0)rn = –ε0 – 1/2 ⋅ ε0

2
Note that 1 – 2 d = (1+ε0)2. Just as for division, the
approximation S0 can be improved further if it is
multiplied by 1 – ε0 + ε0

2 – … + (–ε0)k–1. The result
(ignoring the rounding errors) will be:

S ≈ ◊a ⋅ (1 – (–ε0)k)
A complication in this case is the fact that the
relative error d calculated for S0 is not equal to –ε0,
as it was for the division operation. In order to use
the identity:
 (1 + ε0) ⋅ (1 – ε0 + ε0

2 – … + (–ε0)k–1) = 1 – (–ε0)k

a polynomial in d has to be found, that approximates
sufficiently well
 1 – ε0 + ε0

2 – … + (–ε0) k–1 + … = 1/(1 + ε0)
For this, the value of ε0 is calculated from d = –ε0 –
1/2 ⋅ ε0

2:
 ε0 = –1 + ◊ (1 – 2 ⋅ d)
The McLaurin series expansion for 1/(1 + ε0) =
1/◊ (1 – 2 ⋅ d) is:
 1 – ε0 + ε0

2 – ε0
3 + ε0

4 – … = 1 + d + 3/2 ⋅ d2 +
 5/2 ⋅ d3 + 35/8 ⋅ d4 + 63/8 ⋅ d5 + 231/16 ⋅ d6 + …
An approximation of the expansion in d consisting
of a few terms can be used to design an algorithm
converging toward the square root value. The
coefficients of some of the higher degree terms in
this approximation can even be modified to make the
calculation easier. Because of the truncation, the
result will be

S ≈ ◊a ⋅ (1 + O(ε0
k))

instead of
 S ≈ ◊a ⋅ (1 – (–ε0)k)
where O(ε0

k) denotes a polynomial containing terms
in ε0 of degree k or higher.
In addition, an optimal way of calculating the
product of this polynomial by 1+ε0 has to be
determined for each square root algorithm: with the
lowest latency for latency-optimized operations, and
with the lowest number of floating-point instructions
for throughput-optimized operations.
Consider as a first example the latency-optimized
single precision square root algorithm.

Single precision square root, optimized
for latency
The following algorithm calculates S = (◊a)rnd in
single precision, where a is a single precision
number. An approximate value of the result is also
shown, calculated assuming that the rounding errors
are negligible. The approximation is expressed in
terms of ε0 and/or d, as convenient:

(1) y0 =1/◊a ⋅ (1+ε0), |ε0| < 2-8.831
 table lookup
(2) H0 = (0.5 ⋅ y0)rn = 1/(2⋅◊a) ⋅ (1+ε0)
 82-bit floating-point register format
(3) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0)
 82-bit floating-point register format
(4) d = (0.5 – S0 ⋅ H0)rn = –ε0 + 1/2 ⋅ ε0

2 = d
 82-bit floating-point register format
(5) e = (1 + 1.5 ⋅ d)rn ≈ 1 + 3/2 ⋅ d
 82-bit floating-point register format
(6) T0 = (d ⋅ S0)rn ≈ =◊a ⋅ d ⋅ (1+ε0)
 82-bit floating-point register format
(7) G0 = (d ⋅ H0)rn ≈ 1/(2⋅◊a) ⋅ d ⋅ (1+ε0)
 82-bit floating-point register format
(8) S1 = (S0 + e ⋅ T0)rn ≈

 ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2)
 17-bit exponent, 24-bit significand
(9) H1 = (H0 + e ⋅ G0)rn ≈
 1/(2◊a) ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2)
 82-bit floating-point register format
(10) d1 = (a – S1 ⋅ S1)rn ≈
 a ⋅ (5 ⋅ d3 + 15/4 ⋅ d4 + 9/2 ⋅ d5)
 82-bit floating-point register format
(11) S = (S1 + d1 ⋅ H1)rnd ≈
 ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2 + 5/2 ⋅ d3 +

35/8 ⋅ d4 + 63/8 ⋅ d5 + 81/16 ⋅ d6 + 27/8 ⋅ d7)
= ◊a ⋅ (1+ε0) ⋅ (1 – ε0 + ε0

2 – ε0
3 + ε0

4 – ε0
5 +

 O(ε0
6)) = ◊a ⋅ (1 + O(ε0

6))
 single precision

This shows that approximations S0, S1, and S are
getting increasingly closer to ◊a. As steps (2) and
(3), then (5), (6) and (7), and also (8) and (9) can be
executed in parallel, the total latency on the Itanium
2 processor will be 7 x 4 = 28 clock cycles. In
software-pipelined form, this algorithm could
generate a result every 11/2=5.5 clock cycles.
However, an algorithm can be found that has better
throughput characteristics.

Single precision square root, optimized
for throughput
The following algorithm for the calculation of the
single precision square root has the least number of
instructions possible, and therefore is best suited for
software-pipelined loops. It calculates S = (◊a)rnd in
single precision, where a is a single precision
number:

(1) y0 = 1/◊a ⋅ (1+ε0), |ε0| < 2-8.831

 table lookup
(2) H0 = (0.5 ⋅ y0)rn = 1/(2⋅◊a) ⋅ (1+ε0)
 82-bit floating-point register format
(3) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0)
 82-bit floating-point register format
(4) d = (0.5 – S0 ⋅ H0)rn = –ε0 + 1/2 ε0

2 = d
 82-bit floating-point register format
(5) d' = (d + 0.5 * d)rn ≈ 3/2 ⋅ d
 82-bit floating-point register format
(6) e = (d + d * d')rn ≈ d + 3/2 ⋅ d2
 82-bit floating-point register format
(7) S1 = (S0 + e * S0)rn ≈
 ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 d2)
 17-bit exponent, 24-bit significand
(8) H1 = (H0 + e * H0)rn ≈
 1/(2◊a) ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2)
 82-bit floating-point register format
(9) d1 = (a – S1 ⋅ S1) rn ≈
 a⋅ (5 ⋅ d3 + 15/4 ⋅ d4 + 9/2 ⋅ d5)
 82-bit floating-point register format
(10) S = (S1 + d1 ⋅ H1)rnd ≈
 ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2 + 5/2 ⋅ d3 +

35/8 ⋅ d4 + 63/8 ⋅ d5 + 81/16 ⋅ d6 + 27/8 ⋅ d7)
= ◊a ⋅ (1+ε0) ⋅ (1 – ε0 + ε0

2 – ε0
3 + ε0

4 – ε0
5 +

 O(ε0
6)) = ◊a ⋅ (1 + O(ε0

6))
 single precision

Only steps (2) and (3), and then (7) and (8) can be
executed in parallel, so the latency of 8 x 4 = 32
clock cycles is worse than that of the previous
algorithm. However, its throughput of 10/2 = 5 clock
cycles/result is better. It can be noticed that even
though the throughput-optimized sequence differs
slightly from the latency-optimized one, they both
calculate practically the same result. The rounding
errors might accumulate differently, but the end
result was shown to be IEEE-correct in both cases.
Similar algorithms were designed for double and
double-extended precision square root operations. In
each instance, the optimal sequence was selected that
would still afford sufficient accuracy in the final step
to allow for correct IEEE rounding in all cases.
Similar to the single precision square root, an
optimal sequence was determined in each case, that
would lead to a result in the form S ≈ ◊a⋅(1–(–ε0)k).
Of all possible sequences, the one that minimizes the
number of clock cycles was chosen for latency-
optimized algorithms, and the one with the lowest
number of floating-point instructions for throughput-
optimized algorithms. The complete set of IEEE-
correct algorithms for the square root operation can
be found in [6], where source code for all the IPF
square root algorithms can also be obtained.

Correctness Proofs
Proofs were developed to show that the results of the
square root algorithms proposed for single, double,
and double-extended computations are IEEE-correct
for any combination of operands and for any of the
four IEEE rounding modes. This included showing
that the floating-point exception status flags are
always set correctly, and that unmasked exceptions
trap as specified in the IEEE Standard (just as for
division, using the user status field sf0 only in the
first and last computation steps and the reserved
status field sf1 in the intermediate steps helps ensure
correct IEEE exception behavior). To prove that the
results are always numerically correct, two
properties were used [7]:
Theorem 4. Let a ∈FN and ulp (√a) one ulp of √a in
FN. If √a ∉FN, then for any f∈FN, the distance
between √a and f satisfies

| √a – f | > 2-N-1 ⋅ ulp (√a)
Theorem 5. Let a∈FN and ulp (√a) one ulp of √a in
FN. For any m∈FN+1–FN (midpoint between two
consecutive floating-point numbers in FN), the
distance between √a and m satisfies

| √a – m | > 2-N-3 ⋅ ulp (√a)
These two properties show that if √a cannot be
represented as a floating-point number with an N-bit
significand (which is the non-trivial case to check),

then there are exclusion zones of known minimal
width around any floating-point number, as well as
around any midpoint between two consecutive
floating-point numbers, within which √a cannot
exist. The minimum distance between √a and f or √a
and m can be determined analytically, as well as
values of the argument a for which √a is close to
points f or m [7] (few points are ‘really close’ and
they can be determined relatively easily). Excluding
a number of these points a has the effect of
increasing the widths of the exclusion zones. This
can be done until the exclusion zones are more than
twice wider than the maximum error of the result
that approximates √a. It means that the exact result
and the approximation computed by the algorithm
are on the same side of any floating-point number or
any midpoint, and therefore they will both round to
the same floating-point value. For the relatively few
cases of arguments inside the increased exclusion
zones, verification was carried out directly.
Similar to the case of the division algorithms, the
mathematical proofs of correctness were checked
further using an automatic proof checker written in
HOL [10].

Non-IEEE Floating-Point Square
Root
Just as for division, non-IEEE floating-point square
root algorithms that are less accurate but more
efficient were derived from the IEEE-correct
versions, with relative errors not exceeding 1 ulp
(the IEEE-correct operations have relative errors of
at most 0.5 ulp). Non-IEEE algorithms were
designed also for reciprocal square root operations,
which are not defined by the IEEE Standard. For
example, the non-IEEE single precision square root
algorithm is:

(1) y0 =1/◊a ⋅ (1+ε0), |ε0| < 2-8.831
 table lookup
(2) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0)
 82-bit floating-point register format
(3) d = (1 – S0 ⋅ y0)rn = –2 ⋅ ε0 + ε0

2 = 2 ⋅ d
 82-bit floating-point register format
(4) e = (0.5 + 0.375 ⋅ d)rn ≈ 1/2 + 3/4 ⋅ d
 82-bit floating-point register format
(5) T0 = (d ⋅ S0)rn ≈ 2 ⋅ d ⋅ ◊a ⋅ (1+ε0)
 82-bit floating-point register format
(6) S = (S0 + e ⋅ T0) rnd ≈
 ◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) =
 ◊a ⋅ (1 + 5/2 ⋅ ε0

3 + 15/8 ⋅ ε0
4 + 3/8 ⋅ ε0

5) =
 ◊a ⋅ (1 + O(ε0

3))
 single precision

The same algorithm can be used both in latency-
optimized as well as throughput-optimized code.
Only a limited correctness proof is required. The
maximum relative error of the result has to be

determined, but the exception status flag for
precision is not checked in this case.
The algorithm for calculating the non-IEEE single
precision reciprocal square root is:

(1) y0 =1/◊a ⋅ (1+ε0), |ε0| < 2-8.831
 table lookup
(2) S0 = (a ⋅ y0)rn = ◊a ⋅ (1+ε0)
 82-bit floating-point register format
(3) d = (1 – S0 ⋅ y0)rn = –2 ⋅ ε0 + ε0

2 = 2 ⋅ d
 82-bit floating-point register format
(4) e = (0.5 + 0.375 ⋅ d)rn ≈ 1/2 + 3/4 ⋅ d
 82-bit floating-point register format
(5) T0 = (d ⋅ y0)rn ≈ 2 ⋅ d ⋅ 1/◊a ⋅ (1+ε0)
 82-bit floating-point register format
(6) S = (y0 + e ⋅ T0) rnd ≈
 1/◊a ⋅ (1+ε0) ⋅ (1 + d + 3/2 ⋅ d2) =
 1/◊a ⋅ (1 + 5/2 ⋅ ε0

3 + 15/8 ⋅ ε0
4 + 3/8 ⋅ ε0

5) =
 1/◊a ⋅ (1 + O(ε0

3))
 single precision

Similar algorithms for non-IEEE double precision
square root and reciprocal square root are given in
[9], together with source code.

Latency, Throughput, and
Accuracy for Square Root and
Reciprocal Square Root Operations
Latency and throughput numbers for the single,
double, and double-extended IEEE-correct and non-
IEEE square root and reciprocal square root
operations on the Itanium 2 processor are given in
Tables 3a and 3b.
Table 3a. Latency, Throughput, and Accuracy for
IPF IEEE Square Root and Reciprocal Square Root
Operations
Operation Latency

(clock
cycles)

Throughput
(clock cycles/
result)

Accuracy
(ulps)

Single
Precision
Square Root

28 5.0 0.50

Double Prec.
Square Root

36 6.5 0.50

Double-Ext.
Precision
Square Root

40 7.5 0.50

Single
Precision
Reciprocal
Square Root

52
(sqrt+div)

8.5
(sqrt+div)

1.0
(sqrt+div)

Double Prec.
Rec. Sq. Root

64
(sqrt+div)

11.5
(sqrt+div)

1.0
(sqrt+div)

Theoretical error bounds and maximum errors
observed in testing are both included in Table 3b.

Table 3b. Latency, Throughput, and Accuracy for
IPF Non-IEEE Square Root and Reciprocal Square
Root Operations
Operation Latency

(clock
cycles)

Throughput
(clock
cycles/
result)

Theoretical
Accuracy
(ulps)

Observed
Accuracy
(ulps)

Single
Precision
Square
Root

20 3.0 0.9449 0.8194

Double
Precision
Square
Root

32 5.5 0.5001 0.5000

Double-
Extended
Precision
Square
Root

NA NA NA NA

Single
Precision
Reciprocal
Square
Root

20 3.5 0.9449 0.8860

Double
Prec. Rec.
Square
Root

32 6.5 0.5031 0.5007

Conclusion
Several factors determined the implementation in
software of the division and square root operations
for Itanium processors. A first consideration was
flexibility, as alternative algorithms can be easily
substituted for the original ones, should this be
needed. One example is using non-IEEE algorithms
instead of IEEE-correct ones when accuracy can be
relaxed for the benefit of better performance.
Second, the software implementations of these
operations inherit the high degree of pipelining in
the basic floating-point multiply-add operations,
leading to high-throughput algorithms. Third, as in
typical applications division and square root are not
extremely frequent, it may be that the die area on the
chip that would be dedicated to hardware
implementations of these operations could be better
used for some other purpose.
The Itanium floating-point architecture was designed
so that its high performance, accuracy, and
flexibility characteristics make it ideal for technical
and scientific computing. The present paper showed
how software implementations of division and
square root operations based on the fused floating-
point multiply-add instruction support this goal. The
principles used in designing algorithms for these
operations were presented together with examples.
Correctness proofs were outlined and underlying
properties were stated. Non-IEEE algorithms were
described in contrast with those that implement the
division and square root operations mandated by the
IEEE Standard 754-1985. Finally, performance
numbers were presented.

Acknowledgements
Many people contributed to the development and
verification of the algorithms described in this paper.
Peter Markstein developed the original division and
square root algorithms for software implementation.
The author helped improve some algorithms, derived
non-IEEE versions, performed mathematical
correctness proofs, and determined special cases
where the software algorithms are limited in their
capabilities (not encountered in compiled code).
John Harrison improved several algorithms
(especially square root), and carried out automated
proofs of correctness based on the existing
mathematical proofs. Roger Golliver, Bob Norin,
Cristina Iordache, and Shane Story reviewed the
mathematical proofs of correctness or various related
documents. Special thanks are due to Bob Norin for
reviewing this paper.
References
[1] ANSI/IEEE Standard 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, NY, 1985
[2] Markstein P., Computation of Elementary
functions on the IBM RISC System/6000 Processor,
IBM Journal, 1990
[3] Intel(R) Itanium(TM) Architecture Software
Developer's Manual, Vol 1-4, Intel Corp., 2003
[4] Cornea, M., Harrison, J., Tang, P, Scientific and
Engineering Computation on Itanium™ Processors,
Intel Press, 2002
[5] Cornea, M., Harrison, J., Tang, P, Intel
Itanium™ Floating-Point Architecture, WCAE
2003, San Diego
[6] Divide, Square Root, and Remainder Algorithms
for the Itanium Architecture, Intel Corporation, Dec.
2003,http://www.intel.com/software/products/opens
ource/libraries/numnote2.htm
[7] Cornea-Hasegan, M. and Golliver, R., Markstein,
P. Correctness Proofs Outline for Newton-Raphson
Based Floating-Point Divide and Square Root
Algorithms, Proceedings of the 14th IEEE
Symposium on Computer Arithmetic, Adelaide,
1999
[8] Harrison, J. Formal Verification of IA-64
Division Algorithms, Proceedings of the 13h
International Conference TPHOLs 2000, Springer-
Verlag, pp 234-251
[9] Non-IEEE Division, Square Root, Reciprocal,
and Reciprocal Square Root Algorithms for the Intel
Itanium Architecture, Intel Corporation, Dec. 2003,
http://www.intel.com/software/products/opensource/
libraries/numnote3.htm
[10] Harrison, J. Formal Verification of Square Root
Algorithms, Formal Methods in System Design, Vol.
22, 2003, pp 143-153

	Abstract
	Division and square root are basic operations defined by the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic [1], and are implemented in hardware in most modern processors. In recent years however, software implementations of these operations
	The present paper gives an overview of the IEEE-correct division and square root algorithms for Itanium processors. As examples, a few algorithms for single precision are presented and properties used in proving their IEEE correctness are stated. Non-IEE
	IEEE-Correct Floating-Point Division
	
	Single precision division, optimized for latency
	Single precision division, optimized for throughput
	Correctness Proofs

	Non-IEEE Floating-Point Division
	Latency, Throughput, and Accuracy for Division and Reciprocal Operations
	IEEE-Correct Floating-Point Square Root
	
	Single precision square root, optimized for latency
	Single precision square root, optimized for throughput
	Correctness Proofs

	Non-IEEE Floating-Point Square Root
	Latency, Throughput, and Accuracy for Square Root and Reciprocal Square Root Operations
	Conclusion
	Acknowledgements
	References

