
PIN: A Binary Instrumentation Tool for Computer
Architecture Research and Education

Vijay Janapa Reddi, Alex Settle, and Daniel A. Connors
University of Colorado, Boulder.

{vijay.janapareddi, settle, dconnors}@colorado.edu

Robert S. Cohn
Intel Corporation

robert.s.cohn@intel.com

Abstract

Computer architecture embraces a tremendous num-
ber of ever-changing inter-connected concepts and in-
formation, yet computer architecture education is very
often static, seemingly motionless. Computer archi-
tecture is commonly taught using simple piecewise
methods of explaining how the hardware performs a
given task, rather than characterizing the interaction of
software and hardware. Visualization tools allow stu-
dents to interactively explore basic concepts in com-
puter architecture but are limited in their ability to en-
gage students in research and design concepts. Like-
wise as the development of simulation models such
as caches, branch predictors, and pipelines aid stu-
dent understanding of architecture components, such
models have limitations in the workloads that can be
examined because of issues with execution time and
environment. Overall, to effectively understand mod-
ern architectures, it is simply essential to experiment
the characteristics of real application workloads. Like-
wise, understanding program behavior is necessary to
effective programming, comprehension of architecture
bottlenecks, and hardware design. Computer archi-
tecture education must include experience in analyz-
ing program behavior and workload characteristics us-
ing effective tools. To explore workload characteristic
analysis in computer architecture design, we propose
usingPIN, a binary instrumentation tool for computer
architecture research and education projects.

1 Introduction

New applications and programming models are con-
stantly emerging to complement new and improving
hardware technology and paradigms. It is becoming
essential to understand the workload characteristics
of applications in order to design effective architec-
tures. Often, in order to understand program behav-
ior on a specific processor, students must have a sig-
nificant amount of knowledge of the underlying hard-
ware and the control and data flow of the application.
For instance, modern performance is a confluence of
many components working together - branch predic-
tors, caches, pipelines, etc. Even with a deeply rooted

understanding of the architecture, it is often extremely
difficult to comprehend the flow and resource usage of
the program because of the immense amount of data
that needs to be collected and analyzed in order to
study such behavior.

There are various tools available for computer ar-
chitecture education. These tools can be divided into
several categories, architecture visualization systems,
simulation environments, and hardware event monitor-
ing programs. Each of these categories play a role in
bridging the divide between pedantic methods of illus-
trating computer architecture and real-world dynamic
examination of architecture concepts. There are sev-
eral areas of knowledge and skills that these tools ad-
dress. For instance, architecture simulators provide in-
sight into microarchitecture design and the behavior of
the individual hardware components. These simulators
are usually designed so that students can integrate ad-
ditional emulated hardware components into the over-
all simulation system and analyze the impact of design
parameters on the simulated processor. Likewise, per-
formance monitoring support allows students to real-
ize the performance impact of the different architec-
ture components and compiler optimizations have on
the overall system. Most importantly, monitoring sys-
tems provide accurate feedback on real workload ap-
plications.

Simulators and performance monitoring systems
may not be sufficient for computer architecture edu-
cation because they do not allow large amounts of in-
formation to be collected on a per-instance level at the
instruction granularity. Likewise, profiling techniques,
such asgprof and pixie, only provide coarse-grain
profiling information and are not suitable for detailed
computer architecture concept exploration. Rather it is
necessary for students to attribute profile information
to the instruction level of the program. Thus, tools that
provide infrastructure for performing data analysis of
both software and hardware events can be extremely
valuable to the computer architecture fundamentals of
performance analysis, design, and architecture valida-
tion. Overall, such integrated computer architecture
examination results in a deeper and more detailed com-
prehension of the collected data.

In this paper, we present PIN, a binary instrumen-
tation tool that can be used as a teaching aid by in-

1



structors in computer organization education to facil-
itate the study of real-world workloads and their im-
pact on the design of architectures. In addition to dis-
cussing the benefits of using PIN in the area of edu-
cation, this paper includes a complete description of
PIN’s extended profiling features and methods of op-
eration. Overall, we demonstrate that PIN can be used
to replace the time and complexity of using trace files
and software simulators to explore computer architec-
ture concepts and design.

In the following section, we present an overview
of tools that have been used in computer architecture
courses, followed by the motivation of using PIN in
computer architecture education in Section 3. In Sec-
tion 4 we present some projects to illustrate how PIN
can be used to teach. Following that we present our
conclusion.

2 Background in Computer Ar-
chitecture Education Tools and
Methods

Although various tools are integrated into computer ar-
chitecture curriculum, we believe that the best systems
for computer architecture education should primarily
involve:

• Simulated Design Environments

• Performance Analysis

• Workload Characterization

We elaborate on each of the above points and
present arguments for and against them as we percieve
fit in the classroom environment.

Simulated Design Environments:Instructors often
place much emphasis on designing architectural mod-
els in the classroom. Simulators are used as a means
of getting the students to explore design issues or are
even as models to deepen the students understanding
of architecture concepts.

Design simulators such as the Liberty Simulation
Environment [7] allow students to design architectural
components that interact within simulation modeling
framework. Such simulators allow them to gain a
deep understanding of how various components inter-
act with one another and could potentially create a bot-
tleneck. Others such as MipsIt[2], DLXide[12] etc. are
used in the classroom because they help students better
understand the theoretical concepts taught and open up
research ideas. There exist numerous other simulators
that could be used in the classroom, [5] has a lengthy
listing of such tools which could very effectively be
integrated into the coursework. Building a simulation
environment allows students to comprehend the details
of real hardware and provides greater understanding
of the subtlties which give rise to complex designs.

However, when designing simulators, significant time
is spent developing software rather than doing the ac-
tual performance analysis on their simulator. Simu-
lation environments often abstract the concept of real
workloads on real hardware too much. Some students
have difficulty relating the effect of the simulation en-
vironment to the actual program and hardware.

The simulators students develop are often trace
driven which are severly limiting as we elaborate
here. The trace files used for simulation can be im-
mensely large, several megabytes per benchmark, and
are therefore difficult to distribute as inputs for pro-
grams. On average, for ASCII trace file formats with
simple execution information (program counter, op-
code, 1 field of behavior), for every 2 million instruc-
tions there is overhead of about 80MBytes of trace file.
Burtscher[11] reports that even with specifically tai-
lored trace-compression algorithms applied to the ex-
ecution trace, real workloads will exceed several giga-
bytes of space.

Trace files already reflect control flow of the pro-
gram which was used to generate the traces. Thus,
it voids the students an opportunity to investigate
changes to both the application (compilation, re-
writing algorithms) and the underlying architecture.
Another issue with trace-based simulators is the prob-
lem of simulation time, generally such simulators take
days to model the entire run of a real program. Our
own evaluation of trace-based efficiency has deter-
mined that trace-reading (parsing and I/O) consumes
nearly 40% of a simple cache simulator program.

Performance Analysis: Hardware event monitors
are currently being extensively invested into by chip
developers. The Itanium Processor Family (IPF), IA-
32, POWER, and Alpha systems provide various event
monitors for use. However only a few combinations
may be active at any given time; the combinations are
often limiting in the events that can be simultaneously
monitored. Nevertheless, providing hardware coun-
ters has facilitated the development of interesting tools.
Tools such as Perfmon[6] and PAPI[10] access the un-
derlying event counters to develop applicaton profiles
and other interesting reports that are valuable in per-
forming program analysis.

In the classroom, awareness of hardware event mon-
itoring tools is essential because they are actively be-
ing used in the industry to study the performance of
programs on the underlying hardware. As mentioned
previously, current architectures currently come heav-
ily armed with an arsenal of hardware counters.

Interesting works such as vertical profiling[14], dy-
namic optimizations and code caches [8] take advan-
tage of event monitors to perform performance criti-
cal analysis on programs to help boost the applications
performance.

The primary limitation of simply showing absolute
counter values to students would not prove effective
as a method of teaching because the students lack an



insight on how the various performance counters could
be co-related. A very basic example is to realize that
using a counter to realize the total instruction count for
a program divided by the total execution time of the
program in cycles results in getting the average cycles
per instruction.

Hardware event monitors are not flexible in that they
come as part of the hardware and are not easily cus-
tomizable to suit the users needs. The event monitors
usually perform sampling, they do not guarantee se-
quence of execution as outputs. Their inflexbility lim-
its their use in the classroom.

Workload Characterization: The arguments pre-
sented thus far are to bring forth the realization that
minimal emphasis if any has been placed on presenting
students with real workloads in the classroom, an es-
sential component to the coursework. Simulators and
hardware event monitors though valuable are limited
in their contributions to the class environment. The so-
lution to their limitations is using tools that facilitate
a means of observing real program behavior on real
hardware. Tools that facilitate binary instrumentation
- PIN[13], Dyninst[3], Atom[1], etc.

The use of such tools requires no compiliation of
the source, any binary application can be directly used
as input into the program. This gives the flexibility
of being able to study the nature of numerous pro-
grams since the only requirement is the binary itself. It
voids the requirement of traces for simulators or source
codes for studying program behavior.

Since these programs along with their binary input
sets run directly on the machine, their execution times
are short which allows the study of programs for their
entire run. It opens up new venues of concepts that
may be presented in the classroom, concepts such as
phase behavior. Phase behavior requires that programs
be run for a very long period of time, a requirement
that cannot be met by simulators, but one that binary
instrumentation tools can.

Furthermore, instrumentation tools allow quick im-
plementation of ideas and do not require complex in-
frastructure. This would be suitable in the classroom
because students may quickly implement new con-
cepts and test the concept’s effectiveness. This fosters
a research oriented environment in the class which mo-
tivates students to investigate deeper into the subject.
The instrumentation tools would allow students to ex-
plore real workloads of varying characteristics, from
scientific and engineering programs and even to com-
mercial products.

There exist varied tools that could be incorportated
into the architecture curriculum; the essential note is
that instructors should realize that it is extremely ben-
eficial for students to have a broad idea of the tools
available for teaching and performing real workload
studies. The idea is much similar to making a de-
cision in selecting the appropriate programming lan-
guage when designing a softare applicaton. Thus it is

essential for instructors to design their course material
such the students are exposed to multiple tools through
the run of their computer architecture coursework.

3 PIN - An Approach to using Bi-
nary Instrumentation Tools in
Education

3.1 About PIN

A tool that we believe fills in the missing pieces of the
previously described tools is PIN[13]. PIN is provided
free of charge from Intel. It currently runs on the Ita-
nium systems, but work is under way to support ARM
and the IA32 architectures. It provides a functionality
similar to the ATOM[1] tool for Compaq Tru64 Unix.

The user writes instrumentation and analysis rou-
tines. Instrumentation routines insert calls to analy-
sis routines into an application. They determine how
an application is instrumented. The analysis routines
are called while the program executes and can record
information like the effective address of a memory
instruction or the direction of a branch instruction.
The instrumentation is customizable; the user decides
where analysis calls are inserted, the arguments to the
analysis routines, and what the analysis routines do.

PIN inserts instrumentation into an application at
run time. It sees every instruction in the user process
that is executed, including the dynamic loader and all
shared libraries. The instrumentation and analysis ex-
ecute in the same address space as the application, and
can see all the application’s data.

PIN passes instructions or a sequence of instructions
(trace) to an instrumentation routine. The instrumenta-
tion routine can inspect the instructions, looking at the
opcode class and its register and literal arguments. The
instrumentation routine may insert a call to an analysis
routine before or after an instruction. PIN tries to make
the instrumentation and its own execution transparent
to the application. It does not use the same memory
stack or heap area (brk) as the application, and maps
addresses in a special area. Addresses of local vari-
ables (stack) and addresses returned by calls to brk,
malloc and mmap will not be changed when PIN is
active.

3.2 Using PIN

Presented in Table 1 is a simple example that gives the
instruction count of a program including all the shared
library calls made by the application program. The
sample program is run by executing:$ pintool – /bin/ls
at the shell prompt.

Lines 13 and 14 register callback functions with
PIN. The function ”Instrument Instruction” is theIn-
strumentationfunction that is called on every instruc-
tion and ”Finish” is the function called upon termi-



/* Analysis Function */
1 void AnalyzeInstruction() {
2 icount++;
3 }
4

/* Instrumentation Function */
5 void InstrumentInstruction(INS ins, void *v) {
6 PIN_InsertCall(

/* Call analysis func. before instr. is executed */
IPOINT_BEFORE,
/* Current instruction */
ins,
/* Call analysis func. before instr. is executed */
(AFUNPTR) AnalyzeInstruction,
/* End of PIN_InsertCall’s argument list */
IARG_END);

7 }
8

/* Executed at end of program */
9 VOID Finish(int n, void *v) {
10 cout << "ICount : " << icount;
11 }

/* Register callback functions */
12 int main(int argc, char *argv[]) {
13 PIN_AddInstrumentInstructionFunction(Instruction, 0);
14 PIN_AddFiniFunction(Finish, 0);
15 PIN_StartProgram();
16 }

Table 1: PIN tool to count the total number of instruc-
tions in a program

1 void InstrumentInstruction(INS ins, VOID *v) {
2 /* Query the opcode */
3 switch(INS_Category(ins)) {
4 case TYPE_CAT_BRANCH:
5 PIN_InsertCall(IPOINT_BEFORE,

ins,
/* Call the branch prediction program */
(AFUNPTR) Branch_Predictor,
/* The instruction address */
IARG_IP_SLOT,
/* Non-zero if branch will be taken; otherwise 0 */
IARG_BRANCH_TAKEN,
IARG_END);

6 break;

7 case TYPE_CAT_STORE:
8 case TYPE_CAT_LOAD:
9 PIN_InsertCall(IPOINT_BEFORE,

ins,
/* Call the data cache program */
(AFUNPTR) Data_Cache,
/* The memory address */
IARG_EA,
IARG_END);

10 break;

11 default:
12 break;
13 }

Table 2: PIN tool that interfaces with Data cache and
Branch prediction simulators

nation of execution of an application. TheAnaly-
sis function for every instruction is specified through
PIN InsertCall on line 6. The instrumentation function
is called only the first time an instruction is executed.
The analysis function, AnalyzeInstruction() is called
every time the instruction is executed.

Data Cache & Branch Predictor Simulation Inter-
face: The pin tool in Table 1 can be changed to sup-
port simulations easily by changing the instrumenta-
tion function. The instrumentation function in Table
2 easily integrates a data cache and a branch predic-
tion simulator into one tool while still providing the
previous instruction count analysis. Detailed opcode
analysis is avoided here for simplicity. Precise opcode
detail is available in the actual source at [13].

The simulator codes for cache and branch prediction
can be written in entirely separate modules, compiled
and linked with the pin tool. Also, due to PIN’s inher-
ent interface with the hardware, simulator code sizes

IPOINT
IPOINT BEFORE Call before the instruction/procedure is executed.
IPOINT AFTER Call after the instruction/procedure is executed.
IPOINT TAKEN BRANCH Call after the instruction executes and before the target is

executed. Only supported for IP relative branches.

Table 3: Instrumentation Points (IPOINTs) for
PIN InsertCall(IPOINT, INS, AFUNPTR, iarg1,
iarg2, ..., iargN, IARGEND)

are small in relation to real simulators. The data cache
and branch predictor simulator code size are approxi-
mately only 20 lines. The development time is dramat-
ically shortened because the need to build surrounding
infrastructure to understand the instruction set archi-
tecture (ISA) is no longer required.

The PIN InsertCall(IPOINT, INS, AFUNPTR,
iarg1, iarg2, ..., iargN, IARGEND) function is the
key to instrumenting any binary in the PIN environ-
ment. Details of the various instrumentation points
(IPOINT’s) that can be placed for every instruction
or every procedure call are provided in Table 3. The
function can take up to a maximum of eight arguments
to facilitate various types of instrumentation and is
capable of instrumenting both procedures and instruc-
tions. Table 4 describes the various Instrumentation
Arguments (IARG’s) that may be passed into the
analysis function. The type AFUNPTR defines the
analysis function to be called during the run of the
program. Only a few of the IARG’s and IPOINT’s are
listed for conciseness.

4 In the Classroom

4.1 Students and Projects

Understanding concepts allows the principles of many
different disjoint areas to be leveraged in solving prob-
lems and developing skillful intuition. In turn, teach-
ing is about exposing the underlying principles of ideas
in ways that are both clear and logical. A good ap-
proach to teaching computer architecture is to be able
to teach a concept and immediately illustrate a working
system to students. The PIN infrastructure can be used
to illustrate such ideas and allow students to cultivate
and exercise their creativity and intuitions in projects.
Often, course projects are limited in scope because of
time, however, by integrating PIN with existing tools
for use in a project, more structured ideas can be real-
ized. Furthermore, it is evident that the act of learning
an existing tool for a project is similar to real engineer-
ing situations in becoming assimilated to a particular
design team.

One of the most common projects in computer ar-
chitecture is to build concept simulators to enhance un-
derstanding. These projects include instruction cache,
data cache and branch prediction simulators. Such as-
signments are very costly in the amount of time the stu-
dents spend building the interface to reading the trace



IARG
IARG IP SLOT Memory address of an instruction, where the low 4 bits encode the slot number (e.g. 0, 1, 2).
IARG IP Memory address of the bundle containing this instruction.
IARG EA For a load or store, the effective address of the memory location accessed by an instruction. Only valid for IPOINTBEFORE.
IARG QP VALUE The value of the qualifying predicate for this instruction. Only valid for IPOINTBEFORE.
IARG REG VALUE The value of a register, register name follows.
IARG BRANCH TAKEN Non-zero if the branch will be taken, otherwise 0. Only valid for IPOINTBEFORE.
IARG BRANCH TARGET ADDR The target address of a branch.
IARG FALLTHROUGH ADDR The IP and slot of the next instruction to be executed. If this instruction is a branch, it is assumed that the branch is not taken.
IARG THREAD ID Thread id, first thread is 0, successive threads are 1, 2, ...

Table 4: Instrumentation Arguments (IARGS) for PINInsertCall(IPOINT, INS, AFUNPTR,iarg1, iarg2, ...,
iargN, IARG END)

format. This often results in students being limited to
building only one or two simulators per semester due
to time constraints, furthermore the time is spent on
details of programming/software engineering and not
on analyzing the results of the architecture simulators.

However, if the students had an opportunity to first
interact with the various simulators as the class pro-
gresses and are assigned simple assignments of opti-
mizing a pre-built simulator by changing the parame-
ters etc. they would be able to get a good feel of how
design parameters affect performance. Further more,
it would allow the instructor to design the course such
that at the end of the semester a project could be as-
signed where the students could pick a simulator that
intrigued them and build it from bottom up. The ad-
vantage of that is that students often reach deep into
their work when they are keenly interested in it. Ex-
ploiting that in them would guarantee that they extract
the most from the class.

4.2 Applying PIN

In Section 2 we gave a brief introduction to PIN as a
tool and hereby wish to reflect upon why PIN would
prove effective in the classroom environment. PIN
has certain characteristics which we believe makes it a
unique experience for projects in the classroom. They
are as follows:

Unique simulation environment:PIN’s simulation
environment is perceived uniquely by students because
they realize the input program are binary tools that they
use regularly such as ls, sort, grep etc. instead of pre-
senting their simulators with traces. The students run
the programs on real hardware rather than on an ab-
stract software layers which limit some students from
understanding how a simulator is working.

Reduced development time:The development time
for simulators is dramatically cut short and thus allows
students to focus more on actual data analysis; students
often loose precious time in just building the simulator
infrastructure.

Flexibility: PIN is a valuable teaching tool because
of its flexibility in being able to support simulation en-
vironments as well as being to monitor compiled bi-
naries both statically and dynamically. Often students
are expected to cope with multiple tools because no
one tool provides enough flexibility to be able to last
through the run of the course. The students could use

PIN all through their computer architecture without
having to change tracks to using a new environment.

To give a generic view of how PIN could be used
in the classroom; we present through Figure 1 the
various analysis that students can do as part of their
class projects in computer architecture coursework.
The example illustrates cache and value profile mod-
ules being used on the entire program. This can
be achieved by instrumenting every single instruc-
tion in the program using the PIN callback func-
tion PIN AddInstrumentInstructionFuction(...). In
procedural level instrumentation for callA() and
call C(), instrumentation is injected again by using
the PINAddInstrumentInstructionFuction(...) func-
tion; however the instrumentation range is dedicated
only to the range of instructions that fall in the scope of
those procedure calls. Detailed application program-
ming interface (API) is available online at [13]. We
see that callA() and callC(); data capture varies from
collecting fine grained opcode statistics to generic pro-
filing.

The currently released PIN kit contains various tools
for use, a few of which are the data cache, branch pre-
dictor simulators, a tool to measure instruction counts
and to analyze the latency of load instructions. Also
contained are tools that perform profiling of the pro-
gram; time spent in procedural calls etc.. A tool to
collect detailed program traces is also available. De-
tails of all the tools mentioned are available at the pin
website [13].

4.3 PIN’s accessory tools/libraries

PIN provides fine-grained analysis with excellent flex-
ibility however a limitation that often tends to exist is
with students being unable to analyze the data being
collected. Thus we provide complementary tools to
help the students.

Statistical analysis package.The students are pro-
vided with data analysispackages. These play a sig-
nificant part in using PIN as a teaching tool because
it voids the students from having to analyze raw data
by hand. Collected data that has been processed as in
Table 5 and Figure 2 make it easy for students to com-
prehend their program behavior better.

CUT - Colorado Utility Tool: Data generated in
Table 5 shows detailed analysis of a load instruction at
memory address 0x200000000000db20 that was pro-



Figure 1: Instruction and Program level data capture

Colorado Utility Package (CUT): Data Analysis
0x200000000000db20-samples 7
0x200000000000db20-mean 119
0x200000000000db20-stddev 220.596
0x200000000000db20-conf90 175.095
0x200000000000db20-conf95 220.724
0x200000000000db20-conf99 335.541
0x200000000000db20-quantile-samples 7
0x200000000000db20-Samples-6 3
0x200000000000db20-Percent-6 42.8571
0x200000000000db20-CumPercent-6 42.8571
0x200000000000db20-Samples-12 1
0x200000000000db20-Percent-12 14.2857
0x200000000000db20-CumPercent-12 57.1429
0x200000000000db20-Samples-45 1
0x200000000000db20-Percent-45 14.2857
0x200000000000db20-CumPercent-45 71.4286
0x200000000000db20-Samples-158 1
0x200000000000db20-Percent-158 14.2857
0x200000000000db20-CumPercent-158 85.7143
0x200000000000db20-Samples-604 1
0x200000000000db20-Percent-604 14.2857
0x200000000000db20-CumPercent-604 100

Table 5: Program level statistical analysis of a load
instruction at address 0x200000000000db20

Figure 2: Dynamically generated load latency his-
togram

filed through the entire run of the program. The data
is interpreted as follows: The first five lines reflect
the samples, mean, standard deviation followed by the
confidence intervals respectively. Thereafter the data
reflects each of the individual samples; the load laten-
cies every time the instruction was executed.quantile-
samplesis the total number of occurrences of this load
instruction. Samples-x and its corresponding entry
represent the frequency of occurrence of the load for
latencyx. Respectively followed by the percentage and
cumulative percentages of occurrences of that latency
for the given load instruction. The graph in Figure 2
reflects another data set; the graph was generated au-
tomatically through our CUT package.



Our analysis’s package allows students to easily cre-
ate digestible reports and graphs for post-run analysis.

Profiling structure library: Aside from PIN stu-
dents are provided with a number of code modules for
increasing the flexibility of the system as well as re-
ducing development time. First, a set of data structure
modules are provided that include generic caches, hash
tables, time-line event record books, and symbol ta-
bles. In addition, a library module for value and mem-
ory address profiling is available for seamless integra-
tion with PIN instrumentation calls. The value profiler
can be directed to keep a topN value (TNV) table for
register operand values. The address profiler can track
constant, stride, and finite-context matched patterns of
addresses for load and store instructions.

Sampling interface: PIN provides a sampling in-
terface that directs the binary instrumentation pro-
cess. There are several management controls (known
as PIN-pointing) which support triggering of the user-
inserted instrumentation calls after an initialization pe-
riod of instruction execution events or for periodic
sampling. More detailed controls allow the instru-
mented code events to be called for a set interval of in-
struction executions after each periodic point has been
reached.

4.4 PIN Projects

Numerous projects could be given out to students to
select. The following are a few of those that could be
used as a guide line:

Architectural models:It is helpful for students to
see how the various architecture units of the system
are performing while a program is running. A student
could select/write the modules of interest such as: a
Register Stack Engine(RSE), branch predictor, cache
simulator etc.

Profiling: Profiling is a very common occurrence
when studying program behavior. It serves as the fun-
damental step prior to doing in depth analysis. Thus
profiling in conjunction with the data analysis pack-
ages would facilitate the study and generation of re-
ports that reflect how the system performed through
the run of the program based on the analysis the user
has asked for. Some of the profiling tools could ex-
tend from simply collecting the opcode frequencies
to observing the load referencing patterns where stu-
dents may study how far ahead loads were fetched and
record the actual use of the load. Yet another profil-
ing tool could be one that looked for redundant loads
and stores to the same location. PIN can facilitate this
by looking at the source and destination registers and
comparing them to see if the values are identical.

Trace collection:PIN is able of collecting traces of
the programs as they execute. While there exist many
tools that facilitate such a feature; the uniqueness of
PIN is that the trace could actually consist of register
values that are present at the time the instruction is be-

ing executed.

4.5 Future Development

Run-time program analysis is vital to understanding
the essence of computer programming and not limited
to comprehending the effectiveness of modern archi-
tecture designs. It applies to program writers at all
levels, from students to software developers and espe-
cially to those involved in that area of research. It is
vital to understand how a high level language such as
C/C++ gets transformed into low-level code that runs
on the underlying modern architecture since it affects
the performance of the machine.

Lately interest has been growing in optimizing pro-
gramming dynamically during their execution time -
dynamic optimizations. With binary instrumentation
tools, interesting research topics such as code caches,
feed-back directed optimizations etc. may be simpli-
fied and presented in the classroom as projects to en-
courage research interests in students. Students are not
aware of such concepts and presenting them with such
ideas could give way to newborn interests in pursing
the field further.

5 Conclusion

Instrumentation tools can be a vital teaching tool in the
classrooms. We propose PIN as such a tool because it
presents the students with live runs real compiled bina-
ries on real hardware on a custom simulator if desired
while also facilitating fine/coarse grained analysis and
instrumentation functions. We believe that the ability
to be able to merge all those into one program to be
used as a teaching tool is of tremendous significance.

The tool would be extremely vital in helping stu-
dents understand how programs are to be analyzed and
how how their behavior can be monitored while still
being able to teach them and making them understand
the architecture upon which their computer programs
run.

Acknowledgments

We would like to thank the Intel and Hewlett-Packard
Corporations for the donation of Itanium Processor
Family (IPF) systems. The systems allowed us to gain
valuable insight and experience with the Itanium ver-
sion of the PIN tool. Grant assistance in support of
this work was provided by the Intel Corporation. We
also extend our gratitude to Professor Dirk Grunwald
at University of Colorado at Boulder for sharing with
us his data analysis package - the Colorado Utility Tool
(CUT).



References

[1] A. Srivastava and A. Eustace. ATOM: A system
for building customized program analysis tools.
In Proceedings of the ACM Symposium on Pro-
gramming Languages Design and Implementa-
tion (PLDI’94), pages 196–205, 1994.

[2] Brorsson, Mats, ”MipsIt: A simulation and
development environment using animation
for computer architecture education, Proceed-
ings WCAE 2002”, Workshop on Computer
Architecture Education, Anchorage, AK,
May 26, 2002, pp. 65-72. Tool available at
http://www.embe.nu/mipsit

[3] Bryan Buck and Jeffrey K.Hollingsworth. An
API for runtime code patching. The International
Journal of High Performance Computing Appli-
cations, 14(4):317-329, Winter 2000.

[4] Doug Burger and Todd M. Austin and Steve Ben-
nett ”Evaluating Future Microprocessors: The
SimpleScalar Tool Set” Technical Report 1996-
1308, 1996.

[5] Greg Wolffe, William Yurcik, Hugh Osborne,
and Mark Holliday, published in the Proceedings
of the 33rd Technical Symposium of Computer
Science Education (SIGCSE 2002), ACM Press,
Northern Kentucky USA, Feb/March 2002.

[6] http://www.hpl.hp.com/research/linux/perfmon/index.php4

[7] Jason Blome, Manish Vachhajarani, Neil Vach-
hajarani, and David I. August., ”The Liberty
simulation environment as a pedagogical tool,”,
Workshop on Computer Architecture Education
(WCAE), June 2003.

[8] Kim Hazelwood and Michael D. Smith. ”Gen-
erational Cache Management of Code Traces in
Dynamic Optimization Systems,” 36th Annual
International Symposium on Microarchitecture
(MICRO-36). San Diego, December 2003, pp.
169-179.

[9] L.DeRose, Y. Zhang, and D. Reed. Svpablo: A
multilanguage performance analysis system. In
Proc. 10th International Conference on Computer
Performance Evaluation - Modeling Techniques
and Tools- Performance Tools ’98, pages 352–
355, 1998.

[10] London, K., Moore, S., Mucci, P., Seymour,
K., Luczak, R. ”The PAPI Cross-Platform In-
terface to Hardware Performance Counters,” De-
partment of Defense Users’ Group Conference
Proceedings, June 18-21, 2001.

[11] M. Burtscher. VPC3: A Fast and Effective Trace-
Compression Algorithm. Joint International Con-
ference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS04). June 2004.

[12] P.Lopez.
http://www.gap.upv.es/people/plopez/english.html

[13] Robert S. Cohn, Intel Corporation.
http://systems.cs.colorado.edu/Pin

[14] Vertical Profiling: Understanding the Behav-
ior of Object-Oriented Applications Matthias
Hauswirth, Peter F. Sweeney, Amer Diwan,
Michael Hind, 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications.


