Visualizing the MMIX Superscalar Pipeline — Not Only for
Teaching Purposes

Axel Bottcher

Munich University of Applied Sciences, Department of Computer Science/Mathematics
ab@cs.fhm.edu

Abstract

In this paper, we introduce an environment to visual-
ize the internal activities of superscalar processors.
The visualization environment is dedicated to the
MMIX-processor. It uses its pipeline simulator but is
implemented as a Plug-In to the Eclipse platform.

This environment helps to teach Computer Archi-
tecture on a less abstract level. It will be seen that
a lot about hardware can be learnt by using a piece
of software.

Additionally, this visualization environment would
introduce a state of the art IDE and familiarize the
students with it. This is a nice and important side
effect for general educational purposes.

1 Introduction

Understanding the behavior of modern superscalar
processors is becoming more and more difficult as
their complexity increases. The ability of processors
to simultaneously fetch several instructions and dis-
patch them to many parallel execution units, as well
as elaborated branch prediction schemes and multi-
level caches have an almost incomprehensible impact
on the execution. Although the execution is never-
theless deterministic. This makes it somewhat diffi-
cult to teach these topics without being too abstract.

In this paper we present a visualization environ-
ment for the pipeline simulator of Donald Knuth’s
MMIX-processor. This virtual processor has mainly
been designed for educational purposes and will be
used as a reference in forthcoming issues of "The
Art of Computer Programming". It is a state-of-
the-art RISC machine providing many features im-
plemented modern processors. During tha last few
years, this processor has proven to be very useful for
teaching undergraduate courses on computers and
IT-Systems.

Donald Knuth provides a complete environment
to write and simulate programs for this machine [1].

The summit is a simulator that simulates completely
pipelined versions of the processor, clock cycle by
clock cycle. This simulator is highly configurable
and thus can be used to simulate realistic models
of existing machines. Due to its unlimited config-
urability it is called Meta-MMIX, short mmmix. The
simulator is a very valuable high complex, although
well debugged program. Its output, however, is lim-
ited to a lot of textual information that can be gen-
erated to describe the machine’s state during each
clock cycle.

We developed a visualization environment to gen-
erate graphical representations based that textual
information. This tool is used to demonstrate in-
ternal behavior of superscalar processors. It is not
limited to demonstration purposes but can be used
to support experiments and also for other courses
than computer architecture. For example it could
be used in a course on compilers to study the effects
of register coloring or register spilling on program
behavior and performance.

We will present this visualization environment and
then briefly discuss some case studies of how it can
be used and what can be expected to gain from it.

2 The Visualization Environ-
ment

During execution of a program, the pipeline simula-
tor can display a large amount of information as text
output. Depending on the information requested,
this can amount to many kilobytes per clock cycle.
So there is a need for a post-processor to get the
most use out of that information. We used the open
source Eclipse platform [2] to implement a visual-
ization environment. Eclipse is a lean development
platform written in Java. It can be extended by own
contributions in an extremely flexible manner. A
side effect of using this tool is that the students are
familiarized with a state-of-the-art IDE.

Figure 1: Visualization of the processor configuration during one single clock cycle. Instructions will proceed
from left to right.

At the moment the pipeline visualization consists
of two main views: First, an overview of the config-
uration — see Figure 1 — showing in detail from left
to right:

e The fetch buffer content, i.e. those instructions
that have already been fetched (loaded) but are
not yet being executed.

e The execution units (titled The Pipeline Stages
in Figure 1) with all instructions being currently
executed. Instructions are taken from the fetch
buffer in strict program order and scheduled
(dispatched) to the units. However, the next
instruction can only be scheduled when there is
a unit available that is able to execute this type
of instruction. Execution itself will start as soon
as all the operands are available.

Those units for loading/storing (LSU) and for
floating point operations (FPU) are themselves
pipelined [1]. Thus a new instruction can be
scheduled as soon as the previous one has en-
tered the second stage.

e The reorder buffer (ROB) containing all instruc-
tions that are waiting for operands, being exe-
cuted, or having finished execution but have not
yet been committed. Execution of instructions
can end out of order, because — once on a unit —
some may stall due to long execution times, or
unavailability of operands e.g. during memory
accesses — a so called Read-After-Write hazards.

In Figure 1 we see three completed instructions
in the ROB (number 3 to 5; those with green
background), three in execution (the second,
sixth and seventh; yellow background), and two
instructions that are stalled (second and last;
blue background). Instructions will be commit-
ted and thus are leaving the ROB in strict pro-
gram order.

e The state of important resources like number of
available rename registers, write buffer entries,
or the program counter.

e Overview of memory activities indicated by ar-
rows between the components of memory hier-
archy. In the example we see that the D-Cache
is filled from main memory through the S-cache.

Furthermore an activity view window gives an
overview of the reorder buffer’s content and mem-
ory activity versus time. Each pixel in the diagram
of Figure 2 corresponds to one clock cycle. So the fig-
ure shows about 650 cycles (corresponding to 650ns
when we assume a clock speed of 1GHz!). The bar

graph in the upper half just represents the number
of instructions in the ROB. Coloring is as above:
blue for stalled instructions, green for finished in-
structions, and yellow for still executing instructions.
Sometimes we observe some finished instructions in
red color that will be discarded due to mispredicted
branches.

The involved execution units can not yet be de-
termined from this view; a double-click on the re-
quired cycle shows the details in the other window.
The lower part of the activity view shows activity
of the memory interface which is the main reason
for stalls in the pipeline. We omit the details here
concerning by which line can be concluded for what
reason the memory interface is busy (e.g. filling of
data/code/secondary caches or write back).

In more detail, Figure 2 shows the following main
steps:

1. Although the pipeline is stalled due to a load
operation, the memory interface is busy loading
new instructions. This has just been started
before the load was issued.

2. The requested data are supplied from the cache.
The instructions just loaded are scheduled,
some are committed and again new instructions
have to be fetched from main memory.

3. A few new instructions arrive but the fetch
of further instructions immediately stalls the
pipeline again.

4. Some new instructions have been fetched. But
same as above: new instructions are being
fetched just before the issue of a load operation.

The visualization environment is implemented as
a Plug-In to the Open Source development platform
eclipse [2]. The programming language for this exer-
cise is Java. This has several advantages: All facili-
ties Eclipse is offering can be used, e.g. handling of
dirty editors, project management, or progress indi-
cation.

The mmmix-simulator is run in a separate process
and just its output is parsed, so there is no need to
modify that program. An adapter class wraps the
process and thus allows integration into a Model-
View-Controller architecture.

3 Usage in Class

The most obvious possibility for usage of the en-
vironment are demonstrations done by the teacher.
The students may speculate which effects changes

Pipeline

y

activity
10
M i 4
emory
interface *.
activity

O 6

@ ti;e

Figure 2: Overview of the activity on the execution units and on the memory interface. The memory interface
shows (top to bottom) three types of activity in this example: filling of instruction cache, filling of secondary

cache, and filling of data cache.

to the configuration or changes to the program will
have during execution (most of the time also edu-
cated guesses come out to be wrong).

Secondly there are infinite possibilities for experi-
ments that can be done by the students themselves:
Trying to find all parameters of a real existing pro-
cessor and letting them simulate MMIX using this set
of parameters.

Furthermore the students can be asked to extend
the visualization itself. Eclipse is a highly modular
Java based system. We tried to follow the Model-
View-Controller paradigm with the implementation
of the Plug-In. As a framework we present inter-
faces where relevant information can be retrieved
and thus own views to MMIX’s pipeline interna can
be programmed by students. So we also have a basis
for complex software engineering student projects.

Finally, scientific investigations considering the in-
terworking of architectural parameters and software
can be done [3]. The visualisation helps to get a
quick overview of the system behavior.

4 Some Case Studies

4.1 Test configuration

We have configured the simulator to behave as far as
possible like the PowerPC 970 processor [4]. Since
there are no timing characteristics for access to main
memory available, we assumed 20 cycles to address
memory and to read/write data. Details can be
found in table 1; please note that each of the pa-
rameters can be changed nearly arbitrarily.

parameter value

ROB entries 120
max. ops dispatched/cycle 8
max. ops committed/cycle 5

Execution units 9 (see Fig. 1)

data-cache (L1) 64KB
instruction cache (L1) 64 KB
L2-Cache 512 KB
memory address time 20
memory read time 20
memory write time 20

Table 1: Used configuration values to adopt Pow-
erPC970 [4].

4.2 A very simple example

As a very first and quite silly example we will show
a drastic effect of a mispredicted branch which, how-
ever, we constructed artificially. The following code
snippet shows a long running operation FDIV (float-
ing point division — takes 40 clock cycles) and a
branch depending on its outcome.

1 Loc #100

2 Main FDIV $2,$1,%0
8 BNZ $2,1F

4 ADD $2,$2,1
5 ADD $3,%$3,1
6 ADD $4,$3,1
7 ADD $5,$3,1
8 ADD $6,$3,1

The subsequent fast additions will overtake (except
that one in line 4) So the instruction window (reorder
buffer) gets filled with finished but uncommitted in-
structions. Finally the branch will execute and turns

Figure 3: Effect of a mispredicted branch: many fin-
ished instructions have to be discarded in this par-
ticular case (red bars).

out to have been mispredicted. So all speculatively
executed instructions have to be discarded from the
reorder buffer. The activity view for this situation
can be seen in Figure 3. In practical applications up
to now we have not observed this extreme behavior.

4.3 Performance of Quicksort

To give a further rough overview of the possibilities
offered, we take a closer look at the execution of a
reference implementation of the quicksort algorithm.
Figure 4 shows the pipeline activity for 500 cycles,
each taken from three different sections. In part a.)
the execution during a partionioning step of the ar-
ray is shown with memory accesses to a cold data
cache. Long stalls due to pending load instructions
can be seen. Part b.) shows partinioning with mem-
ory access to warm cache. Thirdly, part c.) shows
execution during the end game with insertion sort
and also a warm cache. Each part has its own char-
acteristics. Partsb.) and c.) show a steadily running
pipeline, whereas in part a.) we have lots of instruc-
tions in the pipeline, most of them stalled. Here we
see a starting point for further program optimiza-
tion.

5 Limitations

Finally we have to comment on the limitations of the
pipeline simulator:

e The number of pipeline stages is fixed. For
better comparability with existing processors it
would sometimes be helpful, to insert some ad-
ditional stages (e.g. for register renaming).

e The memory/chipset interface is relatively in-
flexible. The only parameters to configure are a
memory address time and read/write times.

e There are no reservation stations. Thus issue
(schedule) of instructions to execution units is
always in order and stalls as soon as no unit for
the next instruction is available.

6 Conclusions and Further

Work

Simple examples of MMIX-programs for a superscalar
configuration have been demonstrated. Understand-
ing the details of the execution on a clock cycle ba-
sis is quite a tricky task and all but straightforward.
The visualization environment greatly supports the
understanding and analysis. Trouble spots are easier
to detect giving greater focus to investigations.

The visualization environment shall be extended
to cover cache details and to display more informa-
tion in the activity diagrams (e.g. types of instruc-
tions that are currently being executed) as well as
the state of more resources.

From mmix-plugin.sourceforge.net, the plugin
to visualize the MMIX-pipeline for the eclipse plat-
form can be downloaded. Eclipse itself is located at
eclipse.org.

7 Acknowledgements

The author wishes to thank Donald E. Knuth for
the nice MMIX-processor and for having motivated
this work, and Martin Ruckert for many helpful dis-
cussions

References

[1] D. E. Knuth, MMIXware: A RISC Computer
for the Third Millennium. Berlin, Heidelberg:
Springer-Verlag, 1 ed., 1999.

[2] E. Gamma and K. Beck, Contributing to eclipse
— Principles, Patterns, and Plug-Ins. Addison-
Wesley, 1 ed., 2004.

[3] A. Bottcher, “A visualization environment for su-
perscalar machines,” Facta Universitatis (to ap-
pear), vol. 16, 2004.

[4] P. Sandon, “Powerpc 970: First in a new family
of 64-bit high performance powerpc processors,”
IBM technical note, 2002.

i
o——
(LIRLLLLEY, RO RLLRARI AL LARUIRERRTRAY, RULARY) SRARLIRAIAARAERRANARALY, RAALIRALAARLLRS) BERASRELATRY, RALUARHA '.l.'.'.'.l.'.'.l

ial (6L (AL UHL AR a1 AR UL (R AR 8L AR R AL ERL BRI IR g 1l

Figure 4: Experiments with quicksort: a) cold cache, b) warm cache c) insertion sort.

