RTeasy
An Algorithmic Design Environment on Register

Transfer Level

Hagen Schendel, Carsten Albrecht, and Erik Maehle
Institute of Computer Engineering
University of Liibeck
{schendel, albrecht, maehle}@iti.uni-luebeck.de

Abstract

Current developer tools and HDLs for system de-
sign are powerful instruments and support a vari-
ety of abstraction levels but they are too complex
for didactic purposes. This paper describes the
RTeasy IDE, an algorithmic design environment
on register transfer level that has been developed
to provide a simple system-design tool for didactic
purposes to be used e.g. in introductory courses
in computer engineering and digital design. The
RTeasy tool suite includes an HDL, a simulator
and further design features. As an example, it is
applied to the design flow of a shift-multiplier.

1 Introduction

Nowadays, the design of complex systems and
the implementation of new architectures demands
high-level tool support. Different abstraction lev-
els such as the gate, the register, and the pro-
cessor levels are used to define and describe the
structure and behavior of new designs. Especially
the gate level is well-supported. Current hardware
description languages (HDL) such as VHDL [2],
Verilog, and ABEL [3] are utilized. Their inte-
grated development environments (IDE) provide
programming support, gate-level simulation, and
download opportunities to suitable devices. Unfor-
tunately, these languages and tools require a high-
level knowledge and experience of system design.
For educational purpose and due to the tremen-
dous number of functionalities most of the com-
mon tools are too difficult for beginners. In the in-
troductory course on computer engineering [4] and
its following lab course at our university, the regis-

ter transfer notation (RTN) of John P. Hayes [1] is
applied. Here, second-year students of computer
science are taught the principles of digital systems
and system design. Hayes’ RTN allows them to
create own hardware modules based on an algo-
rithmic description. Especially in a didactic view
this way of description is well chosen because of
the similarity of high-level programming and the
RTN. The IDE RTeasy backs the design flow with
editor, parser and simulator for a variant of Hayes’
RTN.

In the following the RTeasy tool suite is pre-
sented. Section 2 introduces the RTeasy HDL.
Then, the RTeasy IDE is described in Section 3
and applied in a small design example in Section 4.
Section 5 concludes the presented work.

2 RTeasy HDL

The RTeasy HDL is a register transfer language
based on RTN. In the following section the basic
modeling constructs of the RTeasy HDL are intro-
duced. Their usage is demonstrated by arbitrary
chosen parts of RTeasy HDL code. An RTeasy pro-
gram consists of two parts: declarations of com-
ponents and the program body containing a de-
scription of the algorithm. Registers, busses and
memories are the provided components and can be
declared as follows:

Registers and Busses are declared by an identifier
in uppercase letters and the number and or-
der of bits in brackets. In the brackets the left
number of the colon stands for the most signif-
icant bit (MSB) and the right one stands for
the least significant bit (LSB). The numbers
represent the indices used in the program.

Example:

declare register
STATUS(1:5), RDY
declare bus INTERNAL_BUS(7:0)

A(7:0),

A is an eight-bit register where the MSB has
index 7 and the LSB has index 0, STATUS is
a five-bit register with MSB index 1 and LSB
index 5, and RDY is a single-bit register which
does not need any indices. INTERNAL_BUS
is an eight-bit bus similar to register A. In
contrast to registers, busses hold their data
for only one clock cycle followed by a reset to
0. In hardware they are e.g. realized as signal
lines with tristate drivers.

Memories are declared by an identifier followed
by address and data registers enclosed in
brackets. These registers must be declared
beforehand.

Example:
declare memory MEM(AR,DR)

Here, AR is the address register and DR is
the data register. The memory dimension de-
pends on the size of the address register de-
termining its address space and the size of the
data register determining the memory-word
width. Data transfer between data register
and memory is triggered by the commands
write MEM and read MEM.

The program body generally describes a finite
state machine where each state includes some con-
current hardware operations given by data trans-
fers between registers or combined registers per-
formed directly or via busses. A simple timing
model is used with each statement executed in ex-
actly one clock cycle.

Each state or concurrent-command sequence is
separated by a semicolon and has the following
form:

[label :] concurrent operations ;
Note that a label can be left out. The semicolon
can be interpreted as a state transition and indi-
cates the end of a clock cycle. In general, the next
state is the one after the semicolon. For the modi-
fication of the succeeding state an absolute branch
command is provided:
goto /abel

It can be combined with the if-statement described
in the following to get a conditional branch.

The concurrently executed RT operations, see
below, per state are given by a comma-separated
sequence.

Example:
BUS «— A + B, RESULT + BUS

Note that only busses instantly take new values
that are written on it in the same clock cycle, reg-
isters do not take their new values until the end
of the clock cycle. The example above shows con-
currently executed RT operations and the use of
busses. The first RT operation writes the sum of
A and B on the bus BUS. The second RT opera-
tion switches the bus signals to the input ports of
the register RESULT. A trace of the input values of
RESULT shows after a half cycle that first all bits
are zero, then some hazards follow, and finally the
result of A 4+ B appears. In fact the observed val-
ues are the same as the output of the adder circuit
belonging to the expression A + B, delayed by the
bus delay.

In the following all statements which can build
up a concurrently executed statement sequence are
shown:

Conditional Statements have the form:

if expression then RT operations
[else RT operations] fi

The conditions are evaluated one half cycle
ahead of the RT operations they account for.
So, in general the evaluation bases on the
global state of all registers and busses at the
end of the preceded clock cycle.

The if-statements can be used wherever an
RT operation may occur. They may be nested
to any arbitrary level as this is only a conjunc-
tion of conditions easily realizable by AND
gates.

Expressions are used to model computations in
a similar way to high-level programming lan-
guages. Here, the operands are registers,
busses and bit-word constants instead of vari-
ables and constants. Parts of registers or
buses and single bits can be combined to com-
bined bit-words using the dot operator.

Example:

A — A(6:0).A(7)

The example shows a left rotation by one bit
of the 8-bit register A. Combined bit-words
are handled like normal registers or busses be-
cause they are only arbitrary combinations of
signals in hardware. Bit-word constants are
either positive decimal, binary led by % or
hexadecimal led by $.

The set of operators includes the binary oper-
ators +, —, <, <=,>,>=,=,<>, and, nand,
or, nor, xor and unary operators — (sign) and
not with usual precedences. The arithmetic
operators + and — generate a carry bit, thus,
the result is one bit wider than the widest
operand. All other operators deliver a result
being as wide as the widest operand. Miss-
ing bits of the smallest operand are extended
by leading zeros. For arithmetic operations
registers, busses and combined bit-words are
processed right-aligned. Logical operators op-
erate bitwise on bit-words.

Example:

A <> B # 1if A and B not equal
%L+ 7 # %1000 or 8
not B # B is bitwise negated

Comments can be inserted wherever it is nec-
essary by # as a line comment.

Register Transfer Operations are written as

combined bit-word <« expression
It is not allowed to transfer data from bus to
bus so that a bus can only be used on the left
or on the right side in an RT operation. This
is due to the fact that busses are realized
as signal lines. The triggering of an RT
operation results in signal propagation from
the circuit belonging to the expression to
the input ports of the combined bit-words
elements. When the triggering edge of the
operation units occurs the registers read their
input signals and save them for the next
cycle. When an RT operation writes on a
bus, the signal would be propagated through
other circuits representing expressions using
the bus.

On many points in the execution of algorithms
further computations depend on values evaluated
shortly before, i.e. in the same clock cycle.! The

1This has also been taken into account during the de-
sign of the C programming language regarding the ++i con-
struct.

application of RTeasy constructs defined above
does not allow to use the results of any RT op-
eration in the conditional expression of a condi-
tional statement in the same concurrent statement
sequence. The conditional expressions are evalu-
ated utilizing the global state of the preceding clock
cycle. So, there is no chance to realize a condi-
tional branch by a goto-statement embedded in
an if-statement if the conditions need the values
of the same clock cycle. The general solution is a
bulky conditional branch in the next state where
the first operation of the branch is included. In the
example below, the first program code consumes
two clock cycles because the conditional branch is
performed in a separate cycle although it would
be possible to avoid it. This problem occurs fre-
quently so that the introduction of a handy nota-
tion for these conditional branches is worthwhile.
That is why RTeasy provides an additional sepa-
rator: the pipe symbol. Now, a state can be of the
form:

[label :] concurrent operations | conditional branch ;.
The conditional branch which is an if-statement
only including goto-statements may use the re-
sults of the RT operations on the left side of the
pipe operator symbol. So, the pipe operator saves
one clock cycle per each step of the loop, see
the program example. For internal processing or
hardware implementations, the pipe symbol is ex-
panded to equal but bulky statements.

Example:

The RTeasy program

LOOP: COUNTER +« COUNTER + 1,
if COUNTER < 20 then
goto LOOP
else
do something
fi;
go on

can be refactored by

LOOP: COUNTER +« COUNTER + 1
| if COUNTER < 20 then goto LOOP;
do something

go on

The command nop must be used to indicate that
no RT operations should be triggered. It can be
used to describe a state with no signal output.

I RTeasy

Datei Bearbeiten Simulator Entwurf Beispiele Hilfe

|| Reset H Step H MicroStep | Run ‘ Breakpoints

B i d-multiplier.it 2577 2 S e

Declarations
declare register RESULT{15:0), A{15:0), B{7:0]
declare bus RUN, LNBUS(15:0), BDY, QUTBUS(15:0)

Behavior
: o A[15:E) <-D,
A(7:0].B <- INBUS,
RESULT <- 0,
if not RUN then goto IDLE fi;
i if B(D) then RESULT <- BESULT + & fi,

if B(7:1) <> 0 then B <- B(7:1), A <- A(14:0).A(L5), gove LOOP else RDY <- 1 fi;

: OUTEUS <- RESULT,
goto IDLE:

atnung: Zelle 8, Spalte &: Ausdruck in IFAnweisung enthaelt einen Bus. Dieser enthael zurm Zeitpunk der

Auswertung immer den Wert des gerade beendeten Takies!
Programm erfolgreich dbersetzt.

Laschen

Figure 1: Stepwise Simulation in RTeasy

3 RTeasy IDE & Simulator

The design concept of the IDE of RTeasy resembles
an assembler or embedded systems IDE. Actually,
the only thing still missing is an opportunity to
download developed designs to target devices. It
provides a text editor with usual functionalities
and a basic help system. The IDE has two work-
ing modes, editing and simulation. After launch-
ing RTeasy, the system is always set in editing
mode where programs can be written, loaded, or
saved. The simulation mode is entered by clicking
the ‘Simulate’ button. Then the system performs
syntactic and semantic analysis on the contents of
the editor window which is the upper window on
the left side in Figure 1. In case of a successful
analysis, the simulation status window which is
the upper one on the right side in Figure 1, pops
up. It contains all declared registers, busses and
memories in the sequence of their declaration. The
full memory contents can be shown in a separate
window. Each register and bus is depicted and
attributed with its dimensions and current value.
The contents of registers, busses, and memory cells
may be shown in one of five modes: binary, dec-
imal, signed two’s complement decimal, hexadec-

imal and signed two’s complement hexadecimal.
All values of registers, busses, or memory cells can
be interactively changed by the user. The simple
concept avoids complex layout problems as they
would occur by graphical representations such as
RT-level block diagrams and nevertheless displays
all relevant information.

Simulation Capabilities

The user controls the simulator by some buttons
well known from other simulation environments.
There are ‘Reset’, ‘Step’, and ‘Run/Stop’ with the
expected functionality and the ‘MicroStep’ button
explained below.

One ‘Step’ begins at each simulated clock cycle
with the triggering edge of the control unit. Note
that our RT designs can be split up into two units,
the control unit representing the algorithmic be-
havior and the operational unit including all hard-
ware components such as registers, busses, memo-
ries and arithmetic and logic units. The simulated
state is marked in the editor window, the upper
left one in Figure 1, by a colored background and
the contents of the status window shows the values
the registers, busses and memories have taken at
the end of this clock cycle. The values shown on

busses are reset at the end of each clock cycle be-
cause the control unit emits other control signals
at the beginning of the next cycle.

The ‘Run’ button launches a continuous execution
of the ‘Step’ simulation and changes its caption
to ‘Stop’ so that the next click aborts the infinite
simulation. Simulation may also end when the last
state is executed without a goto-statement or the
program quits because of the goto end-statement.
‘MicroStep’ provides a detailed view to the con-
current execution of RT operations. Although
they are executed concurrently this feature allows
the traversal through the states on an operation-
by-operation base. During the traversal the cur-
rently executed RT operations are marked yellow
whereas conditions not met are marked with ma-
genta background. The contents of the status win-
dow is consecutively updated as well ignoring their
concurrency. If the operations would be executed
in the order of appearance in the program ‘Mi-
croStep’ and ‘Step’ simulation would differ and
even the first one would not hold because busses
might not reach their final values. Thus, all bus
writes are simulated first.

In addition the IDE provides breakpoints which
are useful for debugging purposes.

Design Tools

Beyond modeling and simulating features RTeasy
IDE provides design tools for further system de-
velopment. These features are gathered in the
‘Design’ menu. They include extraction of con-
trol and conditional signals and model expansion.
The extraction of control and conditional signals
defines the input and output of the control unit.
RT operations are simply assigned with numbers
representing their triggering control signal lines.
Equal RT operations will be assigned to the same
number. Conditional signals are extracted from
if-statements. Boolean expressions that contain
expressions of other types such as arithmetic ones
are splitted, nested if-statements are flattened by
combining the boolean expressions. This flatten-
ing is necessary to build up the state transition ta-
ble of the control unit. Furthermore, conditional
signals that only occur together in state transition
tables can be merged by optimizations. Model ex-
pansion unfolds the right side of each pipe symbol
and merges nested if-statements to approach the
description of a synthesizable finite state machine.

Currently, the opportunities of the ‘Design’

menu will be enlarged by student research project.
The goal of this work is a function that gener-
ates VHDL code for control and operation unit.
The exported code can be used and simulated by
other tools such as Mentor Graphics’ FPGA Ad-
vantage [5].

4 RTeasy Example

The example shown in Figure 2 is a simple
shift/add multiplier. Its interface consists of two
16-bit busses, an incoming (INBUS) and an outgo-
ing one (OUTBUS), and two signals (1-bit busses):
RUN (in) and RDY (out). Furthermore, the model
makes use of two 16-bit registers A, and RESULT
and one 8-bit register B. The underlying algorithm
is quite simple:

1. As long as RUN is not set, read both factors
from INBUS. The first factor, which takes the
higher 8 bits, is transferred to the lower part
of register A. The second one, stored in the
lower 8 bits, is put to register B. The higher 8
bits of A and RESULT are initialized by zero.

2. For each bit k£ in B, beginning at the LSB with
index 0, add 2*-A to RESULT if By = 1.

3. During the last iteration RDY is set to 1 and
in the next cycle the contents of RESULT is
written on OUTBUS.

The addition of 2¥-A is realized by left-shifting of
A. The test B = 1 is realized by right-shifting B
and testing the LSB. The loop is aborted if the
remaining part of B does not contain any bit with
value 1.
The screenshot in Figure 1 shows that RTeasy
identifies 7 unique RT operations and 3 condi-
tional expressions. The conditional expressions are
mapped to input signals for the control unit and
the RT operations to output signals to affect the
behavior of the operation unit. The block diagram
of Figure 2(b) and the listing of Figure 2(c) are at-
tributed with these signals. Figures 2(a) shows the
composition and interconnection of the two units.
This example design contains three kinds of RT
operations with different effects shown in the block
diagram. Simple data transfer operations such as
C1 and C7 that only transfer data from one entity
to another. Then there are operations on regis-
ters such as shift, rotate, and set/reset operations
(C0,C2,C4,C5,C6). The RT operation triggered

RUN ———— —— RDY

INBUS — ——- OUTBUS
Control Unit

1]
ca
n
c1
&2 c7
Operation Unit
(a) System diagram.
INBUS | [RUN|=10
ClT
a * By
Co—= - 11
A | c+= B
C5— —= 12
rorite lgft i shif ight B7:0)<=0
RESULT + A
C3 T
]
a
c2>{ RESULT |
o 4 L
) E
OUTBUS Ce—== RO

(b) Block diagram of the operation unit.

Declarations
declare register RESULT(15:0), A(15:0), B(7:0)
declare bus RUN, INBUS(15:0), RDY, OUTBUS(15:0)

Behavior

IDLE: A(15:8) « 0, A(7:0).B — INBUS, RESULT « 0,
if not RUN then goto IDLE fi;

LOOP: if B(0) then RESULT « RESULT + A fi,
if B(7:1) <> 0 then B — B(7:1), A — A(14:0).A(15), goto LOOP
else RDY « 1 fi;

FINISH: OUTBUS <« RESULT, goto IDLE;

(c) RTeasy program code describing algorithmic behavior and usage of components.

Figure 2: Design example of a shift/add multiplier.

10
I1
12
12

C0,C1,C2

C3
C4,C5
C6
C7

by C3 is a special one. It involves an adder circuit
which is represented by the V-shaped symbol in
the block diagram.

The extracted information is used to generate
a Moore or Mealy state machine for the control
unit. These state machines can be minimized by
well-known techniques and implemented utilizing
their optimized switching functions taken from the
state transition table, one-shot circuits, or a mod-
ulo sequencer.

5 Conclusion

In this paper, an algorithmic design environment
on register transfer level is presented. The tool
bases on a modified version of the RTN introduced
by John P. Hayes [1]. The IDE is implemented
using Java and works fine on different platforms
such as Solaris, Linux and Windows 2000/XP.
In the last winter term, its usability was tested
and proven by the application in the introduc-
tory course of computer engineering. Second-year
students of computer science quickly accepted the
tool and easily applied the IDE at home and at the
university to solve exercises and to deepen their
acquired knowledge of system design. Moreover,
they have supported the development of RTeasy
with critical remarks and useful proposals for im-
provement.

In contrast to previous paper designs it was
know possible for them to test and debug their
algorithms with the simulator. Furthermore, the
simulation proved to be very helpful in introduc-
ing basic RT algorithms in the lectures replacing
”hand simulations“ on the blackboard.

Beside the generation of VHDL code, the future
work includes the extension of simulation features
as well as more design tools. It is planned to in-
clude the generation and viewing of VCD (Value
Change Dump) traces of register and bus values
into the IDE. Additionally, a capability of unit
tests should be implemented to support the proof-
reading of student exercises and automatic testing
of complex designs.

References

[1] John P. Hayes. Computer Architecture and
Organization. McGraw-Hill, 3rd Edition,
1998.

[2] Peter J. Ashenden. The Designer’s Guide to
VHDL. Morgan Kaufmann, 1995.

[3] Lattice Semiconductor Corporation. ABEL-
HDL Reference Manual. Reference Manual,

[4]

DSNEXP-ABL-RM Rev 8.0.2, 2003

Erik Maehle. Technische Grundlagen der In-
formatik. Course script, Institute of Com-
puter Engineering, University of Liibeck, Ger-

many, 2003.
Mentor Graphics Corporation.
Advantage. Datasheet, 2003

FPGA-

