
WCAE 2003

Proceedings of the

Workshop on Computer
Architecture Education

in conjunction with

The 30th International Symposium
on Computer Architecture

2003 Federated Computing Research Conference

Town and Country Resort and Convention Center b
San Diego, California

June 8, 2003

Workshop on Computer Architecture Education
Sunday, June 8, 2003

Session 1. Welcome and Keynote 8:45–10:00

8:45 Welcome Edward F. Gehringer, workshop organizer
8:50 Keynote address, “Teaching and teaching computer Architecture: Two very different topics (Some

opinions about each),” Yale Patt, teacher, University of Texas at Austin 1

Break 10:00–10:30

Session 2. Teaching with New Architectures 10:30–11:20

10:30 “Intel Itanium floating-point architecture,” Marius Cornea, John Harrison, and Ping Tak Peter
Tang, Intel Corp. ... 5

10:50 “DOP — A CPU core for teaching basics of computer architecture,” Miloš Be vá , Alois Pluhá ek
and Ji í Dan ek, Czech Technical University in Prague ... 14

11:05 Discussion

Break 11:20–11:30

Session 3. Class Projects 11:30–12:30

11:30 “Superscalar out-of-order demystified in four instructions,” James C. Hoe, Carnegie Mellon
University ... 22

11:50 “Bridging the gap between undergraduate and graduate experience in computer systems studies,”
Lori Carter and Scott Rae, Point Loma Nazarene University ... 28

12:05 “Integration of computer security laboratories into computer architecture courses to enhance
undergraduate curriculum,” Jayantha Herath and Ajantha Herath, St. Cloud State U. and U. of
Dubuque .. 36

12:20 Discussion

Lunch 12:30–2:00

Session 4. Teaching Techniques 2:00–3:30

2:00 “Combining learning strategies in a first course in computer architecture,” Patricia Teller, Manuel
Nieto, and Steve Roach, U. of Texas at El Paso ... 41

2:25 “Building resources for teaching computer architecture through electronic peer review,” Edward
F. Gehringer, North Carolina State University ... 49

2:40 “Laboratory options for the computer science major," Christopher Vickery and Tamara Blain,
Queens College of CUNY .. 57

2:55 “Activating computer architecture with Classroom Presenter,” Beth Simon, U. of San Diego; and
Richard Anderson and Steven Wolfman, U. of Washington .. 64

3:15 Discussion

Break 3:30–4:00

Session 5. Simulation Environments 4:00–5:40

4:00 “The Liberty simulation environment as a pedagogical tool,” Jason Blome, Manish Vachhajarani,
Neil Vachhajarani, and David I. August, Princeton University .. 72

4:25 “Multimedia components for the visualization of dynamic behavior in computer architectures,”
Peter Marwedel and Brigit Sirocic, U. of Dortmund .. 79

4:40 “Didactic architectures and simulator for network processor learning,” Henrique Cota de Freitas
and Carlos Augusto P. S. Martins, Pontifical Catholic U. of Minas Gerais 86

5:00 “On the introduction of reconfigurable hardware into computer architecture education,” Ross
Brennan and Michael Manzke, Trinity College, Dublin ... 96

5:15 “Use of HDLs in teaching of computer hardware courses,” Zvonko Vranesic and Stephen Brown,
U. of Toronto .. 103

5:30 Discussion

Teaching and Teaching Computer Architecture: Two Very different topics
(Some Opinions about each)

Yale N. Patt
teacher, The University of Texas at Austin

Abstract

This year’s Computer Architecture Education work-
shop is remarkable in its recognition that to teach com-
puter architecture well, one has to pay attention to two
things (a) teaching and (b) computer architecture. Hav-
ing been doing both for a good number of years, I har-
bor a fair number of opinions on what one should do
and what one should not do with respect to each. This
talk will get into some of those opinions. With respect
to teaching, I will discuss some of my Ten Command-
ments of Good Teaching, what I think of distance learn-
ing, political correctness, emphasis on memorization, the
inability of American students to write English, the value
of having students study in groups, and what I feel is of-
ten the sad misuse of technology. Most importantly, I
will discuss my motivated bottom up approach to learn-
ing. With respect to teaching computer architecture, I
believe the single most important point to get across is
that computer architecture, if it is a science at all, is a
science of tradeoffs. The student is best served if he/she
thoroughly understands the fundamental principles so as
to be able to make the appropriate tradeoffs in reaching
a particular design objective. I also plan to discuss the
use (and too often, misuse) of measurements, simulation,
and real ISAs as opposed to concocted ISAs.

1 Introduction
I have been asked to provide copies of the transparen-

cies I will use in my Keynote Address. I have added
some annotated text to hopefully provide some context.

Knowing from past experience that the dynamic
schedule of my talks usually bears only casual resem-
blance to the static schedule that I prepared ahead of
time, I provide these copies somewhat timidly.

Figure 1 is from a talk I gave last fall at the annual
Visions Lecture of the Computer Sciences Department
at The University of Texas at Austin. The subject was
Education. I was asked to give my dream for an ideal
future with respect to education.

� Distance Learning produces better education, not
cheaper education

� We pay teachers enough that those who would opt
for this career don’t opt for medical school instead

� We teach high school English teachers enough En-
glish that students at the University can write two
consecutive coherent sentences

� We get past this insane preoccupation with political
correctness, so we can get on with the business of
teaching and learning

� We stop canonizing the use of high tech education.
Bad pedagogy is NOT good pedagogy if draped in
technology

� We stop rewarding memorization ability, so maybe
students will learn to think,...and perhaps under-
stand

Figure 1. Visions (Re: Education)

The remaining figures deal with the two parts of my
talk, a focus on teaching, and a focus on teaching com-
puter architecture.

2 Focus on Teaching

Teaching involves at least three things: how to teach
(Section 2.1), what to teach (Section 2.2), and what aids
to use in the process (Section 2.3).

2.1 My Ten Commandments of Good Teaching

Someone suggested I come up with a set of command-
ments for good teaching. For historical reasons, they
thought ten would be a good number. So, I set out to
do it, and came up with nine. Ergo, note the tenth one.
On sober reflection, that one in itself is a tenth command-

1

ment. So, the list on Figure 2 really does contain ten, not
nine as some have commented.

� Know the material
� Want to teach
� Genuinely respect your students and show it
� Set the bar high; students will measure up
� Emphasize understanding; de-emphasize memo-

rization
� Take responsibility for what is covered
� Don’t even try to cover the material
� Encourage interruptions; don’t be afraid to digress
� Don’t forget those three little words
� Reserved for future use

Figure 2. My Ten Commandments of Good
Teaching

2.2 Emphasis on the Fundamentals

My emphasis on teaching the fundamentals has been
part of me forever. No doubt my PhD students get tired
of hearing about it. For example, I believe that an ap-
propriate PhD qualifier is not a written test on some ad-
vanced course in the graduate curriculum, but rather an
oral exam on the fundamental concepts found in relevant
senior level undergraduate courses.

My view is simple: research, development, prob-
lem solving are all about breaking problems down into
small pieces and working with the small pieces until the

� Top-down design, Bottom-up learning for under-
standing

� Abstraction is vital, but...
� Not bottom-up, but ”motivated” bottom-up
� Engineering is about DESIGN, first understand the

components
� From Concrete to Abstract (Dijkstra notwithstand-

ing)
� Cut through protective layers
� Memorizing is not understanding
� Students do better working in groups

Figure 3. Some thoughts on what is impor-
tant

Figure 4. My motivated bottom-up ap-
proach

”Aha!” happens. How well someone can do that depends
on how well that person has mastered the fundamentals.

My views crystallized particularly strongly with the
development of our ”new” introduction to computing,
which we first developed at Michigan in the mid-90s[1]
and later turned into a textbook, published by McGraw-
Hill[2]. My view of what is important is expressed in
Figure 3. More specific detail of the motivated bottom-
up approach is shown in Figure 4.

2.3 High Tech in the Classroom
There seems to be a preoccupation with using tech-

nology in the classroom. Certainly, there is much that
can be done with technology to improve learning. I am
concerned that in our leap to technologize everything, we
are developing some very bad pedagogy under the um-
brella of ”using technology.” Figure 5 shows some com-
mon uses. Figure 6 lists some serious concerns.

3 Focus on Teaching Computer Architec-
ture

We are lucky. We get to teach computer architecture.
Some will tell you that computer architecture is dead,
that the microprocessor is to computing like a brick is
to buildings. Wrong. Computer architecture is the in-
terface between what technology can provide and what
the marketplace demands. Technology continues to pro-
vide more and more. We are told that within a very few

2

� Email
� Web site
� Power Point
� Document Reader
� Animations
� Plato, vintage 2003
� Clever attendance mechanism
� Other bookkeeping
� Text+Voice (WOW Factor,

see Shriver’s CDROM)[3]

Figure 5. Some uses of high tech

� Baseline Power Point
� Cost
� Extemporaneous Effect
� Visual/voice disconnect
� Attendance vs. Participation

Figure 6. Some caveats associated with us-
ing high tech

years, each chip will contain more than a billion transis-
tors. And the marketplace continues to demand more. In
fact, the higher and high performance chip becomes an
important enabler. As we develop more, the marketplace
dreams of more things it needs.

Contrary to being dead, computer architecture is in
a constant state of high volatility. The state-of-the-art
examples we studied yesterday are boring today.

Computer architecture will always be alive and
healthy as long as people continue to dream up new
needs for our future products. The design points may
change. Not just higher performance, but higher reliabil-
ity, availability, cheaper cost, and more power-sensitive
designs, for example.

Within that framework, what do we teach. In my
view, we focus on three things: the fundamental princi-
ples (which do not change, or change very, very slowly),
the tradeoffs that always result, and the concrete imple-
mentation of those principles.

Figure 7 identifies a number of the fundamentals, Fig-
ure 8 (levels of transformation) and Figure 9 (three parts
of a microarchitecture) elaborate on two of them. Fig-
ure 10 lists some concerns.

� The transformation hierarchy
� Three parts of a Microarchitecture
� The DSI
� IPC vs. cycle time
� Partitioning

Figure 7. Some fundamentals of computer
architecture

� Problems
� Algorithms
� Programs
� ISA
� Microarchitecture
� Circuits
� Devices

Figure 8. Levels of Transformation

Instruction
Supply

Data Path

Data Supply

Perfect I−Cache

Data when needed

Perfect Data Flow

Irregular Parallelism

Enough Functional Units

Perfect Intraconnect

No Packet Breaks

100% Br. Pred.

Figure 9. The Microarchitecture

� Focus on Measurements
� Use of Simulation
� Real ISA vs. Concocted ISA

Figure 10. Some concerns

3

� the new data path
� internal fault tolerance
� asynch and synch co-existing
� different cycle times for different functions
� SSMT (aka helper threads)
� Block-structured ISA
� uarch support for CAD
� greater use of microcode
� greater impact of the compiler
� compiler/uarch communication

Figure 11. The Microprocessor ten years
from now (perhaps)

Finally, because a course in Computer Architecture is
not only about what is, but also about preparing the stu-
dent for what will be, it should also give our best current
guess into the future (see Figure 11).

References
[1] Y. N. Patt. The First Computing Course for CS, CE, and

EE Majors at Michigan. InThe Interface, pages 1–3,
November 1998.

[2] Y. N. Patt and S. J. Patel.Introduction to Computing Sys-
tems: From Bits and Gates to C and Beyond. McGraw-
Hill, 2001.

[3] B. D. Shriver and B. Smith.The Anatomy of a High Per-
formance Microprocessor: A Systems Perspective. IEEE
Computer Society Press, 1998.

4

Intel® Itanium® Floating-Point Architecture
 Marius Cornea, John Harrison, and Ping Tak Peter Tang
 Intel Corporation
Abstract

The Intel® Itanium® architecture is increasingly
becoming one of the major processor architectures
present in the market today. Launched in 2001, the Intel
Itanium processor was followed in 2002 by the Itanium
2 processor, with increased integer and floating-point
performance. Measured by the SPEC CINT2000
benchmarks, the Itanium 2 processor still trails by about
25% the Intel P4 processor in integer performance,
albeit P4 runs at more than three times Itanium’s clock
frequency. However, its floating-point performance
clearly leads in the SPEC CFP2000 charts, and its
rating is about 25% higher than that of the P4
processor. While the general features of the Itanium
architecture such as large register sets, predication,
speculation, and support for explicit parallelism [1]
have been presented in several papers, books, and
mainstream college textbooks [2], its floating-point
architecture has been less publicized. Two books, [3]
and [4], cover well this area. The present paper focuses
on the floating-point architecture of the Itanium
processor family, and points out a few remarkable
features suitable to be the focus of a lecture, lab session,
or project in a computer architecture class.

Introduction
The performance of today’s processors continues to
increase. But the physical limits for the manufacturing
technology will eventually be reached, rendering
Moore’s Law inapplicable. Substantial further advances
can be attained only by allowing a processor to operate
on more bits at a time, and to execute more instructions
in parallel. This was the motivation that led to the
design of the Itanium processor family. Based on the
EPIC (Explicitly Parallel Instruction Computing)
design philosophy [5], the Itanium architecture was co-
developed by Intel Corporation and Hewlett-Packard
Company, combining the best in the RISC and VLIW
architectures, while also adding several features
originating from recent research studies in processor
architecture. The result is a processor architecture that
can handle a large amount of work based on its ability
to feed instructions quickly to several execution units.

To date, two implementations of the Itanium
architecture have been introduced by Intel Corporation.
The Itanium processor provided hardware man-
ufacturers and software writers with a first development
vehicle. The second implementation, represented by the

Itanium 2 processor, increased the performance level of
the Itanium processor by a factor of 1.5 to 2 in several
cases.

Itanium processors target the most demanding
enterprise and high-performance computing
applications, addressing the growing needs for data
communications, storage, analysis and security, while
also providing performance, scalability and reliability
advantages at significantly lower costs than before.

Common desktop applications have no immediate need
for the computing power or addressing capabilities of a
64-bit processor, but an increasing number of mid-
range and high-end applications already do, or will
soon, require such capabilities. These are mainly
programs that demand a lot of memory space and/or
perform a large amount of computation. Examples
include applications accessing large databases or
delivering Internet content, programs that use 64-bit
long integers, and data-intensive applications solving
scientific and engineering problems. Itanium processor
features that benefit the latter category will be the focus
of the present paper.

Scientific and engineering applications that can take
advantage of the increased floating-point performance
of Itanium processors include among others quantum
chromodynamics (QCD), quantum mechanics,
molecular simulation, cell research, or new drug
discovery applications, computer-aided design tools,
and solvers for large equation systems used in a variety
of scientific and technical problems. Digital content
creation applications that require high bandwidth, large
memory, and powerful floating-point performance are
also going to benefit from running on Itanium
processors. Such applications can run very slowly on
workstations based on 32-bit processors because of the
smaller data item size, and also because of the
continuous data traffic between storage disks and the
memory system. Reduced swapping between memory
and disk on Itanium-based systems are likely to
increase performance of some applications by up to two
orders of magnitude.

Itanium Floating-Point Architecture
The Itanium floating-point architecture has been
designed to combine high performance and good
accuracy. A large floating-point register set of 128
registers is provided, and almost all operations can read
their arguments from, and write their results to,

5

arbitrary registers. Together with register rotation for
software-pipelined loops, this large number of registers
allows the encoding of common algorithms without
running short of registers or needing to move data
between them in elaborate ways. Registers can store
floating-point numbers in a variety of formats, and the
rounding of results is determined by a flexible
combination of several selectable defaults and
additional instruction completers.

The basic arithmetic operation, the floating-point
multiply-add (fused multiply-add), allows higher
accuracy and performance in many common
algorithms. Several additional features are also present
to support common programming idioms. The fused
multiply-add operation combines two basic floating-
point operations in one, with only one rounding error.
Besides the increased accuracy, this can effectively
double the execution rate of certain floating-point
calculations, as the fused multiply-add operation forms
an efficient computation core that maps perfectly to
several common algorithms used for technical and
scientific purposes. The fused multiply-add operation
creates the possibility of implementing new algorithms,
such as software-based division and square root
operations. As execution units are pipelined, a division
or square root operation does not block the floating-
point unit for the entire duration of the computation,
and several other operations can be initiated or carried
out in parallel.

The large number of floating-point registers available,
of which some are static and some are rotating, allows
for efficient implementation of complicated floating-
point calculations. An illustration of software and
hardware interaction in the Itanium architecture, this is
achieved on one side by avoiding frequent accesses to
memory, and on the other through software pipelining
of loops containing floating-point computations. For
example, the throughput for division operations can be
as high as one result for every 3.5 clock cycles on the
Itanium and Itanium 2 processors.

Floating-Point Formats

The IEEE Standard 754-1985 for Binary Floating-Point
Arithmetic [6] mandates precisely defined floating-
point formats referred to as single precision and double
precision. As well as these IEEE-mandated formats,
Intel architectures have traditionally supported a
double-extended precision type, with 64 bits of
precision and a 15-bit exponent field. In current IA-32
implementations, results computed in the floating-point
register stack may be rounded to 24, 53 or 64 bits of
precision. Although the first two precisions coincide
with the IEEE single and double precision, the
precision control setting in IA-32 processors does not

affect the exponent range, as the exponent uses a 15-bit
field until the number is actually written back to
memory. Although the greater exponent range is
normally advantageous, it can lead to subtle variations
in underflow and overflow behavior depending on
exactly when a result is written to memory (which may
be compiler-dependent and hard to predict).

In order to maintain the useful extra exponent range but
allow the user complete control over rounding, the
Itanium architecture allows for both conventional single
and double precision formats and formats with the same
precision but a 15-bit exponent field. In addition, a still
wider exponent field of 17 bits is provided in each case,
a very useful feature for intermediate calculations with
double-extended precision numbers. This means that
there are actually eight floating-point formats directly
supported by the Itanium architecture, shown in Table
3-1.

Table 3.1. Floating-Point Formats Available in the
Itanium Architecture

Format Precision Exponent
Bits

Exponent
Range

Single 24 8 –126 to
127

Double 53 11 –1022 to
1023

Double
extended

64 15 –16382 to
16383

IA-32
stack
single

24 15 –16382 to
16383

IA-32
stack
double

53 15 –16382 to
16383

Register
single

24 17 –65534 to
65535

Register
double

53 17 –65534 to
65535

Register 64 17 –65534 to
65535

Register and Memory Encodings

The Itanium architecture specifies 128 floating-point
registers f0, f1, ..., f127. Register f0 is hardwired to
+0.0 and f1 to +1.0, and both are read-only, but all
other registers are available for reading and writing.
Each register is 82 bits long, with a 64-bit significand
(using an explicit integer bit), a 17-bit exponent field
and a 1-bit sign. The exponent bias has the value 65535,
or 0xFFFF (hexadecimal).

6

Certain values, such as NaNs, are neither negative nor
positive. Special encodings, such as zeros, infinities,
pseudo-zeros, pseudo-denormals, NaNs, pseudo-NaNs,
pseudo-infinities, or NaTVal are all possible. Some of
these special categories are explained below.

The minimum (biased) exponent value of 0 is reserved
for double-extended real denormalized numbers
(denormals), and for pseudo-denormals. The maximum
(biased) exponent value of 131071, or 0x1FFFF, is
reserved for special numbers such as infinities and
NaNs.

Other exponent values, between 0 and 0x1FFFE in
biased form, are used for finite numbers. The value in a
floating-point register with sign s, biased exponent e
and significand m0m1m2…m63 is determined by the
following formula for biased 17-bit exponents between
1 and 0x1FFFE:

 (–1)s 2 e–65535 m0.m1m2…m63

and the following for biased exponents that are zero:

 (–1) s 2 –16382 m0.m1m2…m63

The register encoding is redundant: the same real value
can sometimes be represented in several different ways.
This is a consequence of the presence of an explicit
integer bit, and is true of all floating-point formats that
support it. For example, one can have positive pseudo-
zeros with significand equal to zero but exponent from
0x000001 to 0x1FFFD rather than zero. Most of these
alternative representations of the same number are
equally acceptable as inputs to floating-point
operations, the only exceptions being the unsupported
numbers with exponent 0x1FFFF and integer bit 0
(pseudo-infinities and pseudo-NaNs). In particular, the
user can freely operate on arguments of mixed format
without any time-consuming format conversions. This
is often useful, especially when:

 Using double-extended intermediate precision
calculations to compute a double precision function.
The double precision input argument can be freely
combined with double-extended intermediate results.

Computing functions involving constants with few
significant digits. Whatever the precision of the
computation, the short constants can be stored in single
precision.

However, results of floating-point operations, and
floating-point values loaded from memory, are always
mapped to fixed canonical representatives in the
register.

Note that the subsets of positive and negative register
format numbers are almost symmetrical, with only two
exceptions. First, NaTVal, the special Not a Thing
Value quantity used to track floating-point

computations that encounter failed speculative loads,
has an encoding as an otherwise unused positive
floating-point number: positive sign, biased exponent of
0x1FFFE and significand of 0 (a pseudo-zero). Second,
encodings with a positive sign and a biased exponent of
0x1003E (corresponding to the unbiased decimal value
of 64) are used also for canonical integers, and for
SIMD1 floating-point numbers (pairs of 32-bit single
precision numbers). These are stored in the significand
portion of a floating-point register.

The register encoding used differs from the encoding
used when floating-point values are stored in memory.
Single precision and double precision floating-point
numbers are stored in the memory format specified by
the IEEE Standard, with exponent biases of 127 (0x7F)
and 1023 (0x3FF) respectively, and no explicit integer
bit. Double-extended and register format numbers are
stored in a more direct mapping of the register contents
(the exponent bias for double-extended values is
0x3FFF).

For example, the value of a single precision floating-
point number with sign s, biased exponent e and
significand m0m1m2…m23 stored in memory is
determined by the following formula for biased 8-bit
exponents between 0x1 and 0xFE:

(–1)s 2 e–127 m0.m1m2…m23

and the following for biased exponents that are zero:

 (–1)s 2 –126 0.m1m2…m23

For double precision values, the exponent bias to
subtract from the exponent e is 1023, and denormals
have an exponent of –1022. For double-extended
precision values, the exponent bias is 16383, and
denormals have an exponent of –16382.

Status Fields and Exceptions

Given the number of floating-point formats available in
the Itanium architecture, it is important to have a
flexible means of specifying the desired floating-point
format for a particular result to be rounded into, as well
as the direction of rounding (e.g. rounding to nearest or
truncation). Moreover, in accordance with the IEEE
Standard, floating-point operations on the Itanium
architecture not only produce results, but may
optionally trigger exceptions or record exceptional
conditions by setting sticky status flags. It would be
impractical to encode all this information into the

1SIMD is an acronym for Single Instruction and
Multiple Data, a form of parallel computing in
which one operation is performed in parallel on
multiple sets of operands.

7

format of each instruction, so some global status and
control word is necessary for specifying options as well
as recording exception flags. On the other hand, having
only a single record would be inconvenient where there
are several parallel threads of control, or where
exceptions in some intermediate instructions need to be
ignored. Therefore, the Itanium architecture features
four different status fields which can be specified by
completers in most floating-point instructions. An
instruction with a given status field completer is then
controlled by, and records certain information in, that
status field.

A 64-bit Floating-Point Status Register (FPSR)
controls floating-point operations and records
exceptions that occur. The FPSR contains 6 trap dis-
able bits that control which floating-point exception
conditions actually result in a trapped exception (where
control passes to the OS and possibly to a user handler),
and which are merely recorded in sticky status flags.
These bits control the five IEEE Standard exceptions:
invalid operation (vd), division by zero (zd), overflow
(od), underflow (ud) and inexact result (id), as well as
the additional denormal/unnormal operand exception
(dd), which occurs if an input to a floating-point
instruction is an unnormalized number. In addition to
this field, the FPSR contains four 13-bit status fields,
denoted in the assembly language syntax by s0, s1, s2
and s3.

Each status field can be divided into two parts: flags
and controls. The six flags are bits that record the
occurrence of each of the 6 exceptions mentioned
above, when exceptions are masked, or, for the
overflow, underflow or inexact result exceptions, also
when they are enabled (unmasked). These flags are
sticky, meaning that later operations that do not cause
exceptions will not set flags back to 0, so the
occurrence of an exception anywhere in a computation
sequence will be apparent at the end of that sequence.
Of the control part, one bit (td) allows all exceptions to
be disabled irrespective of the individual trap disable
bits from the FPSR (often useful in intermediate
calculations). The remaining 6 bits control the rounding
mode, precision and exponent width, and the flushing to
zero of tiny2 results.

2The IEEE Standard allows for two methods of
determining whether a result is tiny. Intel
architecture processors choose to define a result
as being tiny if the exact value rounded to the
destination precision while assuming an
unbounded exponent is less than the smallest
normal value that can be represented in the
given floating-point format.

The pc and wre fields together determine the floating-
point format into which the result will normally be
rounded. The rounding control rc determines the IEEE
rounding mode.

Although the status fields determine the default
rounding behavior of operations, it is often possible to
override them by explicit completers. This applies, for
example, to many of the instructions to be discussed
below. If an instruction has an explicit .s or .d
completer, then the destination format is single or
double precision respectively, except if the wre flag is
set, in which case register single or register double is
used.

Software conventions for the FPSR determine many of
the appropriate applications for particular status fields.
Typically, s0 is the main user status field used for most
floating-point calculations. Status field s1, with wre
enabled and all exceptions disabled, is used for
intermediate calculations in many standard numerical
software kernels such as those for division, square root,
and transcendental functions. Status fields s2 and s3 are
also commonly used for speculation. The default setting
of the FPSR is such that all status fields use the 64-bit
precision, the round-to-nearest rounding mode, and
have floating-point exceptions and the flush-to-zero
mode disabled. Only status field s1 uses the widest-
range exponent.

The Floating-Point Multiply-Add

In most existing computer architectures, there are
separate instructions for floating-point multiplication
and floating-point addition. In the Itanium architecture,
these are subsumed by a more general instruction, the
floating-point multiply-add or fused multiply-
accumulate, which takes three arguments, multiplies
two of them and adds in the third. The basic assembly
syntax is:

 (qp) fma.pc.sf f1 = f3, f4, f2

which sets f1 = f3 f4 + f2. Note that no intermediate
rounding is performed on the result of the
multiplication, and the result is written to f1 as if it were
first computed exactly and then rounded, in a natural
extension of the way conventional arithmetic operations
are specified to behave in the IEEE Standard. The
rounding of the result and the triggering of exceptions
is controlled by the status field specified by the sf
completer and possibly by the FPSR trap disable bits,
except that the rounding precision from sf may be
overridden by an optional precision control completer
pc.

Since the floating-point registers f0 and f1 are
hardwired to the values +0.0 and +1.0 respectively,
addition and multiplication can easily be implemented

8

as special cases of the fma: x + y = x 1 + y and x y =
x y + 0. In fact, the floating-point addition and
multiplication assembly instructions

 (qp) fadd.pc.sf f1 = f3, f2

 (qp) fmpy.pc.sf f1 = f3, f4

are simply pseudo-operations that expand into

 (qp) fma.pc.sf f1 = f3, f1, f2

 (qp) fma.pc.sf f1 = f3, f4, f0

respectively. In order to change signs, there are two
variants of the fma: the fms (floating-point multiply-
subtract) and fnma (floating-point negative multiply-
add). The instructions

 (qp) fms.pc.sf f1 = f3, f4, f2

 (qp) fnma.pc.sf f1 = f3, f4, f2

 compute f1 = f3 f4 – f2 and f1 = –f3 f4 + f2 respectively.
Floating-point subtraction

 (qp) fsub.pc.sf f1 = f3, f2

is likewise a pseudo-operation for

 (qp) fms.pc.sf f1 = f3, f1, f2

An even more degenerate instance of fma, called fnorm
(floating-point normalize) can be used to round a result
into a given floating-point format. This can be used as a
‘lowering’ operation to convert a value to a smaller
floating-point format, but the most common use is just
to ensure that the number is normalized. (This is often
useful, because processing unnormalized values is
slower in most cases than performing an fnorm
followed by the intended operation.) This rounding to a
canonical value is accomplished by the standard fma
behavior, and so fnorm.pc.sf f1 = f3 is simply a pseudo-
operation for fma.pc.sf f1 = f3,f1,f0.

It was stated above that the fma behaves in accordance
with the IEEE Standard. Strictly speaking, that standard
does not cover the fma instruction, but all the
stipulations are extended to it in a natural way.
However, there is some subtlety over the signs of zero
results.

If the result of an fma without the final rounding would
be nonzero, then should it round to zero, the sign of the
final zero will reflect the sign of the exact result. This
of course is the ‘correct’ decision, but is a non-trivial
extrapolation of the IEEE Standard. Here, the sign rules
for multiplications and divisions are obvious (the
exclusive or of the input signs). And for addition and
subtraction, when the rounded result is nonzero, the
exact result must be too (in a fixed floating-point
format), so only the special case of exactly zero results
needs to be dealt with.

Now consider the case when the result of an fma
instruction without rounding is exactly zero. Normally,
the sign of x y + z is determined by multiplying the
signs of x and y to give a sign for the intermediate
result, then using the rules of the IEEE Standard,
treating w + z as if it were an ordinary sum. However,
this is not appropriate for considering the ordinary
product a special case of the fma. For example, (+1.0)
(– 0.0) + (+0.0) would give +0.0, whereas the IEEE-
specified product is (–0.0). This difficulty is
circumvented as follows: if the third argument to the
fma is actually register zero (f0), then the sign of zero is
determined by the IEEE rules for products. Otherwise,
the sign of zero results is decided as specified above for
fma, even if the third argument to fma is not the special
register zero f0 but nevertheless contains the value zero.
This applies equally to the variants fms and fnma.

A floating-point multiply-add is a very valuable
architectural feature, for reasons of both speed and
accuracy. In typical implementations, the final addition
can be combined into the floating-point multiplication
operation without significantly increasing its latency.
Thus, a single fma is faster than a multiplication and an
addition executed successively. Since additions and
multiplications are heavily interleaved in many
important floating-point kernels (the evaluation of
inner, or dot, products of vectors or the evaluation of
polynomials for example), the use of an fma can lead to
significant performance improvements. For example the
vector dot product x y:

p = i=0
N-1 xi yi

can be evaluated by a succession of fma operations of
the form

p = p + xi yi

requiring only n floating-point operations, whereas with
a separate multiplication and addition it would require
2n operations, with a longer overall latency.

Apart from its speed advantage, the fact that no
intermediate rounding is performed on the product also
tends to reduce overall rounding errors. In common
cases this difference may be relatively unimportant, but
in special situations, the lack of an intermediate
rounding makes possible a number of techniques that
are difficult or costly on a traditional architecture. The
floating-point division and square root implementations
provide ample illustration of this fact, but here are three
other characteristic examples.

Exact Arithmetic

In certain applications it is important to perform
arithmetic to very high precisions, perhaps hundreds of
bits. A natural way of manipulating very precise

9

numbers is as floating-point expansions; that is, sums of
standard floating-point numbers of decreasing
magnitude. In order to perform efficient computations
on such expansions, the basic building blocks are
operations that compute exact arithmetic operations on
individual pairs of floating-point numbers. For
example, it is known (Moller [7], and Dekker [8]) that
if |x| |y| the exact sum x + y can be obtained as a 2-
piece expansion Hi + Lo by the following sequence of
floating-point adds:

Hi = x + y
tmp = x – Hi
Lo = tmp + y

This is straightforward to implement on traditional
architectures, though features of the Itanium
architecture make it significantly more efficient.
However, on traditional architectures there is no
similarly easy way of obtaining the exact product of
floating-point numbers as an expansion; this requires
fairly complicated and inefficient methods based on
splitting the numbers into high and low parts by
masking and performing numerous sub-computations.
However, with the fms instruction, this computation is
simple and efficient:

Hi = x y
Lo = x y - Hi

This sequence always results in Hi + Lo = x y exactly
with Lo a rounding error in Hi x y.

Accurate Remainders

It is often the case that given a floating-point number q
approximately equal to the quotient a / b of two
floating-point numbers, one wants to know the
remainder r = a – b q. This arises whenever evaluation
of a quotient to higher precision is needed, for example,
in floating-point expansions. Provided the
approximation q is good enough, it can be shown that r
is always representable exactly as a floating-point
number. However, that does not mean it is always
straightforward to obtain it on traditional architectures.
In fact, if a – b q is computed by a multiplication and a
subsequent subtraction, the rounding error in the
multiplication may be comparable in size to r itself,
rendering the result essentially meaningless. Thus,
complicated masking and multiple computations are
necessary. But in the Itanium architecture, evaluating

a – b q by an fnma instruction will give an exact
answer provided q is accurate enough.3

Accurate Range Reduction

A similar situation arises when one has an integer
approximation to the exact quotient. Many algorithms
for mathematical functions, in particular trigonometric
functions such as sin, begin with an initial range
reduction phase, subtracting an integer multiple of a
constant such as / 2. With the fma this can be done in
a single instruction x – N P yielding an accurate result.
Without the fma however, the rounding error in the
multiplication could severely distort the result, so it
might be necessary to represent P as the sum of two
numbers with fewer significant bits. (Each of these
numbers can be multiplied by N without error, and after
several operations the main result can be obtained.) The
fma is also useful for obtaining the appropriate N rap-
idly in the first place. Typically, one wants to perform
some operation such as

y = Q x
 N = rint (y)
 r = x – N P
where rint (y) denotes the rounding of y to an integer,
and Q 1 / P. Rather than using the special fcvt
instructions to convert y to an integer, the integer
conversion can be performed by adding and subtracting
a large constant like S = 2p–1 + 2p–2 where p is the
floating-point precision, for example p = 53 for double
precision. (Adding such a constant fixes the most
significant bit of the sum and hence performs integer
rounding of y, provided |y| 2p–2; the use of 2p–2 makes
the technique work for both positive and negative y.)
Using the fma the multiplication by Q and the addition
of S can be combined, and hence the reduced argument
can be obtained by just three fma operations:

y = S + Q x
 N = y – S
 r = x – N P
This approach has the additional advantage of avoiding
some rare problems with the intermediate rounding of
the product Q x.

Comparison and Classification

Floating-point comparisons are similar to the integer
comparisons. The basic instruction is

3 It suffices for q to be accurate to one unit in the
last place (ulp).

10

(qp) fcmp.fcrel.fctype p1, p2 = f2, f3

Here the fcrel completer, which is compulsory,
determines the relation that is tested for. The
mnemonics differ slightly from those used in the integer
comparison: eq for f2 = f3, lt for f2 < f3, le for f2 f3, gt
for f2 > f3, ge for f2 f3,and unord for f2 ? f3. There is no
signed/unsigned distinction but there is a new
possibility, shown in the last case (f2 ? f3): two values
may be unordered, since a NaN (Not a Number)
compares false with any floating-point value, even with
itself. Mnemonics are also provided for the
complements of all these conditions, although in the
actual instruction encoding these simply swap the
predicate registers and/or the input floating-point
registers.
The fctype field has two possible values, none (i.e. the
field is omitted in the assembly syntax), and unc. If
omitted, the result of the comparison and its
complement are written to the designated predicate
registers in the usual way. If the completer unc is used,
however, then the behavior is the same if the qualifying
predicate qp of the instruction is true, but both the
predicate registers p1 and p2 are cleared if qp is false.

It is often desirable to classify a floating-point number,
for example to abort a calculation if an input is infinite
or NaN. A comprehensive instruction for classifying the
floating-point value in a register is fclass:

 (qp) fclass.fcrel.fctype p1, p2 = f2, fclass
The result of classifying the contents of f2 is written to
the predicate registers p1 and p2, controlled by the
optional fctype in the same way as for comparisons (i.e.
its values can be none or unc). The fcrel field may be m
(f2 is a member of the class specified by fclass) or nm
(f2 is not a member of the class specified by fclass). The
actual classification is encoded as a 9-bit field whose
bits are interpreted to determine whether the floating-
point value is: positive or negative; zero, unnormalized,
normalized or infinity; NaN or NaTVal.

Division and Square Root

There are no instructions specified in the Itanium
architecture (except in IA-32 compatibility mode) for
performing floating-point division or square root
operations. Instead, the only instruction specifically
intended to support division is the floating-point
reciprocal approximation instruction, frcpa, which
given floating-point numbers a and b, normally returns
an approximation to 1 / b good to about 8 bits. The
syntax of this instruction is as follows:

 (qp) frcpa.sf f1, p2 = f2, f3

Similarly, the only instruction to support square root is
the floating-point reciprocal square root approximation

instruction frsqrta, which given a floating-point number
a, normally returns an approximation to 1 / a good to
about 8 bits.

 (qp) frsqrta.sf f1, p2 = f3

In special cases such as b = 0 for frcpa or a = 0 for
frsqrta, these instructions actually return the full IEEE-
correct result for the relevant operation (the full
quotient in the case of frcpa), and indicate this by
clearing the output predicate register p2. Usually,
however, the initial approximations need to be refined
to perfectly rounded quotients or square roots by
software, and this is indicated by setting the predicate
register p2. Consequently, one can simply predicate the
software responsible for refining the initial approx-
imation by this predicate register. Thanks to the
presence of the fma instruction, quite short straight-line
sequences of code suffice to do this correction. There
are several reasons for relegating division and square
root to software.

By implementing division and square root in
software, they immediately inherit the high degree of
pipelining in the basic fma operations. Even though
these operations take several clock cycles, new ones
can be started while others are in progress. Hence,
many division or square root operations can proceed in
parallel, leading to much higher throughput than is the
case with typical hardware implementations.

Greater flexibility is afforded because alternative
algorithms can be substituted where it is advantageous.
It is often the case that in a particular context a faster
algorithm suffices, for example because the ambient
IEEE rounding mode is known at compile time, or even
because only a moderately accurate result is required
(this might arise in some graphics applications).

In typical applications, division is not an extremely
frequent operation, and so it may be that the die area on
the chip would be better devoted to something else.

Intel Corporation distributes a number of recommended
algorithms for various precisions and performance
constraints, so the user will not ordinarily have to be
concerned with the details of how to implement these
operations. As an example, consider the single
precision division algorithm, optimized for throughput
(it has the smallest possible number of floating-point
instructions, resulting in the minimum latency per result
in software-pipelined loops): The algorithm calculates q
= a/b in single precision, where a and b are single
precision numbers, rn is the IEEE round to nearest
mode, and rnd is any IEEE rounding mode. All other
symbols used are 82-bit, register format numbers. The
precision used for each step is shown below.

11

 (1) y0 = 1 / b (1+ 0), | 0|<2-8.886 table lookup
 (2) d = (1 - b y0)rn 82-bit register format precision
 (3) e = (d + d d) rn 82-bit register format precision
 (4) y1 = (y0 + e y0) rn 82-bit register format precision
 (5) q1 = (a y1) rn 17-bit exponent, 24-bit mantissa
 (6) r = (a - b q1) rn 82-bit register format precision
 (7) q = (q1 + r y1) rnd single precision (IEEE)

The assembly language implementation follows [9],
assuming the input values are in floating-point registers
f6 and f7, and the result in f8:

 frcpa.s0 f8,p6=f6,f7;; // Step (1) y0=1/b in f8
 (p6) fnma.s1 f9=f7,f8,f1;; // Step (2) d = 1-b*y0 in f9
 (p6) fma.s1 f9=f9,f9,f9;; // Step (3) e = d+d*d in f9
 (p6) fma.s1 f8=f9,f8,f8;; // Step (4) y1 = y0+e*y0 in f8
 (p6) fma.s.s1 f9=f6,f8,f0;; // Step (5) q1 = a*y1 in f9
 (p6) fnma.s1 f6=f7,f9,f6;; // Step (6) r = a-b*q1 in f6
 (p6) fma.s.s0 f8=f6,f8,f9;; // Step (7) q = q1+r*y1 in f8

Support for software pipelining on Itanium processors
allows for this algorithm to be scheduled without any
additional code, so that one result is generated every 3.5
clock cycles (since there are 7 floating-point
instructions to schedule on 2 floating-point units on
Itanium and Itanium 2 processors). This is a lot more
efficient than on most present-day processor
architectures.

Table 3.2 shows the Itanium 2 processor cycle times for
the division root algorithms of various precisions (a
similar table is available for square root [9]). For
algorithms optimized for latency, the operation latency
is given, in number of clock cycles. For operations
optimized for throughput, the number of clock cycles
required to generate one result is given.

Table 3.2. Latency and Throughput for Floating-Point
Division on the Itanium 2 Processor

Division Single
Precision

Double
Precision

Double-
Extended
Precision

Optimized
Latency

24 28 32

Optimized
Throughput

3.5 5 7

The square root algorithms rely on loading constants,
and the time taken to load these constants is not
included in the overall latencies. If the function is
inlined by an optimizing compiler, these loads should
be issued early as part of normal operation reordering.
For comparison, note that on the Itanium 2 processor, a

floating-point add/subtract, multiply, or fused multiply-
add operation has a latency of 4 clock cycles, and a
throughput of 0.5 clock cycles (meaning that two
results can be generated every clock cycle, for example
in a software-pipelined loop).

Additional Features

The Itanium architecture includes a number of other
useful floating-point instructions that have not been
mentioned, which are covered in detail in [4]. They
include:

 transferring values between floating-point and integer
registers by means of the getf and setf instructions

 floating-point merging, useful in order to combine
fields of multiple floating-point numbers to give a new
number using the fmerge instruction

 floating-point to integer and integer to floating-point
conversion using the fcvt instructions

 integer multiplication and division - the Itanium
architecture does not specify a full-length integer
multiplication or division instruction; instead, such
operations are intended to be implemented using the
floating-point unit, by first transferring the arguments to
floating-point registers, performing the multiplication
or division there, and transferring the result back

 floating-point maximum and minimum, using the
fmax and fmin instructions

Conclusion
The Itanium floating-point architecture was designed so
that its high performance, accuracy, and flexibility
characteristics make it ideal for technical computing.
Floating-point enhancements include a high precision
and wide range basic floating-point data type, the fused
floating-point multiply-add operation, software division
and square root operations, and a large number of
floating-point registers. Floating-point code can also
draw on other generic Itanium architecture features
such as predication, register rotation, high memory
bandwidth, and speculation.

All floating-point data types are mapped internally to an
82-bit format, with 64 bits of accuracy and a 17-bit
exponent. This affords calculations that are more
accurate, and do not underflow or overflow as often as
on other processors. The great flexibility in using and
combining various floating-point formats and
computation models makes it easy to implement
complex numerical algorithms more efficiently than
before.

12

The fused multiply-add operation combines two basic
floating-point operations in one, with only one rounding
error. Besides the increased accuracy, this can
effectively double the execution rate of certain floating-
point calculations, as the fused multiply-add operation
forms an efficient computation core that maps perfectly
to several common algorithms used for technical and
scientific purposes.

The large number of floating-point registers available,
of which some are static and some are rotating, allows
for efficient implementation of complicated floating-
point calculations. An illustration of software and
hardware interaction in the Itanium architecture, this is
achieved on one side by avoiding frequent accesses to
memory, and on the other through software pipelining
of loops containing floating-point computations.

The highest SPEC CFP2000 score for a single
processor system, of 1431, belongs currently to an
Itanium 2 system running at 1GHz - the Hewlett-
Packard HP Server RX2600. The best performing P4
system, running at 3.06 GHz, has a score of 1092. The
SPEC CINT2000 scores are in reverse order though –
810 and 1099 respectively. This gap will likely
decrease and the advantage is expected to be on the
Itanium processor family side as its core frequencies
will get higher - today’s Itanium processors run at
relatively low frequencies, and as the compiler
technology on which Itanium processors depend so
much continues to evolve.

References
[1] Intel(R) Itanium(TM) Architecture Software
Developer's Manual, Revision 2.0, Vol 1-4, Intel
Corporation, December 2001
[2] John Hennessy, David Patterson, “Computer
Architecture - A Quantitative Approach”, Morgan
Kauffman Publishers, Inc., third edition, 2002
[3] Peter Markstein, ‘‘IA-64 and Elementary Functions:
Speed and Precision”, Hewlett-Packard/Prentice-Hall
2000
[4] Marius Cornea, John Harrison, Ping Tak Peter
Tang, “Scientific Computing on Itanium-based
Systems”, Intel Press 2002
[5] John Crawford, Jerry Huck, “Motivations and
Design Approach for the IA-64 64-Bit Instruction Set
Architecture”, Oct. 1997, San Jose,
http://www.intel.com/pressroom/archive/speeches/mpf1
097c.htm
[6] ANSI/IEEE Standard 754-1985, IEEE Standard for
Binary Floating-Point Arithmetic, IEEE, New York,
1985
[7] O. Moller, “Quasi double-precision in floating-point
addition”, BIT journal, Vol. 5, 1965, pages 37-50

[8] T. J. Dekker, “A Floating-Point Technique for
Extending the Available Precision”, Numerical
Mathematics journal, Vol. 18, 1971, pages 224-242
[9] “Divide, Square Root, and Remainder Algorithms
for the Itanium Architecture”, Intel Corporation, Nov.
2000,
http://www.intel.com/software/products/opensource/libr
aries/numnote2.htm,
http://developer.intel.com/software/products/opensourc
e/libraries/numdown2.htm

13

DOP – A CPU CORE FOR TEACHING BASICS OF COMPUTER ARCHITECTURE

Milos Becvar, Alois Pluhacek and Jiri Danecek

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague,

Abstract: A simple 16-bit processor core called DOP and its teaching environment is
presented. The DOP processor illustrates the basic principles of computer organization
and is therefore used in the introductory hardware course. Its major features are
simplicity, availability of an FPGA implementation and a C compiler. This paper
presents the description of the core, HW and SW tools and teaching methodology.

1. INTRODUCTION

An introductory computer hardware course should teach
students to the fundamental principles of computer
internal functionality. Students, who are familiar with
programming in high-level languages, are required to
understand the interaction between a processor, a
memory and I/O devices, an internal organization of
processor, computer arithmetic and basics of digital
design. Our experience has shown that it is not an easy
task for most of them. The functionality of the processor
executing instructions seems to be something almost
mythical and totally unrelated to intuitive execution of
a program in high-level language.

It is obvious that we have to provide some practical
experience helping to understand these abstract
principles. One common way is to let students to create
a program in high-level language, which simulates a
simple processor. However, this approach is not good
for illustrating the relation between high-level
languages, compilers, program in assembly language
and actual “binary” program executed by processor.
Another approach uses visualization simulators and HW
emulators (Bruschi, 1999; Yurcik et al, 2001; Brorson,
2002; Ellard et. al, 2002).

We present a simple 16-bit processor core called DOP
that is currently used in our introductory computer
organization course. The processor is simple, yet fully
operational, and could be used in the embedded
applications, which do not require an excessive

computing performance. The DOP processor core was
developed at our department together with various SW
and HW visualization tools (Danecek et al., 1994a).

The goal of this paper is to describe this processor core
and its learning environment for teaching basics of
computer organization. The paper is organized as
follows - section 2 outlines the introductory course and
characterizes the students, section 3 describes the DOP
processor core, section 4 describes the SW and HW
tools supporting this processor and finally section 5
outlines the use of the DOP in our introductory course.

2. COURSE REQUIREMENTS

The introductory computer organization is a one-
semester course, which is mandatory for all
undergraduate students of 3rd year of computer science
and engineering. Almost 200 students take this course
every year. The course covers the basic principles of
computer functionality, the data representation,
computer arithmetic and the controller design.
Furthermore it introduces basics of practical digital
design.

Students have relatively strong background in high-level
languages and assembly language of x86 and are mostly
SW-oriented. The majority of students thoughts that the
only computer is an Intel x86 PC. The minority of
students has experience in implementing simple digital
circuits and wants to choose HW specialization in
graduate study.

14

Machine-Oriented
Languages (x86 ASM)

Computer and Logic
Design (DOP)

Computer Architecture
(DLX, MIPS)

x86 assembly language
programming

introduction to computer organization,
components of digital computer,

computer arithmetic, controller design

ISA design, RISC, pipelining, introduction to
ILP processors, memory hierarchy,
 introduction to parallel computers

Advanced Computer
Architecture (MIPS)

ILP processors, multithreading,
quantitative analysis of peripheral subsystem

architectures of parallel computers

Graduate Courses

Undergraduate Courses

Peripheral Devices Computer Networks

Logic Systems

Fig.1. Computer architecture course flow at CTU

Figure 1 shows the place of “Computer and Logic
Design” course in the overall Computer Architecture
flow at Czech Technical University. It also outlines the
main topics covered at each level and a reference
platform.

The main goal of “Computer and Logic Design” course
is to explain the components of digital computer and
functionality of sequential processor built from a simple
datapath and controller. The reference processor should
illustrate these principles. The processor internal
organization should be reasonably simple to be
understood without deep knowledge in the digital
design (note that “Logic Systems” course is
unfortunately scheduled in parallel).

The next undergraduate course traditionally called
“Computer Architecture” revisits the processor
architecture and introduces the concept of pipelining
and basics of techniques used in modern ILP processors
as well as other concepts found in modern computers.
Some topics are covered in separated courses
“Peripheral Devices” and “Computer Networks”.
Undergraduate courses together cover all topics in the
popular reference book “Computer Organization and
Design – HW/SW Interface” (Patterson and Hennessy,
1998). Some topics from the area of peripheral
subsystem and computer networks are covered in more
detail than in this book. The main graduate course
“Advanced Computer Architectures” is obligatory only
for students of HW specialization. This course is based
on the book (Patterson and Hennessy, 2002).

 With this course flow in mind, we can describe the
organization of the DOP, which is used to illustrate the
basic principles of computer organization and design.
The relation between the DOP and more advanced
courses is discussed in the section 5.4.

3. DOP ARCHITECTURE OVERVIEW

The abbreviation “DOP” means “Danecek’s Original
Processor” according to one of its proponents. The
DOP processor has not been primarily designed to be an
educational platform. Its ISA was designed as a result of
experience with writing HLL compilers for
8-bit and 16-bit microcontrollers like 8051, 68HC11,
PIC16C5x, SAB80C166. These simple processors were
designed for assembly language programming and
writing efficient compilers for them is difficult and
sometimes even impossible (Danecek et al., 1994b).
The DOP was intended to be a simple 16-bit processor
core suitable for embedded systems and implementation
in FPGA (Danecek et al, 1994a). The main feature of
the processor is the simple compilation of high-level
languages. From the nature of applications comes the
requirement to optimize the program size over the speed
of execution.

It is not surprising that the result of this development is
an accumulator-oriented processor with variable length
instruction encoding. Its main characteristics are
outlined in Table 1. The processor contains only few
programmer-visible registers. Local variables,
temporaries and parameters are allocated on the stack in
the main memory. This arrangement is valuable for
illustrating relation between HLL programs and actual
“binary” program executed by the processor.

The DOP processor is connected to the byte-organized
main memory and peripheral subsystem by 16-bit
Address Bus and 8-bit Data Bus. (Multibyte data are
stored using Little Endian format) The main memory is
common for the data and instructions.

Main
Memory

Main
Memory

AB(15:0)

DB(7:0)

MRD, MWR

WAIT

I/O
DEVICE #1

CLK
GEN.

&
POR

16

8

DOP CPU MAIN
MEMORY

I/O
DEVICE #N

INTERRUPT
CONTROLLER

(OPTIONAL)

INT INTA

Interrupt requests

2

CLK

RESET

RESET

CLK

IRQ#1

IRQ#n

Fig.2. DOP system level overview

Peripheral devices for DOP could be memory mapped
and processor supports single external maskable
interrupt signal. The interrupt subsystem could be
further expanded by an external interrupt controller.
Interrupt subsystem was added to illustrate the interrupt
service cycle at the HW level. Figure 2 shows the

15

interconnection between DOP processor, memory and
peripherals. Some parts of this system exists as an
FPGA implementation, others are only modeled in SW
or exist only in the specification (peripheral devices).
For further discussion of HW and SW tools please refer
to section 4.

Table 1 DOP Characteristics

DOP ALU width 16 bit
Internal bus width 16 bit
Address bus width 16 bit
Data bus width 8 bit
Encoding of signed
numbers

2’s complement

Data types supported
by ISA

Word (16 bit), unsigned byte (8
bit), signed short (8 bit)

Multibyte data storage
format

Little Endian

I/O subsystem Memory Mapped
Programmer visible
16-bit registers

PC, SP, W, S, D

Programmer visible 8-
bit registers

L (loop counter), F (Flags)

External interrupts 1 (maskable),
16 interrupts with external
interrupt controller

3.1 DOP Instruction Set Architecture

The DOP ISA is an example of an accumulator-oriented
instruction set with several enhancements.
First operand of ALU instruction is always an
accumulator – register W. Second operand can be
register or memory location (typically on the stack
where local variables and temporaries are located).
The instruction set also includes a dedicated instruction
LLA, which computes the address of local variable on
the stack. Figure 4 shows the example of computation
with local variables.

DOP instruction set supports three data types – 16-bit
word, 8-bit unsigned byte and 8-bit signed short integer.
Bytes and short integers are internally extended to word
length and all operations are performed with these 16-
bit operands. This is another solution than in x86 ISA,
which provides separated instructions for 8-bit
operands. Moreover, all data manipulation instructions
support all three data types. This regularity simplifies
the task of code generation and is also a good
educational example.

DOP ISA also includes several provisions for efficient
support of operands longer than 16-bit word and
addition and subtraction of operands of different sizes
(see Fig.5). Firstly, lower words of the two operands are

added or subtracted (if the shorter operand is an 8-bit
short integer, it is sign-extended). In the same time, the
sign of the second ALU operand is stored in the special
Auxiliary Flag (AF) (see also AUXF signal on the fig.
6). The addition or subtraction is finished by applying
instruction AAF to the remaining words of the longer
operand (instruction adds extended sign XAF of shorter
operand stored in the AF and carry flag CF from the
previous operation.)

There are also two special instruction prefixes
modifying the behavior of the following ALU
instruction. First prefix is an UCF (use carry flag) this
prefix enforces the use of the CF in the following ALU
instruction. For example the prefix UCF followed by an
ADD instruction is equivalent to the ADDC instruction
(add with carry) whereas the UCF followed by the SUB
behaves like the SUBB (subtract with borrow). Second
prefix is the SWW (suppress write to W) that allows
synthesizing the comparison and test instruction. The
SWW followed by the SUB behaves like the CMP (only
flags are set, W is not modified) and the SWW followed
by an AND is similar to the TEST instruction.

OPERATION CODE

8-bit

OPERATION CODE

8-bit

8-bit IMMEDIATE

8-bit

OPERATION CODE 16-bit IMMEDIATE

8-bit 16-bit

Instructions without
Immediate

 Instructions
with short or byte

immediate

Instructions with
word immediate,

jump and call instr.

Fig.3. DOP instruction formats

The DOP is oriented to the high instruction encoding
density and uses three formats of instruction. Most of
instructions occupy only a single byte (1st format);
other formats are used for instructions with 8-bit or
16-bit immediate. The DOP encoding density is
superior over comparable processors. It has been
reported that programs compiled for DOP occupy less
than 60 % of memory space than for 8051. This feature
can be very valuable for embedded systems (Danecek
et. al, 1994c)

LLA S, 0x04 ; S <= SP – 0x04 (address of a)
LLA W, 0x07 ; W<=SP – 0x07 (address of b)
LLA D, 0x03 ; W<=SP – 0x03 (address of c)
LD W, [W] ; W<=Mem[W]
ADD [S+] ; W<= W + Mem[S], S++
ST [D] ; Mem[D]<=W

Fig. 4 Example of c:=a+b in DOP assembly language
(a,b and c are local variables allocated on stack)

16

A3 A2 A1 A0 B0

ADDS/SUBS

B0

A0A1

AF

CFAAF

AF

CF

A2A3

XAF

±

Fig.5 Example of addition/subtraction of short integer
(8-bit signed) to doubleword (32-bit signed)

3.2 DOP Arithmetic and Logic Unit

The DOP Arithmetic and Logic Unit is based on the 16-
bit W register which serves as an accumulator. This
organization is very simple yet efficient for this class of
processor. The second operand for ALU could be an
internal register or an operand read from memory (to
temporary register). The second operand is connected
by the internal 16-bit bus to the second ALU input.

BLF

CIS

W EC WEN
ENW

CIN

0 1 OP(3:0)OP(3)

"0"

OEW

BUS(15:0)

ECW

SWW

ECW
 CI0

CF

W (15:0)

CY

SUM(15:0)

W 0

+
OVERF cy(15)

cy(16)

ZERO

S(15:0) R(15:0)

AUXF R(15)

SIGN SUM(15)
CLK

RESET

UCF

BUS(15:0)

Fig.6. DOP ALU organization

The ALU internally contains the Block of Logic
Functions (BLF) and 16-bit binary adder. This
organization implements all basic binary arithmetic and
logical operations (addition, subtraction, logical and, or,
xor, negation and shifts). The logical operations are
implemented in BLF, while the second input of adder is
connected to zero. More complex operations such as
multiplication or division could be synthesized by SW
routine (library of these routines is available).
The blocks labeled CIS (carry in selection) and WEN
(write enable) implement the prefixing instructions UCF
and SWW.

The ALU also contains Flags – Carry Flag, 2’s
complement Overflow Flag, Zero Flag, Sign Flag and

Auxiliary Flag used for addition or subtraction of
operands longer than 16-bit word. All Flags are set after
each ALU operation.

3.3 DOP Registers

Beside mandatory 16-bit PC (program counter) register
the DOP contains only a few programmer-visible
registers - SP (stack pointer), W (accumulator), which is
a part of the ALU, S (source register) and D
(destination register). Both S and D register could be
used as general-purpose data storage during expression
evaluation or address computation. All registers could
be connected via 16-bit internal bus to ALU or to 16-bit
external address bus and serve as an address for the
main memory. The SP, S and D register support
autoincrement and autodecrement addressing modes for
accessing arrays and longer operands. Therefore these
registers are implemented as bi-directional counters.

The DOP also includes the 8-bit L register, which is
used as loop counter for an easy compilation of short
for loops. The L register could be accessed separately
or together with the FLAGS register as a 16-bit PSW
(program status word).

U
register

PC
register

SP
register

S
register

D
register

ALU
and
W

register

FLAGS L
register

ADDRESS
DATA
I / O

DB(7:0)

AB(15:0)

BUS(15:0)

16

PSW

T
register

Fig. 7. DOP datapath

The whole datapath is outlined in figure 7. Note that U
and T registers are not visible to the programmer and
could be used as a temporary storage for the complex
instructions. These registers were added only for
educational purposes (original DOP ISA could be fully
implemented without these registers).

3.4 DOP Controller

The DOP processor was originally implemented with
optimized hardwired controller. However, this
controller is not very suitable for practical experiments
of our students. Consequently, a very simple horizontal
microprogrammed controller was designed. The DOP
controller currently needs the 58-bit wide
microinstruction for all control signals (actual width is
64-bit including several spare control signals). Each

17

microinstruction corresponds to a single clock cycle.
An Address of the next microinstruction is specified as
a field in the current microinstruction. Three the lowest
significant bits of this address could be modified by the
condition multiplexer. This organization allows
branching to the 8 destination addresses in a single
microinstruction depending on the status of various
internal and external signals. The DOP controller uses
the condition multiplexer for gradual instruction
decoding (decoding takes 2-3 clock cycles per
instruction). The condition multiplexer is also employed
for the testing of flags and external signal WAIT (from
main memory or I/O) and INT (from interrupt
controller).

Control Memory
512 x 64 bits

ANM(2:0)

ANM(8:3)=MA(8:3)

IR(7:0), OVF, SF,ZF, CF, IF, LZERO, WAIT, INT

Control Signals

CLK, RESET

SC(4:0)

Register of
microinstruction

address

Condition multiplexer

Address of the next
microinstruction

Condition
selection

MA(8:0)

MA(2:0)

ACM(8:0)

Fig.8. DOP microprogrammed controller

The complete implementation of the DOP instruction
set needs less than 270 microinstructions in the control
memory. This controller is definitely not the fastest
possible microprogrammed one for this processor.
However, its major advantage is the simplicity and
regularity.

4. DOP HW AND SW TOOLS

4.1 DOP simulators and models

Four SW models of the DOP currently available are
characterized in Table 2. Each of them allows the
analyzing of the processor behavior on the different
level of abstraction for various purposes. The first two
simulators are executable on almost any personal
computer, whereas the VHDL models require complex
and relatively expensive VHDL simulator. Therefore
only a limited number of students could use the VHDL
models simultaneously. Recently, the major FPGA
vendors offers relatively cheap versions of VHDL
simulators but it is still unlikely that every student can
buy one and run it at home on his computer.

Table 2 DOP SW simulators and models

Type of
simulator

Modeling
Language

Purpose

Instruction
Cycle Accurate

C++ Assembly program debugging,
compiler debugging

Functional
Clock Cycle
Accurate

Pascal Microprogram development,
observation of the int. function
of the processor

VHDL RTL
model

VHDL Design verification, detailed
view of signal flow

VHDL post
P&R model

VHDL
+ SDF

Timing verification, detailed
view of real delays on FPGA

The instruction-cycle accurate simulator can be used for
debugging of DOP assembly program and the compiler
development. The functional clock-cycle accurate
simulator is used for development of DOP
microprogram (firmware) for each instruction. The
third type of model is synthesizable RTL VHDL model
including memory and an interrupt controller. This
model could be used to confirm results of functional
clock-cycle accurate simulation. It allows more detailed
view of the CPU behavior in time (namely signal
sequences). The most accurate model is the post-place
and route generated VHDL Vital model with SDF file.
It shows the real delays of signals on FPGA.

4.2 HW emulator board

A FPGA based emulator board was designed for the
DOP processor. The board contains the control memory
8 k x 64 bits made from 8 SRAM chips. The size of
control memory is significantly higher than necessary
for the DOP. It allows reusing the emulator board for
different processors. The rest of the DOP is
implemented in the Main FPGA (XC4013E-PQ160).
The board also includes the additional 8k x 8bit SRAM
circuit as the main memory for the program and data
and some interface circuitry with the host system
(implemented in separate Interface and Control FPGA).
SW on the host computer controls all functionality of
the emulator board.

 Having configured the Main FPGA, the control
memory could be downloaded with the microprogram.
The SW on the host computer generates clock signal for
CPU. The status of each register could be read out from
the DOP processor after each clock cycle. Besides this
debugging mode, the DOP processor is able to execute
the sequence of instructions independently and later
generates an interrupt to the host system.

18

DOP
DATAPATH

XC4013E-3PQ160

(MAIN FPGA)

CONTROL
MEMORY
8k x 64bit

SRAM

MAIN
MEMORY
8k x 8bit
SRAM

INTERFACE
AND

CONTROL
FPGA

XC4003-6PC84

DB(7:0)

AB(15:0) Microinstr.MAddr

Clock and control

RD/WR

MRD, MWR

ISA
BUSHOST

SYSTEM
(PC)

Fig. 9. DOP HW emulator board block diagram

Moreover, the HW emulator board offers the possibility
of experiments that are not possible with the SW
simulators. For example, it is possible to extend the
basic DOP processor by additional functional units such
as multiplier or divider and control them by currently
unused signals in the control memory.

5. USE OF DOP IN COMPUTER AND LOGIC
DESIGN COURSE

5.1 Overview of seminars

The “Computer and Logic Design” course is in the
typical format of CTU. It takes one semester (14
weeks). Every week is a single 90-minutes lecture and
90-minutes seminar. Seminars are held in classrooms or
in laboratories. The table 4 describes the current
schedule of these course seminars. Most of the seminars
are held in classroom and there are only two laboratory
seminars. This is not optimal, but it is the result of
limited availability of laboratories, which are used by
parallel Logic Design course.
It can be also seen that DOP currently occupies
approximately half of the semester.

Table 4 Example of Computer and Logic Design
seminar schedule

Seminar Scope
1 Introduction to DOP processor,

Instruction Set Architecture
and Data Types

2 Principles of synchronous design,
Datapath of DOP - design of registers,
ALU and interface circuitry, arithmetic

3 DOP controller implementation,
principles of horizontal microprogram.,
discussion of possible enhancements

4 DOP basic cycle, DOP firmware,
homework assignment

5
(laboratory)

Exercise with DOP cycle accurate
simulator

6
(optional)

Evaluation of homework on VHDL
simulator and HW emulator

5.2 DOP classroom seminars

During the first four seminars the internal organization
of the DOP processor is explained to students. This is
done with aim to maximally involve students in
explaining the DOP schematic diagrams. These
seminars have a strong link to lectures and goal is to
illustrate the topics of lectures on practical examples.
For example: during the DOP ALU description,
arithmetic is exercised and other possible organizations
are discussed. Similar approach is used for explaining
the DOP controller and basic cycle.

5.3 DOP laboratory seminar

After explaining the DOP schematics, the SIMDOP –
functional clock cycle accurate simulator is introduced
during laboratory seminar. Students are let to write a
short program in DOP assembly language, translate
instructions into hexadecimal form and execute them
step-by-step on the simulator. Students are also shown
that the same program is executed in the VHDL
simulator and most importantly on the HW emulator
board. The majority of students does not understand the
VHDL simulator and the HW emulator board but they
appreciate that the processor “really exists”.

Fig. 10. SIMDOP – functional cycle accurate simulator

5.4 DOP homework assignment

The main educational method based on the DOP is the
homework, which is solved by every student
independently. Each student has to write a
microprogram implementing some complex instruction,
which can possibly extend the DOP instruction set.
Currently, we have collection of around 50 complex
instructions usable as homework. Most instructions are
extending DOP arithmetic capabilities (e.g.
multiplication and division, operations on long
operands). Typical complexity of homework is between
10 and 20 microinstructions. One of the requirements is

19

preserving functionality of the original instructions.
Two registers U and T were added to the DOP for
making the implementation of these complex
instructions easier.

The microprograms are developed using functional
cycle accurate simulator (SIMDOP), which is available
to all students (see figure 10). For easier writing of
horizontal microinstructions symbolic language -
microassembler and its compiler were developed.
Microassebler represents each microinstruction as a set
of active signals and uses labels to represent addresses
in Control Memory (see Control Memory section on
figure 10). Compiler is responsible for allocation of
microinstruction in the Control Memory and translates
the microprogram to the binary format. It also does
some correctness checks on the microprogram – for
example it checks the control of tri-state buffers to
avoid the most frequent mistakes coming from the
collision on the internal bus.

This compiler simplifies the student task but can also
lead to misunderstanding of the real content of Control
Memory (binary format of microinstructions is created
as a side effect of compilation, this format can be used
with VHDL models).

Besides the implementation of the instruction, student
has to write a report, which can become a part of DOP’s
documentation for a programmer. Students have to
describe the number of clock cycles and typical use of
the added instruction.
Homework are reviewed at the end of semester by the
teaching assistants and become part of students
evaluation.

5.4 Optional seminar

At the end of semester one optional laboratory seminar
is offered. There is usually no time to present this for
every student. Volunteers are typically students more
interested in HW. During this seminar, homework are
evaluated on the VHDL models and downloaded to the
HW emulator.

5.5 Experience with the DOP

Before the DOP processor was chosen a simple CPU
based on AMD 2900 CPU slices had been used for the
same purpose. It means that this approach of teaching
this course has a relatively long tradition.
Student reports shows that t he main pedagogical tool is
the homework. It has to be stressed that nowadays the
main goal of the homework is not to teach
microprogramming but make the students understand

how the processor works. Microprogrammed controller
offers the possibility to easy modify the processor
functionality, which is advantage over the hardwired
controller.

Student reports shows very frequently that they were
afraid from the complexity of the homework but finally
found it simple and interesting. They claim that
homework helps them to finally understand how the
processor works. It also seems that classroom seminars
are not very efficient way to explain the DOP and
students forgot most of it before they start to solve the
homework assignment.

It is also interesting to note the most frequent mistakes
students make in homework. Typically they use some
dedicated register as PC or SP for intermediate storage
in instruction and do not understand that it is not
possible. Second most frequent mistake is made in
reports where students are not able to write a reasonable
description of instruction for a programmer. Description
usually contains a lot of implementation details but
important requirements for the programmer are omitted
(state of input registers, modified registers, and flags).

5.6 Relation of the DOP to more advanced courses

It has been shown that the DOP reasonably describes
the basic principles of computer organization, which are
explained in the “Computer and Logic Design” course.
It introduces some old concepts (accumulator-oriented
ISA, microprogramming), which are not currently used
in the mainstream general-purpose computers
 On the other hand similar processors are still used in
the area of embedded systems. It seems more
appropriate to show these principles on this type of
architecture than building some artificial combination of
RISC ISA and non-pipelined datapath with
microprogrammed controller.

After introducing the quantitative approach and ILP in
the following “Computer Architecture” course, students
can see that the main idea behind the DOP (orientation
to simple HLL compilation and high instruction
encoding density) has lead to simple processor but with
poor performance. More advanced concepts such as
pipelining and superscalar execution are explained on
the RISC processors. This is perhaps not a direct way
to the contemporary computer architecture but it
explains the evolution of processor architectures and
ISA and relation between them.

20

6. CONCLUSIONS AND FUTURE WORK

The DOP core presents an example of a simple
processor that could be used to illustrate the basics of
computer organization and digital design.
 In comparison with commercial products, it has simple
and orthogonal architecture. The DOP is currently used
in introductory computer organization course seminars.
Students participate on the design of the DOP datapath
and controller and finally write a microprogram for
DOP, implementing some complex instruction. Students
use the cycle accurate simulator for homework
assignment and could later evaluate the results on more
accurate VHDL model or HW emulator board. The
feedback from our students is mostly positive. They
claim that homework assignment finally helped them to
understand the processor functionality. More
experienced students appreciated introduction to FPGA
and VHDL style of circuit description.

In the future we want to increase the number of
laboratory seminars which are more efficient than
explaining the DOP processor in the classroom. We
prepare new laboratory seminar for experimenting with
C compiler and DOP instruction-cycle accurate
simulator. The HW emulator board can be also used
more efficiently. New experiments with this emulator
would allow extending the DOP by additional units
such as multiplier and controlling it by spare bits in the
microinstruction. However, this requires significant
rearrangement of the seminars and other courses.

At the same time the DOP is used also in more
advanced digital design courses for experiments with
FPGAs and as a simple target for developing compiler
from subset of C in the introductory to compilers
course. Currently, we plan to make the DOP
documentation and tools available via Internet and
JAVA version of SIMDOP is prepared.

REFERENCES

Brorson, M. (2002). MipsIT – a Simulator and
Development Environment using Animation for
Computer Architecture Education, In: Proc. of
Workshop of Computer Architecture Education,
Anchorage, USA

Bruschi, S. M. (1999). Simulation as a Tool for
Computer Architecture Teaching, In: Proc. of SCS
Summer Simulation Conference, pp. 81-86.,
Orlando, USA

Danecek, J., Drápal, F., Pluhácek, A., Salcic, Z., Servít,
M. (1994a): DOP – A Simple Processor for Custom
Computing Machines. In: Journal of
Microcomputer Applications , vol. 17, pp. 239-253,
Academic Press Limited

Danecek, J., Drápal, F., Pluhácek, A., Servít, M.
(1994b) The Architecture of General-Purpose
Processor Cell. In: Proc. of 4th International
Workshop on Field-Programmable Logic and
Applications, FPL94, pp. 321-325, Prague

Danecek, J., Drápal, F., Pluhácek, A., Salcic Z.,Servít,
M. (1994c) Methodologies for Computer Aided
Hardware/Software Co-Design Using Field
Programmable Gate Arrays. In: Research Report.
Department of Computers, CTU Prague

Drápal, F., Danecek, J., Pluhácek, A., Servít, M. (1995),
Implementation of a General-Purpose Processor
Macro, In: Proc. Design Methodologies for
Microelectronics, pp. 89 –97, Smolenice, Slovakia

Ellard, D., Holland, D., Murphy, N., Seltzer M. (2002)
On the Design of a New CPU Architecture for
Pedagogical Purposes In: Proc. of the Workshop of
Computer Architecture Education, Anchorage,
USA

Patterson, D., Hennessy, J. (1998),
Computer Organization and Design: The
Hardware/Software Interface, 2nd edition, Morgan
Kaufmann Publishers , San Francisco, USA

Patterson, D., Hennessy, J. (2002),
Computer Architecture A Quantitative Approach, ,
3rd edition, Morgan Kaufmann Publishers,
San Francisco, USA

Yurcik, W., Wolffe, G., Holliday, M. (2001).
A Survey of Simulators Used in Computer
Organization/Architecture Courses, In: Proc. of the
2001 Summer Computer Simulation Conference
(SCS 2001), Orlando, USA

21

Abstract—This paper describes a processor design
project intended to illustrate the detail inner workings
of modern superscalar out-of-order processors. In the
project, the students implement a cycle-accurate RTL-
level model of an out-of-order coreincluding rename,
issue, execute, completion and retirement
stagesbased on the MIPS R10000. The processor
core only supports four instruction types. First, the
basic integer subtract instruction is included to exercise
the mechanisms related to register-renamed out-of-
order execution. Second, two types of branch
instructions, resolving correctly and incorrectly
respectively, exercise speculative execution and branch
rewind capabilities. Lastly, an exception-triggering
instruction tests the support for precise exceptions. The
project is designed to be completed in six weeks by a
team of two to three students with solid background and
strong interest in computer architecture and digital
design. This project has been used twice in an
advanced graduate computer architecture course (CMU
18-744 Hardware Systems Engineering) and has
received favorable feedback from students and industry
recruiters. The project handout and required Verilog
source files can be downloaded from
http://www.ece.cmu.edu/~jhoe/superscalar.

I. INTRODUCTION

Implementing an n-stage in-order pipelined processor
is the staple design project in undergraduate
introductory computer architecture courses. Such a
hands-on project is very instructive in that the students
walk away with an in-depth understanding of not just the
abstract principle of pipelining but also the exact
mechanisms that make a real instruction pipeline work
well (e.g., stalling, squashing and forwarding). Modern
superscalar out-of-order microarchitecture, on the other
hand, is a central topic in most graduate-level computer
architecture courses. Unfortunately, due to the

complexity of the subject, the material is often presented
at a fairly high level; rarely are students required to
work out a coherent, complete datapath in a hands-on
fashion. It is our contention that most students are only
able to walk away with a “warm-and-fuzzy”
understanding of how an out-of-order core really
operates. In other words, many students may
comprehend the basic principle of microdataflow
instruction scheduling, but very few students would be
able to accurately describe the intricacies in the
instruction issue and data forwarding logic that permit
two instructions with read-after-write dependency to
execute in back-to-back cycles.1

In this paper, I described a project designed to impart
students with precise and accurate understanding of
modern superscalar out-of-order processor design. In
this project, the students implement a cycle-accurate
RTL-level model of an out-of-order core, i.e., rename,
issue, execute, completion and retirement stages. To
stay within a reasonable workload, students only need to
support the execution of four simple instruction types.
First, the integer subtract instruction is sufficient to
exercise all of the mechanisms involved in register-
renamed out-of-order execution. Second, two types of
branch instructions, resolving correctly and incorrectly
respectively, exercise speculative execution and branch
rewind capabilities. Lastly, an exception-triggering
instruction tests the support for precise exceptions. The
RTL model produced by the student must be both
simulatable and synthesizable. The students’ final RTL
implementations are evaluated both in terms of IPC
performance and hardware cost.

1 Data dependence between a pair of dependent single-
cycle ALU instructions is resolved in the same cycle when the
producer instruction is selected for issue. This way, the
dependent instruction itself is eligible for scheduling in the
next cycle while the producer instruction is still being
executed.

Superscalar Out-of-Order Demystified
in Four Instructions

James C. Hoe
Computer Architecture Laboratory

Carnegie Mellon University
Pittsburgh, PA 15213
jhoe@ece.cmu.edu

22

The project can be completed in six weeks by a team
of two to three graduate (or advanced undergraduate)
students who have solid background and strong interest
in computer architecture and digital design. This project
has been used twice in an advanced graduate computer
architecture course (CMU 18-744 Hardware Systems
Engineering, Spring 2002 and Spring 2003). CMU 18-
744 is a depth course in our ECE department’s graduate
computer architecture curriculum. This course has as
prerequisite our first-year graduate computer
architecture course (CMU 18-741 Advanced Computer
Architecture). The project is liked by the students who
have taken the class and has gotten positive comments
from industry recruiters who talked to the students.

Paper Outline: Following this introduction, the
remainder of the paper is organized as follows. Section
II gives an overview of the project specification. Section
III and IV provide details in the project setup and
execution, respectively. Section V explains the project’s
stated objectives and acceptance criteria. Section VI
suggests ways to extend or expand the project in the
future. Section VII concludes with a few remarks
regarding our experience in running this project.

II. PROJECT OVERVIEW

The project calls for the Verilog RTL implementation
of a superscalar speculative out-of-order core based on
the MIPS R10000 microarchitecture. Figure 1 gives a
high-level sketch of MIPS R10000’s out-of-order core.
The details of the microarchitecture are described
extensively in [5]. The MIPS R10000 microarchitecture
is selected for the project because similar
microarchitectural arrangementsmost notably the use
of a common physical register pool to serve as both
rename registers and architectural registersare
employed by most of the recent superscalar out-of-order
processors.

The scope of the project only covers the mechanisms
for renaming, microdataflow scheduling, data
forwarding, branch rewind and exception recovery.
Datapath elements relevant to this project are
highlighted in gray in Figure 1. Memory and floating-
point portions of the datapath are left out in the current
version of the project. For the purpose of testing and
simulation, a synthetic randomized instruction source
that mimics the instruction fetch stage provides test
stimulus to the out-of-order core.

The synthetic instruction source emits a randomized
instruction stream composed of 4 instruction types in the
MIPS ISA [3]. The out-of-order core only needs to
support the execution of the integer subtract instruction
(SUB rd, rs, rt). A sequence of SUB instructions with
randomized source and destination registers is sufficient
to exercise the hardware related to register renaming,
microdataflow scheduling, and data forwarding.

The synthetic instruction source also emits ADD,
BNE and BEQ instructions. The semantics of these
instructions, however, have been redefined for the
purpose of exercising the mechanisms for precise
exception and branch rewind.

• The execution of an ADD should always lead to
an exception. The ADD instruction itself cannot
be finished. The state of the out-of-order core
should rewind to just before the ADD instruction
prior to continuing with the corrected instruction
fetch stream.

• The execution of a BEQ should always confirm
its corresponding branch prediction, requiring no
change to the incoming instruction stream.

• The execution of a BNE should always reverse
its corresponding branch prediction. The state of
the out-of-order core should rewind to just after
the BNE prior to continuing with the corrected
instruction fetch stream.

core

isource

4xinst decode

map table

fetch

8x4 entries
Active List

(ROB)

16-entry
int. Q
(R.S.)

ALU1 ALU2

64-entry
Int GPR
7R3W

LD/ST

64-entry
FPR

5R3W

FPU1 FPU2

16-entry
FP. Q
(R.S.)

map table

(16R4W)

in-order
checker

…,sub;sub;sub;…

Fig. 2. The Simulation Environment

4xinst decode

map table

fetch

8x4 entries
Active List

(ROB)

16-entry
int. Q
(R.S.)

ALU1 ALU2

64-entry
Int GPR
7R3W

LD/ST

64-entry
FPR

5R3W

FPU1 FPU2

16-entry
FP. Q
(R.S.)

map table(16R4W)

Fig. 1. MIPS R10000 Block Diagram

23

The frequency of these special instructions can be
adjusted as necessary. The out-of-order core
implementation is not allowed to take advantage of the
special semantics of the ADD, BEQ and BNE
instructions except when the instructions are being
executed. In other words, until ADD, BEQ and BNE
reach the execution unit, they must be treated normally
as if they were expected to complete; similarly, the
speculatively fetched wrong-path instructions following
an ADD or BNE must also be treated normally
(although they must be later discarded) until the
exceptional condition is determined in the execution
unit.

III. PROJECT SETUP

The students are provided with two behavior-level
Verilog modules that constitute the testbench
environment for developing their core (Figure 2). The
first is a synthetic instruction source, and the second is a
checker module.

A. Instruction Source Module
 The isource module mimics a 4-wide instruction

fetch buffer. The interface to the isource module is
depicted in Figure 3. On each cycle, the isource
module presents a sequence of 0 to 4 randomly
generated instruction words on its four inst ports. The
corresponding bits in the 4-bit valid mask indicate the
validity of individual instruction words. If less than four
instructions are valid, the valid instructions are always
clustered together toward inst0. The output of the inst
and valid ports do not change until the accept input
port is asserted on a clock edge. (See example waveform
in Figure 4). In other words, the instruction fetch stream
can be stalled by deasserting accept. The instructions
that follow a BNE instruction are, by our redefinition,
wrong-path instructions and hence must be discarded
after the BNE instruction is later executed. After branch

rewind, the correct instruction stream is resumed by
asserting the restart input port for 1 clock edge. (See
example waveform in Figure 5.) The new instruction
stream begins immediately on the following cycle.
Instruction fetch is restarted in the same way following a
precise exception caused by an ADD instruction. The
isource module generates a sequencing ID for each
instruction in the stream. The sequence ID of the
exceptional instruction must accompany the assertion of
the restart signal to properly resolve the situation when
nested branch mispredictions are resolved out of
program order.

B. Checker Module
The checker module maintains a shadow copy of the

architecture register file. The checker module passively
monitors the activities on all input and output ports of
the isource module. The checker module computes the
correct in-order-state of the register file according to the
observed instruction stream. The checker module
executes the instructions in order. Instruction processing
is skipped following an ADD or BNE instruction until
the restart signal is asserted for the correct exceptional
instruction. The checker module provides a reference
state to verify the execution of the out-of-order core.
The checker module also collects and displays basic
performance and instruction stream statistics (e.g., IPC,
instruction mix, and the number of exceptions) during

ISOURCE

64
inst0
inst1
inst2
inst3

valid[3:0]
4

accept

restart

reset

clk

16
id0
id1
id2
id3

restartOn

Fig. 3. The isource Module Interface

accept

clk

valid

inst’s

1111 1100 1111 0000 1111

XXXX

Fig. 4. Stalling Fetch by Deasserting accept

clk

accept

inst’s

restart

X,X,X,X S,S,S,Be S,Be,Bn,S S,A,S,Bn S,S,S,Be S,S,A,S

sn’s X,X,X,X n0n1n2n3 n4n5n6n7 n8n9n10n11 n12n11n13n14 n15n16n17n18

restartOn n11 n6XX

Fig. 5. Restarting Fetch by Asserting restart

24

simulation.

IV. PROJECT EXECUTION

Four major milestones demarcate the different phases
of the project. These milestones both help pace the
students’ effort and also steer the students’ attention.

• Phase 1: Develop a one-instruction-wide out-of-
order core for just the SUB instruction. The core
only needs to handle one instruction per cycle in
each of the decode, dispatch, execute and
writeback stages. The emphasis in this step is to
develop the register renaming and dataflow
algorithms. This step is allotted 2.5 weeks,
which includes allowance for getting up to speed
on the MIPS R10000 microarchitecture.

• Phase 2: Extend the one-instruction-wide core to
support branch instructions (BNE and BEQ) and
branch rewinds.

• Phase 3: Extend the one-instruction-wide core to
also support precise exceptions. Step 2 and 3 are
together allotted 2 weeks.

• Phase 4: Extend the fully-capable core from one-
wide to superscalar operations in all stages. This
step is allotted 1.5 weeks.

An appropriately restricted isource module is provided
for in each phase to facilitate testing of the restricted
core in the first three phases.

The project can run alongside of a normal lecture
sequence. However, a part of each lecture should be
reserved to discuss and clarify project related issues. As
necessary, a number of the lectures can also be devoted
to covering the more subtle details of the MIPS R10000
design. Another option is to have the students take turn
presenting different aspects of the MIPS R10000 core,
as described in [5].

The RTL models produced for the project must not
only simulate correctly but also be synthesizable.
Synthesizabilty is a project acceptance criterion to
ensure the students do not include unrealistic hardware
structures in their processor models. The students can
only implement the core using the synthesizable subset
of Verilog Hardware Description Language [2]. In this
regard, students with RTL design experience have a
significant advantage. Therefore, it is important each
team includes at least one member who is familiar with
the RTL design flow.

Students are encouraged to follow a top-down design
flow where they begin with a very high-level, possibly
behavioral, model for the major datapath structures.
Next, they can refine the datapath structures piecewise

from behavioral Verilog down to synthesizable RTL
code. After each refinement step, the students can
immediately simulate against the testbench environment
to ensure the correctness of the most recent changes.

Although the core must be implemented using the
synthesizable subset of Verilog, students are encouraged
to incorporate behavioral-level Verilog code for
monitoring and debugging purposes. These out-of-band
behavioral debugging code can dynamically examine the
processor state cycle-by-cycle and compute elaborate
runtime invariant conditions. In our experience,
carefully designed runtime invariants are very powerful
debugging aids. These invariants help flag an erroneous
operation in a timely manner such that they allow much
better localization of the origin of that error.

V. PROJECT OBJECTIVES

A. General Implementation Guidelines
It is suggested that the students base their core on the

MIPS R10000. As a general guideline, their RTL
models should capture all details explicitly mentioned in
[5]. Nevertheless, the students also need to improvise in
several places where design decisions are not spelled out
explicitly. In addition to the general guideline above, the
following set of specific criteria must be met by the
students’ RTL models.

1) The execution of the out-of-order core must
correspond to the reference behavior of the
checker.

2) In the out-of-order core, pending instructions
must issue as soon and as fast as possible after
(true) data dependence and structural hazards
have been cleared.

3) Back-to-back dependent instructions must be
capable of issuing on consecutive cycles (in the
absence of structural hazards).

4) Branch rewind must be fast, i.e., taking O(1)
time, independent of the number of instructions
to rewind.2 A branch rewind must start and
complete as soon as possible, without waiting
for older instructions to retire.

5) Exception rewind can be slow, i.e., taking O(n)
time where n is the number of instructions to
rewind.

6) The core cannot make use of the special
semantics of ADD and BNE instructions until
they are in the functional unit.

2 This criterion forces the student to implement a
“branch rewind stack”.

25

Other aspects of this design project are essentially left to
the students’ whim.

B. Evaluations
The quality of the resulting RTL model is judged on

correctness, IPC performance and hardware cost. For
the early milestones, the acceptance criterion is simply
for the out-of-order core to simulate correctly against the
test environment (isource and checker) for an agreed
upon number of instructions. During simulation, the
checker keeps count and reports the progress. After a
sufficient number of instructions has elapsed, instruction
fetch from isource is stopped, and the out-of-order core
is switched into the “drain” mode. The students can
next verify that the out-of-order core’s committed
register file state agrees with the reference register file
state in the checker.

In Phase 4, the out-of-order core must also achieve a
minimum IPC performance. The IPC lower bound helps
diagnose performance bugs. For example, we had seen
a case where one team did not handle back-to-back
execution of dependent instruction. The consequence of
this oversight is obvious in their abysmal IPC relative to
the other teams. During Phase 4, the different teams in
the class are routinely informed of each other’s latest
IPC achievements. This effectively turned the last phase
of the project into a competition. The students were
self-driven to fine-tune things like the issue priority
logic and the branch rewind process to stay ahead of the
rest of the class.

Although the RTL models produced by the students
are synthesizable, we do not use the synthesis outcome
to evaluate hardware cost. Synthesized storage
structures (RAM, CAM, and FIFO) are much less
efficient that the custom blocks instantiated in real
processor implementations. As a compromise, we
compute an estimate manually using empirical values.
We assume each bit of storage (a bit cell) costs 1 unit
and the integer ALU costs 50,000 units. To compute the
final cost of a storage structure, the raw bit-cell cost
must be further multiplied by the number of normal read
or write ports and by two times the number of
associative lookup ports. (For logical structures that
require different types of references in its different
columns, the students would have to break the logical
structure into its physical components to get an accurate
estimate.) This very coarse grain model does not
account for random logic, registers or routing
congestions. Nevertheless, it does force the students to
be aware of the tremendous cost and tradeoffs of adding
additional ports and associative lookup.

VI. PROJECT EXTENSIONS

The project as described is designed to be completed
by groups of two to three students in a half semester
(~six weeks). The duration and scope of the project can
be extended by including other aspects of modern high-
performance processors, such as branch prediction,
aggressive load/store ordering and cache hierarchy.
Here, we briefly suggest some specific ideas.

1. Instead of MIPS R10000, one could also
retarget the project to be based on Alpha
21264 with clustered datapath. This
microarchitecture is as described in detail in
[3].

2. One could augment a baseline implementation
of MIPS R10000 with support for
Simultaneous Multithreading (SMT) [1]. The
project would serve to clarify the
implementation consequences of SMT support.

3. The project currently does not handle loads
and stores. The memory subsystem in modern
superscalar processors can easily be made into
a similar but stand-alone project.

4. Similarly the project can also be extended to
examine instruction fetch and prediction issues
in modern superscalar processors (e.g. wide
fetch using a trace cache).

The key is to carefully confine the scope of the
project so the students are exposed to all of the
important details but without unnecessary tedium.

VII. CONCLUSION

The intent of this project is for students to gain an in-
depth understanding of modern superscalar
microarchitecture through hands-on practice. In
addition, the project also gives the students a chance to
experience issues in project teaming and participate in a
full engineering cycle of specification, implementation,
validation and analysis. We believe this course is
invaluable training for students who are headed for
either industry or graduate research.

This project is challenging and time-consuming.
Although the students often gripe about its load and
difficulty, in our experience, the students really did
enjoy spending the time to work out the details,
especially for the moments when a fuzzy concept in their
head suddenly becomes crystal clear in their
implementation.

26

REFERENCES

[1] S. J. Eggers, J. S. Emer, H. M. Leby, J. L. Lo, R. L.
Stamm and D. M. Tullsen, “Simultaneous
multithreading: a platform for next-generation
processors,” IEEE Micro, vol 17 no 5, pp 12-19,
Sep/Oct 1997.

[2] HDL Compiler for Verilog Reference Manual,
Synopsys, Inc., 2000.

[3] G. Kane and J. Heinrich, MIPS RISC Architecture,
New Jersy:Prentice Hall, 1991.

[4] R. E. Kessler, “The Alpha 21264 microprocessor,”
IEEE Micro, vol 16, no. 2, pp 24-36, Mar/Apr
1999.

[5] K. C. Yeager, “The MIPS R10000 superscalar
microprocessor,” IEEE Micro, vol. 16, pp. 28-41,
Apr 1996.

27

�������� ��	
��
	��		� ��	 ���	��������	 ���

������	 ���	��	��	 �� ������	� ����	�� �����	�

���� ������ �	
 �����
��
��������	� �� ���� �	
 �������� ����	��

���	� ���� ������	� �	��������
��	 ������ �������	�� � !"#
$�������� ����%&������'�
�

�
������

� � � � � � � � � � � � � � � 	 � 	 � �
 � � 	 � � 	 � � � �
 � �
 � � � � � � �
�
 � � � � � � � � � � 	 � � � 	 � � � �
 � � � � � � � � � � � � 	 � � 	 � � � � 	 �
	 � 	 � � � � � � � � � 	 � � � � � �
 � 	 � � � � � � � � � � � � 	 � � � � � � �
� � � � � � � 	 � � � � � � � � 	 � � � � � � � � � � � 	 � �
 � � 	 � � � � � � � �
� � � � � � 	 � � � � � � � 	 � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � 	 � �
� 	 � � � � 	 � � �
 � � � � � � � � 	 � �
 	 � � � � � � � � � � � � � � � � � � 	 �
� � � 	 �
 � � �
 � � � �
 � � � � 	 � � � � � � � � � � � � � � � �
 � � � 	 �
� 	 � � � � � � � � � � 	 � � � �
 � � � � � � �
� � 	 � � � � � � � 	 � � � 	 � � � 	 � � � � 	 � � � � � � � 	 � � � � � � � � � � �
� � � � � � � 	 � � � � � � � 	 � 	 � � � � � � � � � 	 	 �
 � � � �
 	 � � � �
� � � � � � � � � � � � 	 � � � 	 � �
 � � � � � 	 � � � 	 � � � � � � � � � � � 	 � �
	 � � � � � � � � �
 � � � � � � � 	 � � � � � � � 	 � � � � � � � � 	 � � � � 	 � 	 � �
� � � � � � 	 � � � � � � �
 � � 	 �
 	 � � � � 	 � � � � � � � � � 	 � � � � � �
 �

�
 � �
 	 � � � � 	 � � � � � � 	 � � � � � � �
� � � � � � 	 � � 	 � � � ! " # � � 	 � � � 	 � � � � 	 � � 	 � � � � � � 	 � � � � 	 � �
� � � � � � 	 � �
 � � � � � �
 � � � � � � � � � � � � � � 	 � � 	 � �
 � � � � �

� ������������

� � � � � � � � 	 � �

 � � �
 � � � � � � � � � � � � 	 � � � � � � � � �
 �
	 � � � � 	 � 	 � � � � � �
� � � � � � � � � � 	 � � � � � � �
 � � � � � � 	 � � � 	 � � � � 	 � 	 � �
 � � �
� � � � � � � � 	 � � � � � � � � � � � �
 � � � � � � 	 � � � � � � � � �
 � � �

� �
 � � � � � � � � � � � � � � 	 � �
 � � � � � � � 	 � �
 � � 	 � � � � �
 � � � � � � �
$ % % & $ ' & $ (& 	 � � � � � � � 	 � � � �
 � � � � � � 	 � � � � 	 � � � � � � � �

� � � � � � 	 � � 	 � � � � � � � � � � � � � � � � � 	 � � � � � � � � 	 � �
 � � � �
� � � � � � � �
 � � � � � � � 	 � � � 	 � � � � 	 � �
 � � � � 	 � � � � � � �
 � � �
� � � � � � � � � � 	 � � � 	 � � � � 	 � � 	 � � � � � � � � � � � � �
 � 	 � � � � � �
� �
 	 � � � 	 � 	 � � � � � � � � � � � 	 � � � � 	 �
 � � � � � � � � � � � � � � �
� � 	 � �
 � � � � � � � 	 � �) � � � � 	 � � � 	 � � � 	 � � � � 	 � � � 	 � � � � �
� � � � � � 	 � � � � � � � � � � * � � � � � � � 	 � � � � 	 � � � � 	 � � � � � � �
+ � � � � � � � � 	 � � � � �
 � � � � � � � � 	 � � � � , � 	 � � � �
 � � � � � �
� � � � � � � � � � � � � 	 � � � � � �
 � � � � 	 � � 	 � � � � � � � � � � �
� � � 	 � � � � � � � � 	 	 � � � � �
 � � � � � � � � � � � � � 	 � � � � � � � � � �

� � 	 � �
 � � � � � � � � � � � � � � � � � 	 � � � 	 � � � 	 � � 	 � � � � 	 � 	 � �
� � � � � � 	 � �
 � � � � �
 � � � � � � 	 � � � � � � � � � - � � � � � � 	 � �
� � � � . � 	 � � � 	 � � � � 	 � � �

� � � � � � � � � � � � � � � 	 � 	 � � � � � � � 	 � � � 	 � � � � � � � � �
 � � � 	 �
� � � � � � � � �
 � �
 � � � 	 � � � 	 � � � � � � 	 � � � � � � � � � � � 	 	 � �
+ � � � � � � � � � � 	 � � 	 � � � � �
 � � � 	 � � � � � � � � � 	 � � � � � � �
� � � � � � � � � 	 � � � �
 � 	 � � � � � � � � � � � � �) � � 	 � 	 � � � � �
	 � � � � � � � � � �
 � � � � � � 	 � � � � � �
 � � � � � � � � 	 � � � � � � / �
	 � � � � � 	 � � � � 	 � � � � � � � � � � � � � � � 	 � � � �
 � 	 � � � � 	 � � �
� � � � � � � �
 	 � � � 	 � � � � � � �) � � � � � � 	 � � �

 � � � �

� � � � � � � � � � � �
 � � � � � �
 � � � � 	 � � 	 � � � � � � � � � � �
	 � � � � � � � 	 � � � � � � � 	 � � � � 	 � � � � � � � � � � � � � 	 � � � �
� � � �
 � 	 � � � � � � 	 � �
 � � 	 � � � � 	 � � � � � � � � � 	 � � � � � � �
� � 	 � � � � � � � � � � � �
 � � , � � � � 	 � � � � � � � � � � � � � 	 �
 � � �
� �
 � � � �
 � � � �) � � 	 � � � � � � � � � � 	 � �
 	 � � � � � 	 � � � � � � �
� � 	 �
 � � � 	 � � � � � 	 	 � � � � 	 � � � � � � �
 � � � �
 	 � �
 � � � �
�
 	 � � � 0 � � � � � � � � � � � � � � �
 	 � � � � � � � � 	 � � � �
 �

 � � � � � �
� � � � � � 	 � � 	 � � � � 	 � � � � 	 � � � � � � 	 � � � � 	 � � � �
 � � � � � �
� � � � � � � 	 � � � � � � � � � � �
 � 	 � � � � � � � � � � � � � � 	 � � � 	 � �
� � � �
 � � � � � � � � � �
 � � � � � � � � � � 	 � �
 	 � � � � � � � � � � � �
� � � � � � � � � � � � � � 	 � � � � � � � 	 � 	 � 	 � � � � 1 � � 	 � � � � � �

	 � � � � � � 1 �
 � � � � � 	 � � � 	 � � �
� � � � � � � � � � �
 � � � � � � 	 � � � � � � � � � � � � � � / � � � � � �

	 � � � � � � � � � � 	 � � 	 � � � � 	 � � � � � � � �
 	 � � 	 � � � � � � � 	 �
� � � � � � � � 	 � � � � � � � � � � � 	 	 �
 � � �
 � � � � � � � � 2 � � � � � � � � �
� � � � � � � 	 � � � � � � 	 � � � 	 � � � � 	 � � � � 	 � � 3 � � � � � � � � � � � �
� � 	 � � � � � �
 � � �
 � % " % �

/ � � � � � � � 	 	 � � � 	 � � � �
 � � 	 � � � � 	 � 	 � 	 � � � � � � � �
� 	 � � � � � � � � � � � �
 � 	 � � � � � � � � � � � � 	 � � � � � � � � � � � 	 �

� � � � � � � 	 � � � �
 � � � � � �
 � � � �
 � � � � 	 � �
 � � � 	 � � � � � � �
� �) � � � � � � 	 	 � � 	 � � � � � � �
 � �
 � � � � � � �
 �
 � � � � � � � �
� � � � 	 � � � 	 � � � �
 � 4 � � � � � � � � �
 � � � � � � 	 � � � � � � 	 � �

 � � 	 � � � � � � � � �
 � � � � � � � � 	 � �
 � � � � � � � 	 � � � � � � � 	 � � �
	 � � � 	 � � � � 	 � � � � � � �) � � � � � 	 � � � � � � 4 � � � 5 	 � � � � � � � 	
� � � � � � � � � � � � 6 6 7 � � � � � � 	 � � � � � �
 	 � � � � � � � � 	 � � �
� � 	 � � � � � � � � � � � � � � �
 	 � � 	 � � �
 � � � � � � � � �
 � � �
	 � � � 	 � � � � 	 � � � � � 4 � � � � � � � 	 	 � � 	 � � � � � � 	 � � � � � �

 � � � � � � � 	 � � � � � � � 	 � � �
 � � 	 �
 	 � � � � � 8 � � � � 	 � � �

 � � 	 � � � � � � � � � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � �

� � � � 	 � 	 � � � � / � � � � � � � � 	 � � � � � � � � � � � � � � 	 � � � � � � � � �
	 � � � � �
 � � 	 � � � � 	 � � � � � � 	 � � � � � � � � � � � � 	 � � � � � � 	 � �
	 � � � � � 	 � � � � � � � � � � � � � 9 �
 	 � � �
 � � � � � � � � � � � � 	 � � � �
� � � � � � � � � � � � � � � � � 	 � 	 � � � � � � � � � � � � � 	 � � � � � � � � � �
� � � � � � � � � � 	 � � � �
 � � 	 � 	 �
 � � �
 � � � � � � � � � � � 	 	 � � � �

28

� � � � � � � � � � � 	
 � � � � � � �
 � � � � � � � � � � � � � � � 	
 � � � �
 � �
� � � � � � 	 � �
 � � � � � � � � � �
 �

 � � � � � �
 �
 � � � �
 � �
 � � � � � � � � � � � � � � � � � � �
 �

� � � � � � � � � � � � � � � � � � �
 �
 �
� � � � � � � � � �
 � � � � � � � � � �

 � �
 � � � � � � �
 �
 � � � � �
 �
� 	 � � � � � � � � � � � � � � � � �
 � �
 � �
� � � � � � �
 � � � � � �
 � � �
 �
 �
� � �

 � � �
 �
 � � � � �
 � � � � � �
� � � � � � � � � � � �
 �
� � � � � � �
 � � �
 �
 � � �
 � � � � � � � �
 � � � � � � � � � �
 � � � � �
� � � � � �
 � � � � � � � � � � � � � � �

 �
� �
 � � 	
 �
 � �
 � � �

� ��������

�
 � � � � � � � � � � � � � �
 � � �
 � � � �
� � � � � � � � � � � � � �
 �
 � � 	 � � � � � �
 � � � � � � � � �
 � � � � � � �
 �
� � � � � � � �

� ! " # $ % & ' (&) & (* ! + , -
.

 	 / 0 � �
 � � 1 2 3
� � � � � � �
 � 4
 � � � � � � �
 � � � � 5 6 3
4
 � � � 7 .

 7 / 0 � 8 � � 9 9 � � 5 6 3
4 � � � � � � 4 � � � � �
 � : 2 3

� ! " # ; % < = > * ? & @ (# " & = # (, -
4 � � � � � � � � � � � � � � � �
 � � � � � 2 3
4 � � � � � � � A � � � � � � � 1 2 3
B � �
 � � � � � � � � C �
 � � � 	 � � � � D 6 2 3

�
 � � � � � � � � � � � � � � � �
 �
� � � � � � � � � � � � � � �
 � � � � �
 � � �
 � �
 � � � 	 � � � � � � � �
� � � � � � �
 �
� � � � � � � � � � � � � � � � � � � E �
 �
� � � � � 5 : � � � � � � � � � �
 � �
 � � � � � � � � �
 � � 	 � � � � 1 � � � � � �

� � � � � � � � � � � A � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � F

 � � � � �
 � � �
 � � � � � � �
 � � � � �
 � � � � � � � �

 � � � � � � � � � � �
� � � � � � �
 � 	
 � �
� � � � � � �
 � � � � � � � � � � �
 � � �
 � � �
 � � � � � �

/ � � � � � � � � � � � � G � � � F � 	 �
� �
 � � � � � � � � � � � � � � � � � �
 � � �
 � � � � � �
 � � � � � � � � � � �
� � � � � � � � � � � � � � �
 �
.

 � � � � � �
 � � � �
 � � � � � � � � � � � �
 � � � � � � � � �
 � � � �
� F � � � � 	 � � � � � � � � �
 � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � �
� � � � � .

 �
 � � �
 � � � A
 � � � � � � � .

 H
 � � � � � �
�
 � � � � � � � � � � � .

 � � � � � �
 � I 5 J K � � � � � � � � � � � �
� � � � � � � � � � �
 � � �
 � � � � � � � � � � � B � � � � � 5 � L � � F �
M � 5 N �
 � � � 	 � � � � � � � � �

� � � �
 � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � �
� F � � � �
� � � � F � � � � � � � �
 � � � � � � � � � � �
 � � � � � O � � � � � � � � �
� � � � � � � � � � � 	 �
 � � � � � � � � � � � � � � � � �
 � � � � �
 � � � �
� � � � � � � �
 � � � �
 � � � �
 � �
 � � � � � �
 � � � � � � � � � � � � � � �
�
 � � � � � � � � � 	 � � � � � � � � � �
 � � � � � � � � 	
 � � � � � � � � � � � F �

Week Lecture Lab
1 Intro to DOS, Java Intro to DOS, “A Cup of Java”

(Sun Tutorial)
2 Intro to Technical Papers Group Analysis of organization,

content, language of 3 systems
papers

3 Basis Java Constructs,
Discuss paper 1

Sun Tutorial using “Click Me”
applet

4 Intro to Java Interfaces,
Discuss paper 2

Modifying applets to implement
Listeners

5 Java Threads, Layouts
Discuss paper 3

Animation Lab

6 Writing Proposal, Finding
background papers

Finish Animation Lab
Locate background papers

7 Writing a Simulator Analysis of Turing Machine
applet simulation

8 Technical Presentations proposal draft meetings

B � � � � � 5 � H � � � � � �
 � � H
 � � � � � � � � � � � � � � � � � � � G
� � � F � �

	
��
��
� �
�������� �� ��

���� ��������
��

L � � � � � � � � �
 � � �
 � � � � � � �
 � � � � �
 � � � � � � � 	
 �
� � � � � � �
 � � �
 � � � � � �
 � � � �
 � � � .

 � � � � � � � F �
 �
� � � � � � � � � � O � � � � � � � �
 � � � � � � � � F � � � � � � 	 � � �
� � � � � � � � � � �
 � � �
 � � � � � �
 � �
 � � � � � � � � �
 � � � � � � �
� �
 � � �
 � � � � � � � � �
 � � � � � � � � � � � � � � � � � �
 � � � � � � P � � � � �

Q � � � � � � 	 � � � � �
 � � �
 � �
 � � � � � � � � � � �
 � � � � � � � � � F 	
� � � � � � � � � � � � � �

 � �
 � � � � � � � � � � � �
 � � � � � � � �
 � � � �
� � � � � � � � � �
 � � � �
 � � � � � �
 � R � � � � � � � � � � � � � S � E � � �
� �
 � � � � � � � �
 �
 � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � �
T � � �
 � � 	
 � � � � � � � �
 � � � � � � F � � � � � � � � � � � � � � � �

� � � � � �
 � � 	 � � � � � � � � � � � � F � � �

 � � � � � U �
 � � � � � �
 � � � U
� � � � �
 � � � � � � � � � 	 � � � � � � �
 � � � � �
 � � 9 � � �
 � � � � � �

�
 �
 � � � �
 � � � � � � � � � � � � �
 � � � �

 � �
 � � � � � � � �
� � � � � � � � 	
 � � � �
 � � � �
 � � � � � � � � � � � � � �
 � � �
 � � �

 � �
 � � � � �
 � � � � � � � F � E �
 � � � � � � � 	 � � � � � � �
 � �

 � � � �
 � � � � F � � � � � �
 � � � � � � � � � �
 � � � � � � � .

� � � � � �
 � � � � � � � � � � �
 � F � � � � � �
 � � � � �
 � � � � � � � � �
� � � � � � � � � � � � 	 � V � � � �
� � � � �
 � � � � � � � F � � � � � �

 � � � � � � � � � � � � �
 � � � � �
� �
 � �
 � � � � � � � � � � � � � � � �

 � � � � � � � � � � � �

O � �
 � B � � � � � 5 	 .

�
 � 	 � � �
� � � �
 � � 	 � � � � � �
 � � � �
 � �
 �
 � � � � � � � � � � � � � � � .

O � � � � � �
 �
 �
 � �
� � � � � � �
 � � � � � � � � � �
 � � � � � � � � � � � � � � �
 � � � � � � � � � �
�
 � � � � � W � � � � � � � � � � � � � � P X X
 � � .

 	
 � � � � � � � �

 � � � � � � � � � � � � � � � � � .

 O � � � � � � � Q � � � � � � � � � 	 � � � �
� � � � � � �
 � � �
 �
 � .

� � � � � �
 �
 � � � � �
 � � � �
� � � � � � � � � 	 � � � � �
 � � � � � �
 � � � � � � � � F � � � � � � � � � � � � �

 � � � � � � � � � � � Y � � � � � � � � � �
 � � � Q � � � � � � � � � �
 � � � �

29

� � � � � � � � � � � � � 	
 � � � �
 � � � � � � � � � � � � � � � 	 � � � � � �
� �
� �
� � � � � � � � � � � � � � � � � � ! � � " � # � � � � � $ � � � � � � � � � � � � �
� � � � � � # � � � � � � � � � 	 � $ � � �

� �
� � � % � $ � � � � � � � � � �
� � � � � � � � � � � & � $ � � � � � � �
� � � � � ! ' � � � � � � � � � � � � � � � � � % � � � � � � � � � $ � � $ � � � � �
� � � � $ � � � � �
 � � � �

� ������� ���	
����� ��
����

�� ����
�

(� $ � � � � � � � � � � � � �
� � � � � $ � $ � � � � � � � � � � � � � 	 �
� � � $ � � � � � � $ �
� �
�) � � � � � � � � � � � � � � % � � � � � � � � �
� * +
 , � � �
� � � � � � � � � - � � � � � � � , � � � " � � � � � � � � $ � � � . � � � � �
/ � 0 � � � � ! � + + & - , � � � % 1
 - � � � � � � � � 2 0 � � � � � �
 � �
$ � � � � � � � � � . � � � � � � 3 � � � � � 3 � � � $ � � � � � � 4 � + � � �

+ 2 5 � � � � � (� � � � � � � � � � � � � � � � � � 6 � � � � � 6 � � - � � � � � $ �
� � � 7 � � � � � � - � � � � $ �
 � � � � � � � � � � ' � +) � � � � � � � � � � �
� � � � � � , � � � � � � �
 � � � � � � � � � � � � � � 8 � � � � � � � $ - � � �
� �
� � � � � # � � � � � � � � � � � � # � � � � � � � � � � � � � �

) � � � � � � � � � � � � � � � � � � � $ � � � � � � � � � 	 � � � � � � �
� 	 � 9 � � � � � � � � 	 � � � � � � � � � � �
� $ � � � � � � � � � $ � � � � � �
� � % � � $ � � � � � � � � � � $ � � � � � � � � � � � � � � � �
 � � � % � � � � �
� � � � � � � � 	 �
� � � 	 �
� � � � � � * � � � � 	 � 	 � � % $ � � � � �

� $ � � � � � � � � � � � � � - � � � � � � �
� � � � � � % �
� � � � � � � � � � � � � � � � 0 � � � � � � � � � � � � � � $ � � � � � � � � � � �
� � � � � � � 	 � � � � � � � � � � � � � � � � 8 � � � � # � � � � � � � � � � � � �
� � � + : ; < = > ? @ A ? > ? B C D @ B E > ? B ? F @ ? G H I ? J @ H I = K D ? B H

L > = E A B H + � � � � + M A = @ N B @ A ? E C > E ; B ? ; O @ A ? P Q C > ? B
N F ? = R A E = E ? > H S � 	 � � �

� �
6 �

� T � � � � � � � � � � � U � � � � � � � � � � �
� � � � � � $ � � � � � � � � � � 	 � � � � � � � � � � �
 � � � � � � � � � � � �
� � � � � � � � � � � � � (� % � � � �
	 � $ �
�) � � � � � � �
� � � � � � � � � $ � 	 � � � � � � � � �
� (� � � � � � � � � � � � � � � � � � �
� $ � $ � � � � � � � � � � % � � $ � � � � � � � � � � # � � T T � � � � � � � � � � � �

� U � 	 � � � � � � � � � � � � � �

� % � � � � � � � � � � � � � �
� � � � � - � 	 � � � � � � � �
� 	 � � � � � � � � � � � � � � � � � � �

� 	 � � � � � $ � � � $ � � � � �
� 	 � � � � � � � � � �
� $ � � � # � � � � � � � � �

7 � � � � $ �
� �

� � � � � � � � (� � � � � � � � � � � � � � � � � � � $ � � � $ � � � � � � � � � � �
� � �
 � # �
� 	 � � � � � � � � $ � � � � � � � � � $ � �

� � � � � � � � � � � � � � � $ �

 � $ � � � � �
� � � � � � � � � � � � � � � � � � � $ � � � � �
 � � � � � � � � � � � � � � � �
� � � � � � � � $ � � � � � 	
 � � � � � � � � � � � � 	 � � � � � � � � � � � � �
� $ 	 � � � � � � � � �
$ � � � � � � � � � � � � � � � $ � � � # � � � � � � � � � � � � � � � � � �
 � � � � �
) � � � � � � � � � � 	 � � % $ �
� � � � � � � � � � � � �
 � � � � U � � � � � � � � � � - � 	 � � # � � � � � � � � � �
� �
� �

� � � � � $ � � � � � � � � � � $ �
� � � $ � � � � � � � � � � � � � $ �

� �
����������

 � $ � � � � � � � � � � � � � �
� � � � � � � � �) �

� �
	 � � % � �
 $ �
� � � � � � � � � � � � � $ � � � � � � � � � � � � � � � � �
 � � � � � � � � �
� 	 �
� � � � � � � � � � - � � � � � � � � � � � � � # �
� � � � � % � � � � � � % �
� � � � � � � � � � � � �) � � � � � � � � � � $ �
� � � $ �
	 � U �
� � � � � � � � � �
 � � � �) � � � � � � � � � � � U � � � � � � � � � � � � � � � �
� � � � � # � � � 	 � � � � � � � � � � 	 � � � � � � � � � � � � � � � % � � � � � � �

6 � � � � � � � � � � � � � � � � � � $ � � � � V � � � � � � � � � � � � � � � � � �
�) � � � � � � � � � �

� �
� % � � � � � 	 � 	 � � % � �

� $ � � �) � � � � � �
� $ � � � � � � �
� � � � � � � � � $ � �

� ���������� ��� ����
������

 �
 � � � � � �
� � � � � � � � � � � � � � � � � �
 �
� � � � � � � � , � � � � � � �
 � � � � � � � � � � � � � 8 � � � � � � � $ - � � �

30

� � � � � � � � � � 	
 � � � � �

 � � � � � �
 � �
 � � � � � � �

 �

� � � �
 � � � � � � � � � � � 	 � � � 	 �
 � � � � � � � � � � � 	 �
 � � � � �
�
 	 � � � � � � � � � � � � �

 � � � 	 � � � � � � �
 � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � � � � � � � � � � � � �
 � � � � � � � �
 � � � � � � �
� �
 � �
 � � 	
 � � � �
 	 � � � � � � � � � � � �
 � � � � �
 	 � � � � � � � �

� � � � �
 � �
 � � �
 � � � 	 � � � � � � 	 � � � � � � � � � � � � � � 	 � � 	 � �
� �
 � � �
 	 � � � � � � � � � �
 	 � � � 	 � � � �
 � �
 � �

� � � � � � � �
 � � � � � � � �
 	 � � �
 � � �
 	
 � �
 � � � � � � � � �

� � � � � � � � � � � �
 	 � � � � � � � �

� � � � � � � � � �
 � � � � �
 � � � � 	 � � �
 � � � �

 � � � �
 � �
 �

� � � 	 �
 � � 	 � � � �

� � � � � � �

 � � 	 � � � � � 	
 � � � �
 � � �

� � � � � � � �
 � � � � � � � � �
 � �
 � � � 	
 � 	 � � � �

� � 	
 � � � �
 � � �
 	 � � � � � � � �

� � � � � � � � � � � � �
 � �
 �
 �
 � 	 � � � � � �

��� ��� ��	
��

�������	�

� � � �
 � � � 	
 � � � � �
 	 � � � � �
 � 	 � � � � � � � � � � � � � �

 �
 	

� � � 	 � � � �
 � 	 � � �

 � � � � 	 � � � � � � �
 � � � � � � � � � � � 	 � �
� � � 	 � � � � �
 � � � � � � � � � �
 � � � � � � � �
 	 � � � � � � � � � � 	 � � �
� � � � � � � � � �
 	 �
 � � 	 � � � � �
 � �
 �
 	 � � � � � � � � 	 � � � 	 � � � �
� � � 	 � � � � �
 � � � � 	
 �
� � � � � � � � � �
 � � �
 � � � �
 � � � � � � � � � � � � � � �
 � � � �

 �
� � 	 � � �
 	
 � � � � � � � � � � �
 	 � � � � � � � � � �
 �
 � � � � � � � �

� � � �
 	 � � � 	
 � � � � � � �
 � � 	 � � �
 � �
 �
 � � � � �
 � � � � � � �
� � � � � � � �
 � � � � � 	
 � � � �
 � 	 � � � 	 � � � �
 � � � � � �
 � 	 � �

 � � �
 � � � � � � � � � � �
 � � � � � �
 � � � � � 	
 � 	 � � � � 	 �

�

 � � � � 	
 � � � 	 � � � � � � 	 � � � �
 � � � �
 � � � � � � �
 � � � � � � � �
� � � � � � � � �
 �

� � �

 � � � � � � � � � � � �
 	 � 	
 � � � � � � � � 	 � � � �
 	 	 � �
� � � 	 � � � � 	 �
 	 �
 � � � � �
 �
 � � � � � � � � � � �
 	 � � � � � � � �
� �
 � � � � 	 � 	 � 	 � � 	 � � �
 �
 � � �
 � 	 � � � � � � � � 	 � � � � � � �

 � � � � � � � � 	 �

 � � � � 	 � � � � � � � � �
 � � � 	
 � � � � � � 	 � � �
� � 	 � � � � � � � � � 	 �

 � � 	 � � � �

 � � � � � � � � � � �
 	 � � � � � � �

� � � � � �
 	 � �
 	 �

 � � � � �
 � � � � � � � � � � � 	 � � �
 � � � � � �
� �
 � � � � 	 � � � � �

 � � �
 � � � � � 	 � 	 � � � � � � � � 	 � 	 � � � � 	 � �

� � �

 � � � � � �

 �
 � � 	 � � �
 � � � � � � � � � � �
 	 � � � � � � �
� � � � � � � � � � � 	 � � � � � � � 	 � � 	 � � � 	 � � �
 � � � 	 � � � �
 � � � � � �

�
 	 � �
 � � � � � �
 � � � �
 � � � � � � � 	 �
 � �

 �
 � � � � � � � �
 	 �

� � � � � � � �
 � � � � � �

 � �
 � � � � � � � � � � � 	 � � � � � �
 � � �
� � � � � � � � � � �

 � �
 � � � � � � � � � � �
 	 � �
 � � � � �

 � � � � �

� � � � � � �
 � � � � 	 �

 � � � � � �

� � � � � � 	 � 	 � � �

 �
 	 � � � � � 	
 � � � � � � � � � � � � � � � �

� � � � � �
 �
 � � � � �
 	 � � � � � � � �
 � � � � � � � � � � � � � �

 �

� � � � � � � � � � � � � � � 	
 �
 � �

 � � �
 	 � � �
 � �
 � � � � � �
 � �

�
 �
 � � � � � 	 � 	 � � � � � � � � 	 � �
 � � � � 	 � � �
 � � � � � � � �

�
 � 	 � � � �

���

������� �����������
��	 ���

�����
����	

� � � �
 � � 	 � � � � � �
 	 �
 � � � � � � � � � � �
 	 � � 	 � � � � � � 	 �

� �
 �
 �
 � � � � 	 � � � � � � � �
 � � � � � � � 	 � � �
 � � � � �

�
 � � 	 � � � �
 � � � � � � � � �
 	 � � � � �
 � � �
 	 �
 � � 	 � � � �

�
 � � � � � 	 � � �
 � � � �

 � � � � � � � � � � � �
 � � � � � � � � � � � � �

� � � 	
 � � � � � � � � � � �
 	 �
 � � � � � � � 	 �
 �
 � � � �
 	 � 	 � � �
� 	 �
 � � � �
 � � � � � � � � � �
 � � � �
 � � � � � � � � � �
 � � �
 � �
� � 	 � � � � � � � � � 	 � �
 	 � 	 � � � � � � � � � � � � � � � � � � �

 	 �

�
 �
 � � � � � �

 �
 � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � �

�
 � �
 � � � � � � � � � � � � � � �
 	 �
 � � � � � � 	
 � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � 	 � � � �
 � �
 � � � � � � � � � � �
 	 � � � � � � � �

� � � � � � � �
 	 � � � � 	 � � � � � � � � � � � � � � � � � �
 � � �
 � � � �

� � �
 � � � � � � � � � � � 	 � �

 �
 	 � � � � � � � 	 � � �
 � � � � � � 	 �
 �
 �

	 � � � 	 �
 � � � � � � � � � � 	 � � � 	
 � �
 � � � �
 � � � � � � � � � �
 	
 � �
� � � � � � � � 	 � � � � � � 	 � � 	
 � � � � �
 �
 � � � � � � � � � � � � �

� �
 � � � � � � 	 � � � 	 � 	 � � � � � �
 � � �
 � � � � 	 � � �
 � � � � � �
 �
� � � � 	 �
 � � � � � � �
 � � � �
 � � � � � � � � � � � 	 �
 	 � � � � � � � � � 	 �

�
 � � � � � � 	
 �
 � � � �
 	 � 	 � 	 � � � � � � 	 �
 �
 � � � � 	 � �
 �
� � � � � � � � � � � 	 � � � � � � � �

� � � � 	 � � � � � � � � � � �
 �
 � � 	 � � � � �
 	 �
 � � � � � � � � � �

� � � � � � � � � � � � � 	 �
 � � � ! � � � � � � � �
 � � � �
 	 � � � � � � � � �

� � � 	 �
 � � � � � � � � � �
 � �
 �
 	 � � � �

 � �
 � � � � � � 	 � �

� 	
 � � � � � � �
 � � 	 �
 � � � � 	 � � � � 	 � � � � �
 	 � � ! � � � � �
" � � � � � � � � �
 � � � � � � � � � � 	
 � � � � � � � � � � � � � �
 � � 	 �
	 � � � � �
 � � � � � � � � � � �
 � � � � � � 	 � � �

 � � � � � � 	 	 �
 �

� � ! � � 	 � � �
 	 � � � � 	
 � � � � � � � � � � � �
 � � � � �
 � � � �

� � � � � � � �

 � � �
 �
 � � � � � � # �
 � � � � � 	 � � � � � � � � �
 � � � �

� � ! � � �
 � � � � � 	
 � � � � � � � �
 � � � � � �

 � � � � 	 � � � �

� � � � � 	 � � 	 � �
 	 � �
 � � � � � � � � � � � � � � 	
 � 	
 �
 � � � � �

�
 � 	 � � �

 � � � � � � �
 	 � � � � � 	
 � � � � � � � � � � � � � � � �

� � 	
 � � � � � � �
 	 � � � �
 � � 	 � � � �
 � � 	
 � � � � � � � � � �

� � � 	 � � � 	
 � �
 � � � � �
 � � � � � � �
 	 � � � � � �
 	
 � �
 �

� �
 � � � � 	 � � �
 � � � � � � � � � � � � � � � �
 � � �
 � � � � � � � �
 �
	 � � � � �
 	 � � � 	
 � �
 � � � 	
 � 	
 �
 � � � � � � 	 � � �

 � � � � � �

�
 � � � 	
 � � � � � �

 � � � � 	 �
 � � � � � � 	
 �
 � � 	
 � � � � 	 � �
	 � � � � � �

� � � � 	 � � � � � � � � � � � � � � � � �
 	 � � � � � �
 � � � � � � �

� � � �
 	 � � � � � 	 �
 � � � � �
 � � � �
 	 � � � � � �
 	 � � � � � 	 � � � �

� � �
 	 � � � � � � � � � � � � � � 	 � �
 � �

 � � � � � � � �
 � � �
$ % $ & � � �
 	 � � � � �
 	 � � � � 	 � � � � � � � �
 � � �
 � � � � ' () * +

� � � �

 �
 � � , - *) . / ' 0 1 . * - � � � �
 	 � � � � � � � � � � � � �

 	 	 � � � 	 �
 � � � � � � � �
 � � �

 � � � � �
 � � � � 	
 � � 	 � � � �

� � � � �
 � � �
 � � � � 	
 � � � � � �
 � � � � � �

 � � � � � � � 	 � �

�
 � � 	 � � � 	 �
 �
 � � � � � � �
 � � �
 	 � � 	 �
 � � � � � � � � �
� 	 � 	 � 	 � � 	 � � � � � � � � 	
 � � � � � � � �
 � � � � �
 � � � � � � � �
� � � � �

 � � � � � � � � � � � � � � � �
 � � � � � � � � � �
 � � 	 �
 � � � �

� � � � �
 � � � 	 � � � � �
 � � � �
 � � � � 	
 � � � � � � � � � � � 	 � �
� � � � �
 � � 	
 � � � � � � �
 � � � � � � � �
 	 � � � � � � � � � 	
 � � � �

� � �
 � � � � � � � � 	 �
 � � � � 	 � � �
 � � � � � � � � � 	 �
 � � � � � � 	
 �

 � � � � � � � � � � � � � �
 	 � � � � 	 � � � � � � 	 � � � � � � � �
 � � � �
 �
	 � � � � �
 $ % $ & � �
 � � � � � 	 � � � � � � 	 �
 � � � � � � � �
 � � � �

 �

 � ' () * + � � � � � � �
 � � � � � � � �
 � � � �

 � � � � � 	 � � � 	 �
�
 � � � � � � � �

31

� � � � � � � � � � 	 �
 � � �
 � �
 	 � � � � � � � � � � �
 �
 � � � � � � �

� � � � � � � � � � � �
 � � �
 �
 � � � �
 � � � � � � � � �

� � � � � � � � � � � � � � � � � �
 � � � 	 �
 � � �
 �
 � � � � � � � � � �
 � � �

�
 � �
 � � � 	
 � �
 � 	 �
 �
� �
 � � � � � � �
 �
 � � � � �
� � 	 �
 � � � ! �
 	 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � �
� � � � � � � � � �
 � 	
 � � � � � � � � � � 	 � � � � � �
 " � � � � � � #
� �
 � � � � � � � � � � � � � �
 � � � � 	 �
 � �
 � � � 	
 � � � � � � � � �

�
 � � � � � � � � � � � �
 � � � � � � �
 � � " $ � � � � � � � � � � �

 � � �
� � � � � � � � � � � � � � � � � �
 � � �
 � � � � �
 � � � � � � � � � � � � � � � � � "
$ � � � � 	 �
 � � �
 � � �
 � � � � � � �
 � � � � � �
 �
 � � � � � �
 � � �
� � �
 � � � � � � � � � � � ! �

 � � � �
 � � � � � � � � � � � � � �
 � %
� � � �
 � � �
 � & " ' (� � � � 	 � � � � � � � � � � � � � � � 	 �
 � �
 �
� � � � �
 � � �
 � � � � � � � � � � � � � �
 � � � � � �
 	 � � � � � �
 �
 �

� � � � � � �
 � � � � � � � �
 � � � 	 �
 � � � � � � � � � � � � � � � �
 �
 � � �
� � � � � " � �
 � 	 �
 � �
 � � � �
 � � �

� � � � � � � � � 	 � � � � � � ! � �
 � � � � � � � � � � 	 � � � � � � � � � � � � �
� � � � � � � � � � � �
 � �
 � � � � � � � �
 � � � �
 � � � � � � � � � � �
 � � �

� � � � � 	 � � � � �) % * " + � � � (� � � � 	 � � � � � � � � � � � � � �
 � � �
� � � � � , �
 � � � � � � (� � � � � � �
 � � � � � � � � � 	 � � � � � "

� � � � � � - � � � 	 �
 � � �
 � � � � � � � � � � � � � � � � �
 � � � 	 � � �

��� ������		
����
�	

. � � � � � � � � � � � /
 � � �
 � � � � � 	 � � � � � � � � � � � � � � � � � � �
� (� � � � � � �
 � � � � � � � �
 � � � � �
 � � � �
 � � � � � � � � �
 � � � � � �
� �
 � � � � � ! � �
 � � � � � � � � � � � � � � � �
 	 �
 � � � � � � � � � � / �
� � � � � � � � � � � � � �
 � � � 	 � � � � � � " � � � � � � � �
 � ! � � � �
�
 �
 � � � � � � � � � � � � � � � � �
 � �
 � � �
 	 � � � � �
 � � � �
 � ! � � �
� � � � � � � �
 � � � �
 � � 	 �
 � 	 � � � � � �
 � � � � � � � � " 0
 � � � �
� � � � � � � � �
 �
 � � � � � � �
 �
 � � �
� � �
 � � �
 � � � � � � � � � � � � 1 �
 � � " $ � � � � � � � � � 2 � � � � � �

� 	 �
 � 	 � � � � � � � � � � � � � �
 �
� � � � � �
 � � � � / " $ � � � � � � � � � � � �
 � � � � � � � � � �
 � � � �
� � �
 � � � �
 �
 � � � � � � 	 � � � � � � � � � � � � �
 � � � � � � � � �
�
 � 	 � � � � � � � � � � � 	 � � � � � � � "

� �����
� ��	��
	�

3 � � � �

 ! � � � � � � � � � � �
 � � � �
 � � � �
 � � � � � � � � (
� � � 	 �
 � �
 � � � � � � " �

 �
� � � � � � � �
 	 � � � � � � � � � � � � � � � �
 � �
 � � (� � � � � � � � � "
� �
 	 	
 � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � �
� �
 � � � � �
 	
 � � � � � � � � �
 � � � � �
 � � � � � � � � � � � � � � �

� � � � � � ! � � � �
 � � 	 � � �
 � 	
 � � � � 4
 � � �
 � � � � � � � � � � � � � �
� � � �
 � � � � �
 	 � � � � � � � � � � � � �
 � � � � � " $ � � � � � � � � � �

 � � � � � � �

 � � �
 � � � � � � �
 � � � � � � � � � �
 � � ! � � � � � � � �
� � �
 � � � �
 �
 � / � � � � � � � � � � �
 � " $ � � � � � � � � � � � � � �
� � / � � �
 � � �
 � � � � � � �
 � � � � � � � � (� � � � � � � � � �
 � � � � �
� � � � � � �
 	 �
 � � � �
 � � � � �
 � � �
 � � � � �
 �
 � % �

! � � � � � % � � � � � � � � � � � � � 5 � � � �
 � �
 � � �
 � � � 5 � � � #
� � � � � 5 � � � (� �

 � � �
 � � � � � � � � (� � � � � � � � 5 " � � � � � � 6
� �
 � � � � � � � � � � � � � � � / � � � � �
 � � � � � � � � � � � � � � � � � �

�
 � � � � � �
 	 �
 � � � � "

32

� � � � � � � � � 	
 � � � �
 � � � � � � � � �
 � � 	 � � � � 	 �
 � �
 � 	 �

� � � � � � � � � � � �
 � � 	

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Java Tutorials Applet
projects

DOS/Java
Presentations

Tech Paper
Activities

Student
Presentations

Paper writing

av
er

ag
e

co
m

po
ne

nt
 r

an
ki

ng

� � � � � � � � �
 � � � 	
 � � 	 � � 	 � � � �
 � � � � 	 � 	
 � � � � 	 � 	 �
� � � � � � � 	
 � � �

�
 � � � 	
 � � � �
 � 	 �
 � 	 �
 �
 � �

 � � � � � � 	 � � � � �

� � � � � 	
 �
 � � 	 � �
 � � � � � � � �

 � � �
 � � � � 	 � 	
 � �
 � �

 � � � � � � � � � � 	 � � �
 � � � � � � �
 ! "
 � � �
 � � � 	
 � � � � � � �

 � � �

 � � � � � 	 � � � � 	 � � 	
 � � � � 	 � 	 � � � � � � � � 	
 � � #
 �
 � $
� � � � � � 	 � � � � �

 � % � � � � � � 	 � � �
 � � � � � � � �
 � � 	 �
� � � �

 � �
 � �
 � � � � � �
 � � � 	
 � � � � � 	
 �
 � � 	 � � � 	 � � � � � �

 � � �
 � � � 	
 � � � � � � 	 � � �
 � � �
 � �
 � � �
 � � 	 � �
 � � " � � �
� � � � 	 � � � 	
 � � � � �
 � � � � �
 � � � � �
 � 	 � � � � � �
 � � � �

� � � � � 	 � � 	
 � � & � � � � � � 	 �
 � �
 � � � � � � � � �
 � 	 � � � � � �

� � � �

 � � � ' � � 	 (� � �
 � � 	 � � � ! � �

 � � � � � � � � � 	 � � � �

 � � �
 � � � 	
 � � 	 � �
 �
 � �
 � �
 � � �
 � � � � �
 � � � �
 � � � � �
� � � � 	
 � � � �
 � 	 � � �
 � � � � � � �
 � � � � � �
 � �
 � � 	 � � � $

� � " � � � 	
 � � " � � � �)
 � � � � � 	 � � 	
 � � � � � � � � �

� � � �

 �

* 	 �
 � � � (� � �
 � � 	 �
 � �
 � � � � � � � � � 	
 � � � � � � � � $

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Student

R
an

ki
ng

Before After

� � � � � � + � �
 � � � 	
 � � 	 � � 	 � � � 	 � � � � � �
 � �
 � � � �
 � 	 $
� � � � � �
 � � 	 ! � � � � � � 	 � � �
 � �
 � � � �

 � � 	 � � � �
 �
 � � � � � � � � � � � �

, - . / 0 1 2 / / - 2 / . 3 4 5 6 7 8 0 9 7 2 3 8 : ; 9 5 6 <
4 - . 3 = / 8 / 8 2 1 1 > < 6 8 3 7 6 3 1 > 2 4 4 - 9 = 5 2 7 8 2 4 9
1 9 ? 9 1 @ 5 9 2 7 . 3 = A 2 3 2 1 > B . 3 = 2 3 7 C 5 . 4 . 3 = 4 9 0 - D
3 . 0 2 1 E 2 E 9 5 / A 7 . 5 9 0 4 9 7 / 9 1 < D / 4 8 7 > A 4 - . 3 F . 3 =
: 6 5 9 7 9 9 E 1 > 2 ; 6 8 4 2 / 8 ; G 9 0 4 4 - 2 3 C - 2 4 . /
. 3 4 5 6 7 8 0 9 7 . 3 2 4 9 H 4 ; 6 6 F I J K 9 L 5 9 . 3 4 9 5 D

9 / 4 9 7 . 3 F 3 6 C . 3 = . < 4 - . / 0 1 2 / / - 2 / . 3 2 3 >
C 2 > . 3 M 8 9 3 0 9 7 > 6 8 5 7 9 / . 5 9 4 6 / 9 9 F < 8 5 4 - 9 5
0 6 : E 8 4 9 5 / 0 . 9 3 0 9 9 7 8 0 2 4 . 6 3 2 4 4 - 9 = 5 2 7 8 D
2 4 9 1 9 ? 9 1 I N 1 9 2 / 9 . 3 7 . 0 2 4 9 > 6 8 5 . 3 4 9 5 9 / 4

. 3 = 5 2 7 8 2 4 9 / 0 - 6 6 1 E 5 . 6 5 4 6 4 - . / 0 1 2 / / A 2 3 7
2 4 4 - . / E 6 . 3 4 . 3 4 - 9 / 9 : 9 / 4 9 5 6 3 2 / 0 2 1 9
6 < O D P A C - 9 5 9 O Q = 5 2 7 / 0 - 6 6 1 R S 6 C 2 > A

3 9 ? 9 5 T U V Q C 9 1 1 A . 4 . / 3 L 4 0 6 : E 1 9 4 9 1 > 7 . / 4 2 / 4 9 D
< 8 1 U W Q / 6 8 3 7 / F . 3 7 / 6 < . 3 4 9 5 9 / 4 . 3 = U X Q Y

C 6 8 1 7 / 9 5 . 6 8 / 1 > 0 6 3 / . 7 9 5 . 4 U P Q 0 6 8 3 4 : 9
. 3 T I

� � � � � � + � � � � �
 � � �
 � � � 	
 � � � � � 	 � � � � � � ! �
 � ! � $
� � � � � 	 � � �
 � � � & � � � � � � � � Z [�
 � � � 	
 � � 	 � � � � � � � 	

 � �
 � � � � � � 	 � \ � � � 	 �

 � � �
 � � � � � � � " � & � � � � $
� � � 	 � � � � �
 � � � � �

 � � 	 � � �
 � � ! � � � 	 � � � � � � �
 �
 � �
� � � � � 	 � � � � �
 � � �
 � � � 	
 �
 � � � � � � �
 � �
 � � � �
 � � $

� � 	 � 	
 � �

��� �����	��
� ���
������
�� �
���

�����	�
� ������
��	 ������

* � � �
 � � � � � � � �
 � � � � � � �
 � � � � � 	 � 	 � � � � � � � � � � � � 	 $
� 	 � � � � �
 � � � � � �
 �
 � � � � � � � 	 � � � � � �
 � � � �

 � � � �
� � 	 � � � � � " � � � � � �
 � � � � � � & � � � 	
 � � 	 �
 $! � � � � � � � � � 	 $
� � 	
 � #
 �
 � � � � � � � 	 �
 � � � � � � �]
 �
 � � 	 % � � � � � 	
 � �
� 	 �
 � � � � 	 � � � �
 �
 �
 � � �
 � � � 	
 � � �
 � � � � � �
 � � "

33

� � � � � � � � � � � � � � 	
 � � �
 � � 	 �
 � � � � 	 � � � � � � �
 � � � � �
� � � � � � � � � � 	
 � 	 � � � � 	 �
 �
� � � � � � � � � 	
 � � �
 �
 � � � 	 �
 � � � � 	 � � � � � � � � � � � � � � �
� �
 � � � � � �
 � � � � � � 	
 	 � 	 �

 � � � � � � � � � � � � � � � � 	
 � � � �
 � � � 	
 � � �
 � � 	 �
 � � � �
� �
 � � � � � �
 � � 	

 � � 	 � � � � � � � � 	 � � � � � � � � � � �
 � �
� � � � � � � � � � � � 	 � � 	 � �

 � 	
 � � 	 � � � �
 � � � � � �

� � � � � � � � �
 � � �
 � � � � � � � � � � � � � � � 	 � � � � ! � � 	
 "
	 � � � � � � � � � � � � � � �
 � � � � � � � # � � � 	 � � 	 � 	
 � �
� � � 	 � � � � � � � � # �
 � � � � � �
 � � � 	 $ � � � � �
 	 � � 	 �
 % �
� � � ! �

& � � � � � � � �
 � � 	
 � � � � �
 � � � � � � � �
 � �
 �
 � � � �
� � � � � � ! � � � � � � �
 � � � � � � � � �
 � � 	 � � # �
 � � � 	 � �
� � �
 � � � � � �
 � � � �
 �
 � � � �
 � � � � � �
 � � � � � "
� � � � � � # � 	 � � � � � � 	
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � 	 � � � �
 � � � � �
 � � � � � � � 	
 	 � � � � � � ! �
�
 � 	 � � � � � � � � � � � �
 �
 "
	
 � # �
 � � � �

 � � � �
 � � � � � � � � � �
 � � � � � � � �
 "
� � � � 	 �
 � � � � � 	 � � � � � � � � � � 	
 � � 	
 	 � � � � � � �
 	 � � � � �

' � � �
 � � � � � � � � � # � � � $ � � � � � � � � � � � � � � � �
� � �
 � � � � � � � � � � � 	 �
 � � � �
 � � � 	
 	 � 	 � � �
 � � � � � �
 � "
	
 � � � � � � � � � � 	
 � � # � # �
 �
� � � 	
 � � � � � # � � � � � � � � 	
 � � � � � � �
 � �
 � �
 � � � � 	
 �
� � � � � � � � � � � � � � � � � � �
 � � � � ! 	
 � � � � � � � � �
 �
 "
� � � � � � � � � � � � � � � � � 	 � � �
 � � � � � � � � �
 � � 	 $ � � � 	 �

� � � � � � � � � � � � 	 � � 	
 � � � � �
 �
� �
 � 	 � 	 �
 � � � � � � 	
 � � 	 � �
 � � � �
 � � � # �
 � � � � � � � � � "
� 	
 � 	
 � 	 � � � �
 �
 �
 � � � � � 	 � � � � � � � ! 	
 � � � � � 	
 � � �
�
 � � � � � �
 � � � � � �
 � � � � �

(� � � �
 � � � � � # � � �
 � � � � 	 � � � � � � � � �
 � � � 	 �
 � � � � ! �
� � � � � � � �
 �
 � � � �
 � # �
 � � � � 	
 � � � � � � � � � � � � � "

� � �
 � � � � � � � � � � � � � 	 � � � � � � � � � � � � �
 � � � � 	 �
 � � � � �
� � � 	 �

 �
 � � � � � � �
 � � �

 �
 � � 	
 � � � � � �) 	 � � � �

� 	 ! � � � � � " � � � �
 	
 � � 	 � � � � � � � � �
 � � " � � � � � � � � � �
 �
� � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � !) *) � � � � �
 � �
� �
 � � �
 � � � � � 	 � � � � � � � � � � �
 � � � 	
 � � � � � � � �

 � � 	 � � � � � � 	 � � � � # �
 � � � � �
 � � � � �
 � � � � �
 � � � � � # � �
� � � 	
 � � �
 � � 	 �
 � 	 � � � � 	 � !) � + � �
 � � � � � � � �
 � � � � �
	
 	 � 	 � � � � � � � � � � � � � � � � � 	 � � � � � � � � � " � � � �
 	
 � � � � � � "
� � � � � � � � � 	 � � � �
 � � � � � , �
 � � � 	 � � �
 - � � � � �
 . � � �
�
 � . � � � � � � � � � � �
 � � � � � � � � � � 	 � � � � � � � � � � � � � �
� � � � � � /
 � � � � � � � � � � 	 0 � � � � � � � � � �
 % � � � 	
 � � � � �
� � � �
 " � � � # � � � � � � � �
 � � � � � � � � � � � � � �
 � � � � � � �

��� �����	��
� ���
	���� �����
�����	�����
�	�

� � � � � � � �
 �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � �
 	 � � �
� ! � � ' � $ � � � # � � � � � � � �
� � � 	 � � �
 � �
 � � � � � � � � � � � � 1 � � � � � � � � � � � � � # � � � � � � �
� � � � �
 � � 	 � � � � � � � � � � � � � � 	
 � � � � 	
 � � � � �
 � 	
 � � � "

 � � 	 �
 � � � � � � � � � � � � �
 � � 	
 � 	 � � � � � � � � � � � � � � � � �

	
 � � 	 � � � � � 	 � � � � � 	
 � � �
 � � 	 �
 � � �
 � 	
 � � � � � � � � � #
	
 � � �
 � � 	 �

 � � � � �
 � 	
 � � � � � � � � � ! � � � �
 # �
 �
� �
 � � � � � � � � � � � � � � � � � 	 � "
� 	 �
 � ! � � �
 � � � � � � �
 � "
� � � 	 � � � � � � � � � 	 � � � � � � � �

� � � � � � � �
 � � % � � 	 � 	
 � 	
 � � � � � � � � �
 � � 	 � � � � � � � � �
� � � � � � � � � � � � � � � �
 � � � � � # � � � 	

 	
 � � 	 � � � � � � �
 "

 � � 	 � � �
 � �
 � 	
 � � 	 � � � � � $
 � � � � � � � � � �
 � � � � � �
� � � � �
 � � � � � � � � �
 % � � � � � 	 � � � � 	 � � � � 	
 2 �
 � � � 	 � 	 �

� 3 3 � � � � 	 0 � � � � � � � � � � � � � �
 � � � � � � � � � # � �
 � 	 � � � � � � "

 	 � � � � � 	 � 	
 � � /
 � � � � � � � � � � �
 � � � � � � � � � � � � � �

� � 	 � � � � � � �

��� �����	��
� ������
�� ������	�
�	� ��������	
�
��	

� � � � � � � � �
 � � � � �
 � � � � � 	
 � � � � � � � � 	 � � 	
 � � � � � �
� � � � � � � 	 � � � 	
 � � � � � 	 �
 � � � + � � � � � � � �
 � � � � � � �
� � � � 	 �
 � � � � � � � �
 	
 � �
 � � � � � 	
 � �
 � � � � � � �
� � 2 �
 � � � � � � � � � �
 � � � � � � � �
 	 � � � � � � � � � � �
 	 0 "
	
 � � � � � � � � 	 � 	
 	 � 	 � � !
 � � � � � � � � � � � � 	 � � � � 	 � � � �
	
 � � � � 	 � � � � � � � � � � � � � � � � � � � 	 � � 	
 � � � � � 	
 � � � � � � �
� � � � 	 � � � � � � � � � � � � �
 � � � � 	 � !
 � � � � � � � � � � � � � � "
� � � 	 � �
 � � � � � � 	 � � � � � � � � � � � � � � �
 � � � � �
 � � � � � �
� � � � � � � � � � �
 � � � 	
 � � � � � � � � � � � �
 � � � � � �
 	
 	
 �
� � � 	 � � � � 	 � 	 � � �

� ��	������	� �	� �
���

���!

� � � � � � � 	 � � � � � 	 � � 2 � � � � � � � � � � 	 �
 � � � � � � � 	 � �
 "
� � � � � � � � � � � � � � � �
 � � � � � � � � � � " � � � �
 � � � # � � � � � 	 � �
� � 	
 ! � � � �
 � � �
 � � � �
 � � � � �
 	 � � � � � � � � � � # � � 	 � � � � #
�
 � � � � � �
 � # � � � � � �
 � � �
� � � � # � � � � � � � � � � � � � � � � � � � 	
 �
 � � (� � � � � � � �
 �
� � � � � � � � � �
 � � � � � � �
 � 	
 � � � � � � � � � � � � � 	 �

 � � � �
�
 	
 � � � � � � � 	
 � � � � � � 	
 � � � � � � � � � � � � � � � � � � � 	
 � � � "

 � � � � # � �
 � � � � � � � � � � � � � � � �
 � � 	
 � 	 � � � � � � � � � 	 �
 � "
	
 � � � � 	 � � � �
 � � � � � � � � � � �
 $ � �
 � � 	
 � � � 	 � � � 	 � 	 � 	 � �
� � � � � �
 �
 � � � � � � �
 �

� � �
 � � � 	
 � � � 	 � � � � � � 	 � � � � � � � # � � �
 �
 � � �
� � � � � � � � � � �
 4 / � �
 � . � � � � � � � � � � � � � � � � � �
� � � � � � � � � # � � � � 	
 � � � � 	
 � � � � �
 � � � 	
 � � � � � �

� � � � � � � 	 � � � # � � � � � �
 � � 	 $ � � � 	 �
 �
 � � � � � �
 � � � � 	 � �
� � � � � � � �
 � 	 �
 � � � � � � � � � 	 � � �
 � ! 	
 � � � � � � �
 "
� 	 � 	 �
 � � �
 � 	
 � � � � � � � � � � � � �
 � � �
 � 	 � � � � � � � � �
� � � � � � � � � � � �
 � � � 	 � 	 �
 # � � � � � � � �
 � � � � � �
 � � � 	 �
 �
�
) � � � � � � � � �
 � �) � "
�
 � � � � � � � � � � � �
 � � � � � � 4 � � 	
 � � � 	 � � 	
 � � � � 	 � � #
� � � � � � 	
 � � � � � � � � � � � � � 	
 � � �
 � � � � � � � � # � � � � �
 � �

� � � �
 � � �
 � � � � � � � � � � � � � �
 � � 	
 � � �
 � � 	 �
 �

34

� 	 � � � � � � �
 � � 	 � �
 � 	 � �

� � � � � � � � � � � � � � � � � 	 � � � � 	
 �

�
 � � �
 � � 	
 � � � � � � � �
 � � �
� � � �
 � �
 � � � � � � � � � � � � � � � � � � �
 � � �
 � � � � � � �

� � � � � � � � � � � �
 � � �
 � � 	 � � �
 � � � � � � � �
 � �
 � � � � 	 � � � �
� � � � � � 	
 � � � � � � � � � � � � � 	
 � 	 � � � � �

� � � �
 � � � � � � � 	 � � � � � � �
 � � � �
 � � � � � � � � � � � � � � � �
	
 � � � � � � � � � � 	 � � � �
 � � � � � � � 	 � � � � � � � � � � � � � � � � � � �

 �
 � � � � 	 � � � � � � � �
 � � � �

� � � � � � � � � � � � � � � � � � 	 � �
 � � ! � � � � � � � � � � �
 � � � � �

� � � � � � � �
 � � � � � � � �
 � � � � � � � 	 � � � � � � � � � 	 � � � � � �

� �������	
�	�	�
�
 � � � " � � � � � # � � � � � $ � � � � � � � % � 	 � � � � � � � � � � � & � � � � �

 � � � � � � � # � � � � & � � � 	
 � � � � � � � � � � � � � � � � 	 � � � � � � � �
�
 � � � � � � � � � �

�	�	�	��	�
� � � ' � $ � � � � � $ � (� � � � � � ! �) � � � � � � � � * � 	
 �

� � � � �
 �
 � �
 � � � � � � 	
 � � � �
 � � � � � � � � � � � � 	

� � � � � + � � � � * , - . / 0 1 2 / 3 4 - 2 5 2 6 7 6 8 9 / : ; 8 . 2 6 < 9 =

8 > 9 9 6 ? 2 @ 5 . A 9 / 4 : 6 0 ? 2 @ 5 B 8 9 / C / ; - . 8 9 ; 8 B / 9 4 �
D 	 �
 � � � � E E F �

� G � " � $

 � � � * � � � �
 �
 � � � * � � � � H
I I � � � � � � � � � �

 � � � 	
 �

� J � � $
 � � � * & � � � � � � �
 � � � � � � � � � � � H � � � 	 � � � �
 �
� � � � � � � �
 � � � � � � � � � � � 	 � � � � � � 	
 � � � � � � � �

	 � � � � 	 � � � � � � � 	 � � �
 � � � � � � � � � � 	 � * � K / 2 ; 9 9 0 . 6 L 4

1 ? C M N O O N P 1 2 / 3 4 - 2 5 2 6 ? 2 @ 5 B 8 9 / C / ; - . 8 9 ; =
8 B / 9 M 0 B ; : 8 . 2 6 P Q � � 	
 � � � � � $ (� # � � � � R � G R R R

� � � % � � $ � � � � � * S T 	 � � � � ' � � � � � � � � � � �
 �
 � � � �

U � � � �
 U � � & � � � � � � � �
 � ! � � � � � 	 & �
 � � � � � � �

	 � � �
 � � * C ? V , / : 6 4 : ; 8 . 2 6 4 2 6 K / 2 L / : @ @ . 6 L
W : 6 L B : L 9 4 : 6 0 X Y 4 8 9 @ 4 � Q
 � � � � � Z
 � J � # � � �

� E F E �

� [� ! � $ � � � � � � � � \ � � � � � � � � � � & � $ � � � � � � �
* S � � � � � � � � � � � � � � � � � 	 �
 � �
 	 � � �
 � � H � � � & � �

� � � & 	 � � � � �

 � � � � � * � � 	 � � % � � � � (&
 � %
 E �
 � J R F �
] � � � �
 � � � � 	
 � � � �
 \ � � � �
 � � # � � � � E E � �

� � � % � (� � � � � � # � ^ � � � � � � � � * � & (�
 	 �
 � � � �

� � � � � � � + � 	 � � � � � � �
 � � � � � �
 � � � � � � � � � � �

 � � � � � � � � � � � � � * K / 2 ; 9 9 0 . 6 L 4 2 _ 8 - 9 M . L - 8 -
C ? V X Y @ 5 2 4 . B @ 2 6 ` 5 9 / : 8 . 6 L X Y 4 8 9 @ K / . 6 ; . =

5 A 9 4 P ! � 	 � � � � � � E F � �

� a � \ � # � ^ � � �
 � � ! � \ 	 Z � � � � � * S T 	 � � � �
� � � � � � �
 � � � � � � � � � � 	 � � � 	 � � � � � � 	 � �
 �
 � � P b
� � � � H I I � � � � 	 � � �
 � � � � � � I c � � � � � I � T 	 � � � � % � � � � � �

� � � � �

� F � # � ^ � � � � � � & � % � � � � � � � � � ^ � � � � � � & � ^ � � � � � �
* � � � 	 � � � � � � � � � � � � � � � � �
 � � � � � �
 � � � � � � � � � �

� � � 	
 � � � � � � � � 	 � � � � 	 � � � � 	
 � � � � � � * K / 2 ; 9 9 0 . 6 L 4
1 ? C M N O O N P 1 2 / 3 4 - 2 5 2 6 ? 2 @ 5 B 8 9 / C / ; - . 8 9 ; =

8 B / 9 M 0 B ; : 8 . 2 6 P � � 	 �
 � � � � � � " � \ � � G � � G R R G

� E � � � � � ^ � � � * S � � � � � � � 	 � � � � � � � � � � � � � � � � � � � 	 �

�

 � � � � � � �
 � � 	 � � � � �
 	
 � � � � � � � � 	 � � � � 	 � � � �

	
 � � � � � � * K / 2 ; 9 9 0 . 6 L 4 1 ? C M N O O O P 1 2 / 3 4 - 2 5
2 6 ? 2 @ 5 B 8 9 / C / ; - . 8 9 ; 8 B / 9 M 0 B ; : 8 . 2 6 P Q � � 	
 �

� � � � $ (� # � � � � R � G R R R

� � R � # � " � �
 � � � " � %
 � � � ? 2 @ 5 B 8 9 / d 9 8 > 2 / 3 . 6 L e
C , 2 5 = f 2 > 6 C 5 5 / 2 : ; - g 9 : 8 B / . 6 L 8 - 9 7 6 8 9 / 6 9 8 �

� � � � �
 �
 � � � � � � � G R R J

� � � � ' � � � � � � � � � � � �
 � � (� � &
 � � � �
 � � * % � � � � � � � �
� H � � � � � � � � � � � �
� � � �
 � 	 � �
 � � � � 	 � � � � 	
 � � � � � � � � 	 � � � � 	 � � � � � *
K / 2 ; 9 9 0 . 6 L 4 1 ? C M N O O N P 1 2 / 3 4 - 2 5 2 6 ? 2 @ =

5 B 8 9 / C / ; - . 8 9 ; 8 B / 9 M 0 B ; : 8 . 2 6 P � � 	 �
 � � � � � � " �
\ � � G � � G R R G

� � G � % � & � � � � � � � K / 2 L / : @ @ . 6 L 8 - 9 1 2 / A 0 1 . 0 9 1 9 < P
� � � � �
 �
 � � � � � � � G R R G

� � J � � � & � � � � � � 	 � � � � � �) � � � � � �) �) � � � � � C 5 5 A . 9 0
` 5 9 / : 8 . 6 L X Y 4 8 9 @ 4 ? 2 6 ; 9 5 8 4 P #
 � � � � � � � � � �

&
 � � � G R R R �

� � � � & � & � � � � � � � * � � � � � � � � 	 � � � � � � � � � � �
 �
� � � � � � � * � � � � H I I � � � � � � � R J � � � �
 � � � � � � � � �

� � � � � � � � � � � � I � � � � � � I � � � � � � I � � � � � � �

� � [� (� � � � � � � � S � h � � �
 � � � � � � � � � � � * S + � 	 � � � �

� � � �
 � �
 � � � � � � � � �
 � � � 	
 � � � � � � � � 	 � � � � 	 � � � �

� � � � � � 	 � �
 � � * K / 2 ; 9 9 0 . 6 L 4 1 ? C M N O O N P 1 2 / 3 =
4 - 2 5 2 6 ? 2 @ 5 B 8 9 / C / ; - . 8 9 ; 8 B / 9 M 0 B ; : 8 . 2 6 P � �

	 �
 � � � � � � " � \ � � G � � G R R G

� � � � � � i � � 	 � � � S �) � � � � � � � � � * � � � � � � �
 � � � �
� � �
 � � 	 � � �
 � � � � 	 � � � � 	
 � � � � � � � � 	 � � � � 	 � � � � � *

K / 2 ; 9 9 0 . 6 L 4 1 ? C M N O O N P 1 2 / 3 4 - 2 5 2 6 ? 2 @ =
5 B 8 9 / C / ; - . 8 9 ; 8 B / 9 M 0 B ; : 8 . 2 6 P � � 	 �
 � � � � � � " �

\ � � G � � G R R G

� � a � * � � � � � � � � � �
 � � � � � * � � � � H
I I � � � � � � � � � � � � � 	
 � I �
 	 � I �

 � � I � � �
 � � � �

35

Integration of Computer Security Laboratories into Computer
Architecture Courses to Enhance Undergraduate Education

Jayantha Herath, Susantha Herath, Ajantha Herath*
St. Cloud State University, St. Cloud, MN 56301

*University of Dubuque, Dubuque, IA 52807
jherath@stcloudstate.edu

Abstract

Most computer science and engineering programs
have two or more required computer architecture
courses but lack suitable interfacing laboratory
experience for other upper-level classes. Information
assurance and network security tracks have been
developed over the recent years without providing
necessary and sufficient background knowledge in
logic, storages and processor architecture.
Integration of real-world applications is always a
better approach to not only to excite the passive
student body but also to explore the computer
architecture subject area. At the intermediate level,
architecture knowledge can be extended to provide
information and network security experiences to
students. Such extensions to the course will provide
proper interfacing to networking, operating systems,
databases and other senior level security related
courses. This paper describes possible integration of
security and privacy concepts into computer
architecture course sequence with hands-on
classroom activities, laboratories and web-based
assignments.

1. Introduction
One day a tenured Professor of Medicine received an e-
mail from a close friend via Yahoo e-mail, with an
attachment file. He opened this e-mail with other
messages, and continued to work as usual. The
attachment contained a worm that causes automatic
transmission of more e-mail messages. A few days
later his computer was confiscated, his supervisors
accused him of creating and transmitting a virus from
his computer, and the FBI was called in. His entire
address list had received e-mails with a worm,
automatically. One and half years later he found
himself indicted by a grand jury for violating Federal
law 18 USC 1030 a 5 (a). The grand Jury charged that
this Professor “knowingly caused the transmission of a
program, information, code or command, and as a
result of such conduct, did intentionally cause damage
without authorization to a protected computer, which is
used in interstate and foreign commerce and
communication, and, by such conduct, caused loss to

one or more persons during a one-year period
aggregating at least $5000.00 in value”. The Professor
had to find an attorney to represent himself. Many
attorneys asked him to pay $150,000 and another asked
for $60,000 upfront and $450 per hour to represent him
in this case.

The case above illustrates the complexity of conflicting
technical and legal issues. Interestingly, most lawyers
and judges do not understand the technologies involved
and need help from technical expert witnesses to find
out what happened in the computer using the forensic
evidence available in the storage. And often the
technical experts do not know much about the legal
issues involved. Finding the hidden evidence in storage
systems and presenting it in an acceptable form to the
court is a hard problem for a computer architect to
solve. For this reason, it is important to provide basic
computer forensic techniques in a computer
architecture setting, to provide a way to recover
information in storage systems that ensures its integrity.

In general, knowledge gained in computer architecture
courses serves as the gateway for upper level
undergraduate computer science courses. The main
objective of this study is to develop computer
architecture course modules with computer security
applications for undergraduate students. One of the
challenges facing us in the classroom is finding
experiments to engage the interests of students while
improving the quality of computer architecture courses
[1]. The goal has been and continues to be helping them
become good computer scientists in a relatively short
period of time with a solid grounding in both theoretical
understanding and practical skills so that they can enter
the profession and make valuable contributions to the
society. The proposed active learning modules aim to
provide students with an exciting learning environment
and the necessary tools and training to become
proficient in the computer architecture subject matter
with applications in security and privacy. The following
sections outline the details of course plan, examples,
assessment plan, future work and summary.

2. Detailed Course Plan

36

To help master computer architectures, our curriculum
provides three semester courses. The first course in this
sequence covers the fundamentals of digital logic
circuit design [2]. This foundation course helps the
students develop component integration skills from
gate-level to register-transfer-level, when designing a
circuit to perform a particular task. The laboratories for
this course consist of hardware and VHDL software
simulations of combinational and sequential digital
logic circuits. The intermediate level course introduces
both complex instruction set and reduced instruction set
processor architectures. The laboratories for this course
consist of hardware and software simulations of basic
programming constructs in CISC and RISC
architectures. The third course focuses on advanced
concepts in special purpose architectures to provide
both depth and breadth to the subject matter. One could,
conceivably, introduce security protocols for storage
and system-on-a-chip related laboratories at this level.

Integrating Computer Architecture with Security
The focus of the intermediate-level course so far has
been on implementing techniques of basic programming
constructs such as I/O, arithmetic expressions, memory
operations, register operations, if-else and switch
conditional operations, for-while iterative computation
controls, simple functions and recursive functions in
several different instruction set processor architectures.

This approach provides interfacing for cs-1 and cs-2
courses taken in the previous semesters. Increasing the
performance of the processor by reducing program
execution time is considered at the gate, register and
functional levels of the processor design [3] [4]. At the
end of the semester, students in this course design a
pipeline processor using VHDL as their final project.

It is observed that learning processor architecture alone
is insufficient at this level. Students should start to
understand the importance of storage systems and
applying classroom knowledge to solve real-life
problems. A course sequence with extensions to
security applications would help students develop such
skills using several different architectures before their
graduation. The following examples constitute a way to
integrate real-life problem solving to this level of
students. Example 1 illustrates a closed laboratory
designed to help students understand the changes in the
content of the memory. The open laboratory followed
by this lab, a packet-sniffing example, would provide
necessary interfacing with a network security course
module. Example 3 shows an application of the
knowledge acquired in logic-design class to provide
interfacing with database security course module. It
describes a simple logic extension used to break into
database systems. Example 4 describes the application
of the clock values in a legal issue. This could provide
interface to secure operating system course module.

TUTOR 1.32> MS 2000 'ABCDEFGHIJKLMNOPWRSTUVWXYZ'

TUTOR 1.32> MS 2020 'abcdefghijklmnopwrstuvwxyz'

TUTOR 1.32> MS 2040 '0123456789'

MEMORY DISPLAY

TUTOR 1.32> MD 2000 256
002000 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 ABCDEFGHIJKLMNOP
002010 57 52 53 54 55 56 57 58 59 5A FF FF FF FF FF FF WRSTUVWXYZ......
002020 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 abcdefghijklmnop
002030 77 72 73 74 75 76 77 78 79 7A FF FF FF FF FF FF wrstuvwxyz......
002040 30 31 32 33 34 35 36 37 38 39 FF FF FF FF FF FF 0123456789......
....
002090 12 EB 00 13 12 EB 00 0E 12 FC 00 20 12 EA 00 02 .k...k...|. .j..
0020A0 12 EA 00 12 12 EA 00 03 12 EA 00 02 12 FC 00 21 .j...j...j...|.!
....
0020F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Figure 1. Setting and Displaying the Content of Storage

Example-1
To understand how the processor operates, students
need to recognize the contents of registers and memory,
learn the limitations of instruction sets and how the
basic programming constructs are implemented in
processor architecture. Figure 1 depicts the first
classroom activity used to help students understand the
addresses and content of the memory. In this example,

memory is set by using MS and the content of the
memory is displayed using MD. In addition, students
also perform translations of arithmetic expressions, data
transfers, if-else-for-while control and recursive
functions as in-class activity. They perform traces of
registers and memory as an in-class activity using
Motorola 68000 instruction set architecture.

37

Example -2
The objective of this experiment is to apply the
knowledge acquired in interpreting content of memory
displays in the previous experiment into network
security applications. Network traffic is easy to capture
and analyze using the tools available in the web.
Network protocol analyzers, such as Ethereal Packet
Sniffer, can be used to accumulate both incoming and
outgoing network data [11] [12]. Most packet analyzers
assemble all the packets in a TCP conversation and
represent the data using tcpdump format. Students were
asked to capture the user-id and password of their own

email accounts using a packet analyzer. Also, they were
instructed about the legal issues involved in packet
capturing. After doing this experiment, one student
observed that rediff login is not secure. However, he
noted that hotmail.com is not only using secure login,
but also encrypts the traffic. Hence, students could not
identify their user-Id, password or message in that
communication. Moreover, they found that encryption
will significantly increase network traffic by observing
the amount of data captured. This experiment would be
a good interfacing for a Network-security class. Figure
2 shows the memory display of the captured data.

00000000 50 4f 53 54 20 2f 63 67 69 2d 62 69 6e 2f 6c 6f POST /cg i-bin/lo
00000010 67 69 6e 2e 63 67 69 20 48 54 54 50 2f 31 2e 31 gin.cgi HTTP/1.1
00000020 0d 0a 41 63 63 65 70 74 3a 20 61 70 70 6c 69 63 ..Accept : applic
00000030 61 74 69 6f 6e 2f 76 6e 64 2e 6d 73 2d 65 78 63 ation/vn d.ms-exc
00000040 65 6c 2c 20 61 70 70 6c 69 63 61 74 69 6f 6e 2f el, appl ication/
00000050 6d 73 77 6f 72 64 2c 20 61 70 70 6c 69 63 61 74 msword, applicat

Figure 2(a) Packet Sniffer Output - www.rediff.com

00000000 16 03 00 04 79 02 00 00 46 03 00 2f ed 29 44 2ay... F../.)D*
00000020 7a b2 b5 95 40 08 c3 74 ae 70 98 20 49 08 00 00 z...@..t .p. I...
00000030 82 32 61 be ad eb b1 27 ee 5e 93 e6 b3 1e ac 79 .2a....' .^.....y
00000040 7e 80 31 0b d2 2e b9 70 3b e5 55 b3 00 03 00 0b ~.1....p ;.U.....
00000050 00 03 5a 00 03 57 00 03 54 30 82 03 50 30 82 02 ..Z..W.. T0..P0..
00000060 bd a0 03 02 01 02 02 10 3c f4 4e cc 7b c3 e6 34 <.N.{..4
00000070 b0 3f 2d 8e b8 78 41 27 30 0d 06 09 2a 86 48 86 .?-..xA' 0...*.H.
00000080 f7 0d 01 01 05 05 00 30 5f 31 0b 30 09 06 03 550 _1.0...U

Figure 2 (b) Packet Sniffer Output - www.hotmail.com

Example -3
In general, database systems track their own users
before allowing the access. Access to database systems
is controlled using a user-id and a password for
legitimate users. However, some databases can be
attacked without a valid user-id and password. Such
attacks can be performed by applying the knowledge of
Boolean logic expressions learned in an introductory
digital-logic design class. In one such successful
database intrusions, the attacker entered the system by
converting user-id and password expressions combined
with one AND operation into two arbitrary expressions
combined with an AND operation followed by an OR
operation with an expression that always evaluated to a
True value [8][9].

Example -4
Often legal experts have difficulties interpreting the
forensic data available in the memories. Utah vs. Payne
presents an interesting application of clock values. In
this case, the prosecution presented data to the courts

without analyzing its content. The defense team
accurately analyzed the data column that represented
clock values to illustrate the time line of events. The
defendant was found not guilty [10].

Other Architecture-Security Applications
In addition to the network-database-security
experiments described above, it is possible to search,
develop and integrate introductory experiments for
intrusion detection, forensic analysis of storages,
sanitizing storages, web security and network security.
Providing hardware and software support, and
specifying protocols to make the processor and storage
secure can also be considered at any stage of the course
sequence. The most time-consuming task in solving
security issues, similar to the one described in the
introductory part of this paper, will be the postmortem
analysis. There is a need to perform forensic analysis of
the data in the storage to determine the source of e-mail
transmissions and decode other communications. A
computer architecture course with security and privacy

38

related applications, such as the ones described above,
and protocols to provide security and privacy to storage
will enhance students' higher level skills: teamwork,
analysis, synthesis and active participation in the
classroom. These course modules will help students
learn architectural concepts in an active learning
environment, thus providing students an opportunity to
function well in an increasingly competitive society in
which security is highest priority.

Difficulties
Incorporating security and privacy related issues in
many subject areas into the architecture course may
overload the students and faculty. Selecting a series of
projects that increase enthusiasm among a diverse body
of students will not be an easy task. To overcome this
difficulty, we plan to work with information security
faculty to develop suitable laboratory experiments.

Course Assessment
Once developed, the course material can be evaluated
by soliciting criticism from faculty and students.
Student learning can be evaluated in many different
ways. Background knowledge can be performed in the
form of a simple questionnaire/worksheet that the
students fill out prior to completing the lab assignments.
Students will be asked to explain the concepts they
learned. Recording experiences from laboratory
assignments is an essential part of student work. Group-
work evaluations will also be used to assess the course.
The faculty and teaching assistants regularly observe
the team work. There are opportunities to test course
materials within a large university system that could
possibly extend use to other faculty and students.

Information Security Symposium
Two computer security symposiums were organized at
the end of the Spring 2003 semester to stimulate our
students, computer science, information systems and
engineering faculty in five neighboring states as well as
businesses and industry. Invited speakers from West
Point Military Academy, Carnegie Melon University,
University of Idaho, the University of Minnesota, the
University of Iowa, the University of Wisconsin and the
University of North Dakota delivered lectures based on
their work. The symposium was well attended by
students, faculty and industry representatives. These
symposiums helped our efforts to develop a curriculum
emphasizing secure storages, forensics, network-
database security that presents an integrated view of
hardware, software and security issues to the
undergraduate students [6][7].

3. Summary and Future Work
Traditionally, computer architecture courses are
presented to a less-than-enthusiastic student body and
often delivered without indicating real world

applications in a relatively passive classroom
environment. One of the reasons for diminished student
interest of learning the subject is poor interfacing with
other courses in the curriculum. In general, learning
takes place if the student can both integrate what he is
learning in the classroom into real-life applications and
understand how the subject pertains to learning other
subjects in the degree program. To promote this in the
classroom and to overcome the above-mentioned
deficiencies, an intermediate computer architecture
course can be developed with hands-on classroom
activities and laboratories involving architecture and
security. Computer security issues are important for
businesses, industries and government. There is a need
for increased computer architecture education with
security and privacy emphasis through undergraduate
level computer science curricula. This need can be met
through several stages. Computer architecture
laboratories should have application interfaces to other
courses in the curriculum such as operating systems,
network, databse security. And further training of
students can be accomplished by developing
mathematics, operating systems, networking and
database courses with an emphasis on security.
Regular regional symposiums are very helpful to share
the laboratory and curriculum development efforts with
other colleges and universities. The availability of
properly designed and developed course materials, with
a series of hands-on laboratories as well as classroom
activities, will reduce both instructors’ preparation time
and multiple copying stages, and increased students’
ability to absorb the subject matter. Developing a series
of system-on-chip experiments and/or security
protocols for storages would be useful for the
laboratories in the third course of the sequence. These
objectives can be accomplished through the optimal use
of available resources. Through such platforms,
students will learn to appreciate instruction set
architecture.

Acknowledgments

Our computer architecture project has been supported
by the MnSCU Center for Teaching and Learning
through the Bush/MnSCU Learning by Doing Program.
Many students helped to make our extensions to the
courses successful. We would like to specially thank to
Professor Larry Grover, Dr. Splittgerber, Erik Cramer,
Mark Ebersole, WeiShin, Mohammad Khan, Amit
Parnerkar for helping us throughout the years to
accumulate experimental data.

4. References
1. Gehringer, E.F. A Web-Based Computer

Architecture Course Database,

39

http://www.csc.ncsu.edu/eos/users/e/efg/archdb/FI
E/2000CACDPaper.pdf

2. Computer Architecture I
http://web.stcloudstate.edu/jherath/CompArch-1

3. Hennessy, J. L., Patterson, D. A. Computer
Organization and Design: Hardware/Software
Interface, Second Edition, 1997
http://www.mkp.com

4. Computer Architecture II
http://web.stcloudstate.edu/jherath/CompArch-2

5. Hardware/Software Interfacing for High
Performance Symposium -02
http://web.stcloudstate.edu/jherath/Conference.htm

6. Symposium on Information Assurance and Security
-2003
http://web.stcloudstate.edu/sherath/SIAS2003

7. Information and Network Security Workshop-2003
http://web.stcloudstate.edu/sherath/INSW2003

8. Pfleeger, Security in Computing,
http://www.prenhall.com

9. http://www.cs.uwec.edu/~wagnerpj/security/
10. http://www.simson.net/2002-11-Forensics.ppt
11. http://winpcap.mirror.ethereal.com/install/default.ht

m
12. http://www.ethereal.com/distribution/win32/

40

����������	
�������
����
��
�������������

����������������
����������
��������
����
�

�

�������������
��
�������
����
��������
�
�
� �����
���������	
����
������
���������

�

����	������
���
�����	���������

�������	�����������
	
�����
��������� �
�
��������� !���� ��
�	���
	
� ���	�� �"
��� ��	�������
	��
���	���#�
�	���#��
�
�����
��

��	����������������	
"���$
"�
����
	� ����$"�
��� ���	���#��
����� ���� 	�����
�� �
�

������#���
�#���������
�
��%

���
�#	����"������&
����
�
��&
	'� ������ ���

(&����
���� ��� ���	
����)� �
����
�
�� �
��	� ���� 	�*��	��� �
�����
�� ����	����+� !�� �	��
����
��� �
� 	��
	��� ���� ���
� ����	�� ����� ���
� �
� �
��
����

�	����������
���!����

���	��	�����#�
��������	��
��
���� ��
�	���
	�� �
� &���� �
� ����
������
�� ��
�#���������
�������� ����
������
�� ���� ��	��
�� ���� ��
�	���
	�� ����
���
	�
	���
��
���

�
������
���
	���������	���#��	
��

��
�������,)�-�
�����
�
�*����������	
������.��	
��

����
�����������
�
�&
	'���

�

!�"�#������������

�
����	#	������� �
�����	� �	��������	�� �
�	
�
� ����� ��
��	#�� �
�����
�� ����	���� �����
������
� ��
�� ���	���)��
������
���&��&����
�	�
������
� �
� �����
��&	������ ����

	��� �
���������
�
�
'���
�� �
��� ���������� 	��

���#�
�����	������������
�
�
'���
������"���	���	��� �
�&
	'� ���
����
���
������������
��#
��
������
�����

�	���
�����
��
�� ��	�����
�� ���	���#�
�	���#��
� ���� �

�
��
���� �
�
�

��	������� �������� �	
"���$"�
���� ���� ����$"�
���
���	���#� /0�� 1�� 2�� 3�� 45�� 6���
�#�� ���
��
�	���#��
�
�	
�����	����
��
	�������
��
	�������	
��
�������"
����
�
��
��	�����	�*��	����
�	
������	��������
'���
�����������
"�� ���

	

�$����� �����
����� ���
� ����
� �
� �������#�
�
�
	�"
���������
�	���
	���������
������
��)��#���	���� ����

������
� ��
�� ��'��
�� �� �
	�� ������� 	
��� ��
���� ����

��
�����������

	

������������
�	���
	���
����	�������
��
�#�� ���� �
�	
��� '�����#� ��� ����� ����� ���� ���	���#�
�	
��

��
�
������$����	���	����	��������
�	���
	$����	�����

�
7
�	�
�#��������� �������#�
� ����� ��� ��
�	���
	� &����
������	��#� �� �
�	
�� �
��#�
������$����	���� ����$"�
���
���	
����
���
�
2�� !���� ��	�������
	�� ���	���#�
�	���#��
� �	��

����
����� ���� *��������
�� ����	���� ����� ���� "��
�
��	�����	��#������

�
�

�
���
������������	��������
��� �
� ��

� ����� ����� &����� ���� "�� �
��	��� "�� ��
�	�����
���������	�����

0��)�� �
� ���������� �
� ����	������ �

�

� �����������
��
��	�� &���� �

�

��#� &
	'� �	
����
� ����� �	��
�����#���	������

8�� �����
������� �
� �����	�����)�� �
� ����

�	�� �
� ��9�
��
���� �
�	
�� ������������ �
� ����� ���� ����
�
�� ����

������
��������	������	����

��

1�� �
���
������
�������
�"�����
�	�#����
������:������
�����
�� �	������� ����'��#� ���� �����
�
�
'���
�
	�*��	��������
������$����	����
�	
���

�
���
� ����	� �
��
�
�
��&��
� �
������ ���
�� �������#�
��
6���	� "	������
�������#� �
&� �

��	������� �������� ����
�	
"���$"�
���� ���� ����$"�
��� ���	���#� �	�� �
��� ��� ��
��	
���
�	
������
�����	��	��������	�������
�����	���
�
��
�&
�
�����������	
����
������&���
�����
�"����	������	���
����������� ;������

� 6

�

����� ��
�
� -;6�
.� /3�� 45�
���� �	
"���$"�
��� ��
�
��	�� ���	���#�� ���� 	�������	�

�� ��������	� �
�
	#���:��� �
� �
��
&
�������
��0�"	������
��
�	�"�
������
�	
�������	�
�
���
����������
�	�#���	���
����

���� �
&�	�
� ������	��� �����
�� 8�� ����	� "	������
��
�	�"��#�����
�	����	��
�������
�	
����
��
�
�
��;6�
��
�
��� �
� �
�������
������
� �
� �	���	�� �
	� �
�	
��
���������
�� ���� �	
"���$"�
��� ��
�
��	�� ���	���#�
������*��
���������

��&�	��������	�&�	���

�
��
������
���� ��"
�� �����
�� 1� 	��
	�
�
�� ���� 	�
���
�
�� "
���
���
	���������
	�����

�

����
�
�� �����
�	
������ ����
���	���#�
�	���#��
������

�
�����
�����6����������������
�����
�� 3�� &�� �
������� &����
�	� ���&�
��
�	�
���
����
�����
�����
�	�����
��
	���������	���
�

$�"������
����������%���������
����
�
����
�"9���� �
�	
��� &����� �
� ��'��� ����	� �� �
�	
�� ���
��#�����
�
���
���	
����
�
������
�&������� ���	
�����
��
�
� �
�����	� �	��������	�� ���� �	���	�
� ����� �
	� ��

��
�����
	������������
�	
������
�����	��	��������	���
&����� �
�
� ���� �����	

�� ���� <����

�� ����"

'�
��������� %�
�����	� =	#���:���
�� ���� ��
�#�>� ����
<�	�&�	�?�
��&�	��)���	����+� /2@5�� A����� ���� �&
�
�	������#� �
�	
�
�� ���� ������� �
� ����� ���� ��	
�� ��	���
������	
�
�����������	

������<����

������"

'�&����"��
�
��	������	���*���'��������

����
���
�����

��
�
��������	��
�� ������
�	���
	
�� ��� ���
��
�	
���
�&�����
�
��� ����	�
���	� �
�	
�
�� �
� ���	�"����� �
�6�"�	�� ���
����>�
%B�'�� ����#
� �
�
������ �
� �

�"���� "��� �
��
�����	�+�
��	��#� ���
� �
�	
���
������
� ����� �&��� ���� ����	
�
��
�"
�	����
��
��	���#� &���� ��#�$������ �
�����
� ����
����������� ��
����:��#� ���� �������
��
�� �� �	
#	��� ����
�
��	
����#���	
"
����������

��"��	����#��#���	
#	����
6�
�#� ���� &���� ���� ��
�	���
	� #����
� ����
������
� �
�
��
�
��	���������#�
���������	�

�����
�
������
��������
��
&�	
��
�*��
��
�
���
�

41

�������
���	
������������
�"9�����
�	
�����	������#���	���
����
��"��&��������
�����	��������
����	
#	���������
#���� ��� ����	
������#�
�� "�
��� �
�����	� �	��������	��
����&
	'�&���� �

��"��	� ���#��#�� ������������ �
����
;������� �
�����
� �
��	��� ��� ���� �
�	
�� �������� ����
������#�
����#�$�������	
#	�����#��
�
�	���
��
��
&$
������ �
�
�	���
�� �

��"��� ���� ��
�

��"���
��
��
�	����
�
� -��
�	����
�� �
	���
�� ���	�

��#� �
��
��
�������������	�

����������
�.������	�	�����
��
��C

�����
��#�"	����
�	����
�
�
�� ��
�	����
�� ������
��������
�
	���
�	
#	����
������-��������#�����	
�����
���
����'��#�����
�
����#.��
�"	
������ ���'�#��� ���	
�����
�� �
� ������������
����
���'�
�#����
�� �����?���
��?�������� �	
��

��
��������
������ ��������
��
�� �������
�� ����� -��� �����
�
���� ����.�� ���� ������������
��
�� �������
���� "�����
	��
��#���
��	��
&��6�����
�������
������
��	�� ���	
�������
�
)?=� ����	�����#�� ����		���� �������#�� ���� 	
"
�� �
��	
���
6���� ����� �	�� 	����	
������ �
� "�
��� �
�����
�
��

��&�	�� ��#����	��#� -�	
#	�����
�#��� ������������
��
-�
����	�:���
�.�� ��
���#�� ��"�##��#�� ����
�
���������
�.�� ���� DE<�22� �
� �
��� �
� �� �
����
�	
��

	� �	��������	��� ����
	���#� ����	���
� �������� ��
����"

'�/D5����B
�
	
���DE<�22��	
��

	��������/F5��
���� ����

��&�	�� ���� ��	�&�	�� ��
�	�"��� ��� �����
�
�
8�8�2�����8�8�0��

�
����DE<�22��	
����
�����

� �
���D1GC����	�

�
�����
-;6B.� �
�
�
	�� ������ ������ ����
���'�� ���� �
�	� 2D$"���
���� ��	��� E$"��� #���	��$��	�

�� 	�#�
��	
�� B��
	�$
�������)?=��
��
����
�����

�)?=��
	�
����#�����������
#$
�
$��#����� ����
�	���� �
���������
�� �
	�
�� ����)�6�
�	
����
������������������������	������������������	�����
����	�����������	�

��#��
��
��
�

&�"������
�
�������
�
�
�����
�	
�� �
�
��������� �
	� ��	����
�	
�
�� �����	������
��	��� �
�	
�
�� ��"
	��
	�� ����� ��	� &��'��)�$���

�

�

�
�
� �����:�� �� �
�"�����
��
�� ���	���#� ������*��
�
��������#��

��	����������������	
"���$"�
������������$
"�
��� ���	���#� /0�� 1�� 2�� 3�� 45�� 6���	� ��� ���	
����
	��
�����	�� -�
� �
�#�	� ����� 2@$20� ������
.��
������
�
-�
	�������
�"�
��#	
��
��
	�

������
�#	
��
��
	����
���
���
������	�����
��&��
.��	��#�������	���������
'��
�
���
����
��� �

��	��������� ��� ��
��������� ��
����
��
������ !����� ���
����
���#� ���� ��
'�� ����� #	
���
���"�	� ��
��
� �� �����	���� 	
���� ��#��� ����'����	��
	��
	��	�����������
	�-��
�	��#���	��������
��"������#	
���
���"�	
.�� ���� *��
��
��	� -��
�	��#� ����� ����� #	
���
���"�	� ����	
����
� ���� �#	��
� &���� ���� #	
���

���
��.�� !���� ���� ����� ����	�
�� ���� ��
�	���
	�
	���
����
�����
� �� ��	

�� �	
��
��� #	
��� �
� ��
�	�"��
��	?��
� #	
��H
�
���
���� �
� ���� ��	����� �
� ���

�
������#
�� ������� ���	���#� /15�� �
���
�� ��
��$
�$
���
"�
�
����

��
�����
������
�
�
���
�� ���� ��	���
�
�� �

��	������ ���	���#� -&����� �
�
�
��� ��� �
�9�����
�� &���� �	
"���$"�
��� ���� ����$
"�
��� ���	���#.� �������� �
���#�
�� ���������� ����

�
���������
��
'���
� ���� ��
��

�
�� ���� �������#��
������������
�� �	������� �����
�
�
'���
� ����
��
��

�
�?��"����� �����
������
�� �����
'���
�� ����
#	
&���
�� �
��������� -��� ��	������	�� �
	�
������
� &�
�
������
	���
��
	��"����	���������#� ����#	
��H
���
&�	��
	����	� ����� ����	�
&�� ��
&�	.�� ��
����� ��
� "������
��
&���� �
��#� �

��	������ ���	���#�� �� ���������
	� ��
��
#�����
������
H� "�����
	� -��#��� �
����
��� �����	
�	�����
"�����
	�
���� �
� �
������
�.�� ���� ���
	�
	����
��������������
����"������

����������#	
������"�	
��	��
�����	�
�
�
�"����
	�����	�
&���	
#	�

���������
�	
����
��
)��#���	�����������9
	������
�������
�	
���
�
	#���:����
�
��
�*������
�����	��
������
��
&��#>��
�
2�� 	�����#��

�#������-
��
�������

.�
0�� ;6��-������

����
�	�"����������������
��8�0.�
8�� �����	��-������

����������2@$20�������
.�
1�� ��$���

� ������?�

��	�����??�	
"���$"�
��?����$

"�
��� ���	���#� �
��#�
������ �	
"���
� -��
�	�"���
"	�������"
��.�

3��
��$
�$���

� �	
"����

����#� �
��#�
������
�	
"���
�-�

��	��������������������.��

D�� ��$���

� ������?�

��	�����??�	
"���$"�
��?����$
"�
��� ���	���#� �
��#� �
	�� �
������ �	
"���
�
-��
�	�"���"	�������"
��.�

F��
��$
�$���

� �	
"����

����#� �
��#��
	�� �
������
�	
"���
�-�

��	��������������������.�

E��
������
	�
	�	
"
����"�-�����"����
�	�"�����������
��
8�8.�

4�� �����	��-������

����������2@$20�������
.�
2@�� ��$���

� ������?�

��	�����?�	
"���$"�
��?����$

"�
������	���#��
22�� �

�

����� -�
	� ��������� �� *��:�� &����� "����
� ���

��������������
����"�����.�
�
��������#�
�� ���� ��	#����� �
�	
�� ����	�����
���
� 8�
-
���
���.��1�� ����3�����
���
�D�����F���������� �
�"��
	��������
���	�������
��6�

���������	�����?
	��	
"���$

����#�
�

�
�
� ���� ����� �
� "�� ������ �
� ���	�

�
��	���
� ���
����	��� ��	��#� ;6�
�� �	
"���$

����#�

�

�
�
����"
��*��::�
����������
I�
�����	���
���
�4�����
2@� �	���
��� �
	� ���
� ��	�

���)���������� ���
����"������
�
� "����� ��� �
� ���� �
�	
�� ����&��'��� *��::�
� ���� ��	���
���������
�
��&������	����'�����������������������������
�	
9�����&������
���
�	�"�����������
��8�8��=��$
�$���

�
�	
"���
� ����"��&
	'���
�� ��� #	
��
�
	� ������������I�

���
�	���#���
��
�����	�����"��&���������&
��
�
���� "�
�
� �
	� �� ������ #	���� ������
�
�� ���� ��
�	���
	��
6�� ��������
��
��� �
��� ��� ���� �
�	
�� �
� ;6�
� 23J��
*��::�
�2@J������
�1@J�-�������������	�#��
��D3��
�
	�*��	��� �
� ��

� ���� �
�	
�.�� ��"
� 2@J� -�� ��������
���	�#��
��D@��
�	�*��	����
���

������
�	
�.���
��&
	'�
@J� -
���
���I� ��
&�	�
����
� �	�� �	
������ "���
�
��&
	'� �
� �
�� #	����.�� �	
#	�����#� �

�#�����
�
23J�������������	
9����2@J���
�

42

&�!�
���
���
�����������%�����'�����
�%�	
�������
�
�&
���9
	���	���
��
����	��
���
����������
�����������
���

��	���������������������
��	��#�����	�*��	�������	����
��������������������������"�����������������
	�
������
��
�
�����:�����������
���	�����������'��#����������
�
�
'���
��
�
����	�

� ���� ��	
�� �

����
������
���
���
��� �
����

�
�	���	����)�� �� �	�����
���� �����	��
�����#��
������
�
�������� ��$������ ����	
������#�
�� ����
�"9���� �����	�

��
����
���������

	

���K����	�
����	
������
���
������
�
��&
	'� 	����
	��
� ����(&�����	� �������#� ����
�
�����
�
	� �	���	��#� �
	� �� *��:�
	� ������ �
��#� ����
���	
������
�	�"���������
�����	��&�����������
�	���	
��
���� ��$���

� ����
��$
�$���

� 	
��
>� ����
������
�
���	
����� ����
����
� �
� ���� �
���
� "�� 	�����#� ����
&
	'��#�
������ �	
"���
�
��
����
�� ���

I� ��$������
����	
������#��
��
��	
���������#�����	�'�
&���#���
�
�
	�� �
������ �	
"���
� ��� ����
��
���� ���� ���

	

��
���� ��� ���� ��"�� ���
�� �����:��#� ���� �����
���#� �	�������
����'��#� ���� �����
�
�
'���
��)�� ���

�� ���� ��
�	���
	�

"
�	��
�
������
� ���� "��
��
� �&�	��
�� �����������
�
����� ��������
����	(���
����
&
��
	� ����	�����
��&����
����

�	��� ���� 20$������� �����	�� �
������
� ����

�"
�*����� �	
"����

����#� ����� &���� ��'�� ������

�"
�*���������������
����
����������������	������������
&
���� �
�� "�� �

�"��� &���
���
������� �	���	���
���
���?
	� ���	�

�
� �

��
� ����� ����� �	
���� -"��

"
�	����
�� ������

�
	� ��"��
	�"����	�
	������
��
��$

�$���

� �	
"����

����#�� *��::�
��
	� ����
.� �
� "��

����������� =�	� ������*��
� �
	� �
�������#�
������
� �
�
�	���	���
	����

����������
��	����
�	�"�����������
��8�0��
&�����
�	�
�	���#��
� �
	� ���
�	�#��#� �	������� ����'��#�
�	����������������������
��8�8��
�

&�$������������(�����
���
���������
�
A����� ���� "�
�� ���
	��
�� ��� ��
�	���
	� &���� 	�
����� �
�
��
�#���#�����������������	�������
	�����

�
�

�
��� ��� �
�
�

�����
������	��&���
������*�����
��������	���	���
���
6� ������*��� ����� ���	�

�
� ���
� �	
"���� �
� ;6�
��

;������

� 6

�

����� ��
�
� /3�� 45�� �
��#� ����$"�
���
���	���#� /3�� 45�� ����9
	� ��
�	����
���� ����� �
� ���	�

���
�
��#��������������
�*������������������7�#�	��2��&�����
�������
� ;6�
� �
� ��	��
�� ���� 	������

� �

�

�����
�	
��

����� �
���	��
�����	� �
� ����
�*��������
����� ���
����
�"9�����
�	
���6�;6���
���*��:����'���������������
����	� �� 	�����#� �

�#�����I� ��� ��
�
� &�����	�
	� �
�� ��

������� ���� -&���� �� 	��

��"��� ��
����
�� �����.� ����
�

�#���� 	�����#�� ���� �

�#���� 	�����#�� ��� ��	���
�	���	�
�
������
� �
	� �� ���

�
�

�
�� ����� �
� ������ �
�
���������������	���#����
����
������������	�����#������
*��
��
�
� �	�� �	��?���
�� ���?
	� ��������$��
����� 6�

������ *��
��
�� ��#��� "�� %=��	��
&� ����
��
���	�
&���� ���� ���"�	
� �	�� �
��
�� ����
����
�#��� �	���
	�
7��
�L+�6�� �����	
�	����� *��
��
�� �
�
��� ����� 	�*��	�
�
���� ����	
������#�
�� �� '��� �
������� �
	� ��������� ��
��������$��
���� *��
��
�� 	�#�	���#� �
&�
��	��
&� �
�
������������������
������
�
��*��
��
�
��
	�*��::�
M�
�
7�	
�����;6���
���'���������������I�
������
�	��
	������	�
��
&�	
� �	�
	� �
� ������#� ��� ���� ;6���)�����������
���	�����	������
����;6���
���'����
��������-����;6�
�
�	�� ��'��� "�� ����
���� %"�
�+� ����.�� -<�	�� ���� ��	��
%����+��
��
����	����	������%#	
��+��"����
�������������
�
� ����� ���� �
�����
�
� �	������ ��	��#� ���� �����
�� ����
�
�	
��&������	������"�
��%#	
��+����
���%����+�.�6���	�
������	
��;6�������
�������"
����
��
��
��
�
��
�
�
��
�
&� ����� ���� ����������� ���� ����� ;6�
� �	�� �
� "��
&��#����&�	���� �����
������H
� #	����� 7
	� ��������� ����

����������� ;6��
�
	�� ��#��� "�� &
	��� 1@J�
�� ��

������H
�
�
	���&��������������;6���
�&
	���D@J��=��
�
�	
���������
�	���
	�����
�������	�
�
���������	
����
�
�
��'�����
�&�
����	
��

���
��	���
)����������
�
��
���#	���&��������#	����#�
����*��
��
���
����� �	�� ��	������� �
�
�"���� �� &	������ ������� /3�� 45��
&����� ���� ��
�	���
	� ��������
��)�� ���� ��
�	���
	� �#	��
�
&���� ���� �������� �����
���� ����� ����� 	������
� ���
��9�
����
�
	�(���
� 	�&�	�
� �	������� �����
�
� ����
���������� �
���������
���=�� �
�	
��� ��� ���� ��
�	���
	H
�
��
&�	��
����
		�������������
H�;6�
��	��	�#�	�����

�����
�!���
����
����������������������������%��
)�
��
��

�
���	
�������#��������������������%�

)�
��
�
-;���������
	��������9
	���
�	����
���������������1$F�����
���	��
�	
�.��

�#�������*+�����
���������������������
�����%���������
�����
���������,�����,����
���
���
�

����� ����������� 	
���
��
��
������
�

��������
	
��
�

���
����

��
������
����������
���
����

�������
�������

���������

����������
����������

�����������

�������
��������
�����������

�

�����������
�����������
�����������

����� �

��
���
��������

������!�

����������������	
���
��
��������������
��

43

6��
	���#� �
�
�	�
"
�	����
�
�� ;6�
� �	�� ���������� ���

���	��� &��
�� ;6��
�
	�
� &�	�� #���	����� ��#�I� �
	�
������������
�	��#�0@@0������&�	���������E@�����	��������
�
	��
	�������F@J�
�� ����
������
����
��

�
�
���	��#�
����� ;6�
�� &����� �	�� ��������� ���� ��

�
������
��������� ����� ���� ��
�� ��9
	����
��
������
� �
�� ��������
	���� ���� �

�#���� ����	����� �������
�
���� �
� �
��	� ��

���������� ��
����
�� ����	����
�� ����	�
&�� ���� �	��
"����	��	���	����
	��
���"
	����������������	
"���$"�
����
���� ����$"�
��� ���	���#�� ���� ��'��#�
�� �� ;6�� �
� ��
����� ���
	�
	���
������
�� ������	���
�
�� �
���"
	������
���	���#���
�

&�&�
����������'�����
�%�	
�������
�

���� ��"
	��
	��
�

�
�
�� &����� �	�� "�
���
�� ��

��
��
�	�"��� ��� /22�� 205�� �
��
�
�� �	
"���$"�
���
��
�
��	�����	���#�����
����	
����
���
	�
��������	���#�
�	
��

����
���	���&��
��)���
��
����
����	
����������
	���
����
�	��#����� ����	
������#�
�� ��&� �
�����
��
�������
	$� ���� 	
"
�$"�
��� ��"
	��
	�� �

�#�����
�
-��"
.�#��������	���#����������	���������
�
���"
�	����
���
����&���$��������� �	
��
	���� �

��	������ ���	���#� ��"
�
������&������&��'��������	������	����������"
��
�����	�
�
���"
�������
��
�
	������
�	���������	����
�#�����
������

������
��
&���������
��
���$��
�
��	������
	���#������

��
	�������
� �
� ������ ����
����
� ����
���	
� ���� ����

���������� ����
��� �������
� &
	'� ��� ���	
� �
��#�� �
	�
��������� "	����
�
	���#� �
� �������
�� ��� ���	
���� �
�
�
���
���
�
��	������
&�	�
	��
�����	
���������	�
���
�
��
�������	��������
�
����#
���
���������"��
�
����������������������������"��
�
&	������ ���
���� �� &��� �����
������
� �	�� 	�*��	��� �
�
����	��������	��������������:������	��������	�
���
������
�
�� ���������� 	��

���#� �
� �		���� ��� �
		���� ��
&�	
��
!
	'��#� ��� ���	
�� ����

������
� ��� ��	#�	� #	
��
��
	����
	��
� ����	� �
��������� ��� ����	� ����	
������#�
��
9
������ �
�
�	������ ���
���
�
�� ����	�������� ��
�#�
��
���� �	������
�
�� ����	� �����
�
�
�� ����	�������� 	�
���
��
��������	�����	
������#�
�������
�����
����������	��������
��"�� =�� �
�	
��� ���
� ��

� ����
� ���	
��� ����	�
�
���������
�����������
'���
��
�&�����
�
���
��
�	
���
�
��&
�����
�
���

�
������"
>���
������
	�
���� 	
"
�
�� �������
	� ��"
� �
��
�
�� "�
��� ��������

	#���:���
�� ���� �

��"��	� ���#��#�� �
��#� ����N�
����
DE22�
������
	� /E5�� ;
"
�� ��"
� �
��
�
�� ���
	�$
�������)?=��
�	���� �
���������
��� ����		���� �������#��
����)?=� ����	�����#�� 6� ��"�
������ &����� ��
�	�"�
� ����
#
��
�
��������"�����&�����
����������
������
������
���
�
�	�
������ �
�
������
� �	�
	� �
� �� ��"I� ���� ������	�"���
��
����� ��"� �
� �����	� �� �
�������� ��"�
����� -����� �������
�
��
&�	
� �
� *��
��
�
�� �
� ��
�	�"��� "��
&.�
	� �� ���
��
�������
����"����
��
�������������"���	��#��������
�����
��������
�� ����
�� ���
������	�
&������I� ���
� �
��� ��������

������
�� �
	� 	
"
�� ��"
�� &����� ����������� �
������
�	
"����

����#� "���#� �
���
��
����
�� ���� ��"
��

�������
	�����	
"
����"
�����������

�
����������
����	��
��
�	�"�����������
��
&��#�
����
�
���
�

&�&�!�
���������	��������-������./!!�
�
�������
	� ��"
� �	�� ��		����
��� ��� ���	
� "��&	����#� ����
��������#� �

��"��	� ���#��#�� �	
#	��
�� ��������#�
�

��"��	� ��
���#
��
��"
�� ��"��
�� ���� �	

$	���	�����
��"��
�� ����
��������#� ���� �������
��
�� ��� �

��"��	�
���#��#�� �	
#	��� �
��#� ���� N�
���� DE22�
������
	�� ��

������
	� �
	� ���� B
�
	
��� <�DE22� ���	
�	
��

	��
�����
������
	� ��"� "	��#
� �
#����	� �����	���� ���	
�
��

������
�� ���
� ��	���
�
������
� �
� #��� �
� '�
&�
���	�

������
� ��� ���� ���

� ���� �	
����
� �������#�
� &����
	�
������
��
���������
�����������
'���
��
�
6�
�������
�� ��	���
� ���� ���������
��
�� 	�#�
��	� ����
���
	�� �
�����
�� ��������#� ���� ������ ������ ����
���'�

�#����
�� ���� �������
�� ����� ��� �����
��N���
������
	�
��"
��
������
����������:�����
�#�
���	�����#
>�
�
�� 	��	�
������
��
����
�	����
�
�-������������
��.��
�� ��������:�����������������:���������
�� ��
�	����
�� ���#��� ���� ��
�	����
�� �
	����

�����	����
����	�"���"����
����	�

��#��
��
��
�� ������
�
����
�	����
���������
���
�� �������������	�

��
	����
���
�� �	
#	����
��	
����
&��
�� "�����
	�
��
�"	
����������
�����	���	����
�	����
�
��

��������	��������
������	�������
���'��
�� �
��

���
��
����������
��	��
	�
��
�� �����	����
� "��&���� ����$"�$������ ���� ����$"�$

	���	�����
�������
���
�� �
�����
�
������		���
�����
	
������
�� ��#
	��������
��������������	�
�
���������
��������
� �
N�
���� DE22� �
� �
��

���
�� �&
� ������������

�"
�
���
� ����� &
	'� �
#����	� �
� �	
����� ����
������
������� �
� ��"�#� �� �	
#	��� ���� �
�
�������� ����
�������
�� ����	
������
�� �� �	
#	��� &	������ ��� ����
DE<�22��

��"��	����#��#��������&
�
�"
�
���
��	����

�������
�� ��#����� &����� �
� �
��

���
�� �� ��"	�	��
��
������
�
��������A�)��&������
��	
�
�����
�������
��
��
�����	
#	�����
�
����
�������
�� ��#���� ����
�������� ���� �
�������
DE<�22�)�6�� -O
���� �
&���	�� �����

��� ����	����#�

�"
�
���
�
���� �
� ���� �
����	
�
�
�
�	����
�
���������
�� ����	����� ���� ����		���
� �	�� �
�� ����
������������.���������
���
���� ������
�	����
����������
�

��

����
������������������������"	�	���	
����
�����

�
��������A�)��
������������
�����
����������
��
����
�

�����
�	�#�
��	
�����
	�������
��������
��������
�
���� A�)� �
��	
�
� ���� �������
��
�� ��
�������
���
��
����
� ����#�
� �
� ���� �������
�� ����	
������
�� ��
�	
#	��� �
� ��� �������
�� ���� �	
����
� ��"�##��#�
������
�������� ���� A�)�
�"
�
���� �
� �����
	��
�����������I� N�
���� DE22� ���� 	���
�� ����
�
����

44

	�����#� ���� !���
&
�� ������
	� K�����
��	����#�

�
���
� ���� �����
���
	�
� ���� P���� ;�������
����	
������ -P;�.�� 7�#�	�� 0�
�
&
� ��
�	����
�
��
��
N�
���� DE22� &�����
��������#� �� �	
#	���� ����
�	����

�
��
�
&
� �� "	��'�
���� ����� �
�
��� -��
�	����
��
��#���#����� ��� 	��.� ���� ���� ����� ��
�	����
�� �
� "��

��������� -��
�	����
�� ��#���#����� ��� ����.�� 6���	� ��
�	
#	��� �
� �

��"����� ���� A�)� ��
����
� �� �	
#	���
��
���#� -
��� ���� �	���
�� 7�#�	�� 0� ���
���� "�� ���� 	���
��	������	'���%2+��������
����
��2�
��7�#�	��0.���
���� �

��"��	� ��
���#� �
� �
��

���
�� ���� �	
#	��H
�
�

��"��	� ��
�	����
�
� ���� ���� �
		�
�
����#���������
�
�����

�����
��0�
��7�#�	��0�
�
&
�����"��
���������������	

$
	���	����� ��"���������
��8���
����
� 	��$������		
	
� �����

���	� &����� �� �	
#	��� �
�
���������� 6�� �		
	� �
�
#���	������ �
	� ��
������� ��� �� "���
��
��� �
� ���������
�����
�� 1� ��
����
� ���� ����
�
�� 	�#�
��	
� ���� ����	�
�
�����
�-���"
�������������������"���	�.��
�
6
����	
#	����
�
����������	�#�
��	��
�����
��	����������
���	�
�
�
���
�����-
��������.��������
��
����
�	����
�
��
�����
�
�3�����D���
����� �����
�����
�
�����
	�������
���
	�� �
� �����
��� �
�
�
&� 2D$"���� ���
	�� "�
�'
��
�����"�
�'��
������������
���	�����	�
>�������	
�����������
�
����"�
�'H
�
��	���#����
	�����	�

���������
��
�������

���	�� ���������� ��� ������������ �
	���� ���� 6��))�
	��	�
������
���	�
����������������
�����
�
�����������2D�
"���
�
�� ���
	��
��	���#� ��� ����� "�
�'H
� ���
	��
���	�

�������
��3��
�����������
���������
�
����
&�����
�
��
�� ����
���'�����#�
��
����	
#	����������
�����

�
�����"
��� ���� ����� ���������
�#����
� ����"�����&������
����
���� ������)�
�����
�� ��
������#� ����
���'� ��� ��
�
�
�����"
�	�����
����
��-��
���'�
�������
�&���������

��
	������������
�
	�����������
����������
���
��������
�
	���
�������"
��
�.������
���'��
���
��������������
�����
	����
�
����
	�� �
�

������� ���� �
��
�� ����� ����
���'� �
� 9�
��
��
���	��	���
�����
	���
�

N�
���� DE22� �	
����
� ���� �
��
&��#� �����	�
� �
� ��"�#�
�����
��	
������
�������
��
�����	
#	��>�
�
�� ��������� �� �	
�	��>� 6

��"��� ����
��������

�	
#	��� ���� ��
����� ���� �

��"��	� ��
���#�� 6���	�
���
�
����������	
#	�������"��
����������

�� 	���������� ����� ��������
� �	
�	��>� ;��

��"���
���� ��
�� ����� ����� &�
� �

��"���� -
����

������
	�
�
�.��

�� �

���� ���
	�� �
������>� B
����� ���� �
�����
�
��
���
	�� "�� ����	��#� �� ��&� ������ �
�
�
	�� ��� ��

������������
	�����	�

��

�����
�$��-������./!!�0���
�����������������������

45

�� �

���� 	������	� �
������>� B
����� ���� �
�����
�
��
����
�� ����
��������� #���	��$��	�

�� 	�#�
��	
��
���
� ���� ���� �	���
�
�
���
�� ��'�� ��� ��
�� �
�
�
����� ���� �������
�� ����	
������
�� �� �	
#	���
&���������
�
�������������*���'���
��������������
��
"�����
	������	�
���
��	
�����
������#�
��

�� �������	
���������������
��
�����	
�	��>����������
���	
#	���
�����
�	����
���������������	������#�����

"
�	����
��
�� ����#�
� ��� ���� �������
��
����	
�������
���	�
����
����
�	����
���������
���

�� 	��� �� �	
�	��� �
� �
������
�>� �������� �� �	
#	���
�
� �
������
��� �
�
��

��� �
�
��� ��
�	����
�� ��� ��
���������
��
��

���
�����&����"	��'�
���
��	��
����

�� �
����� �	����
����>� ����
	� ����	� "	��'�
���
� ��� ��
�	
#	���� ���
� �
� �
����� &���� ��"�##��#� ��	#��
�	
#	��
� ���� &���� �����:��#�
�������� �
���

����
�
��

�� ��
�� �� ��������
�>�)���		���� ��
�������
�� ����� �
�
	�����#��
��
������
������
��
��
�������
	���
�������
������	
#	�����
�����	�������������������

���

�����

����&����
�#���
���
�� �����

���
�"��
�
����#�����

�������
���

�� 	������������
��
�����	
�	����;�
��	����
�������
��
"�� �
����#� ���
����
	�� ������������ �
���
�� ����
��
���	
#	����

��"�����

�

&�&�$� �����	����
�
6���	� ��*��	��#�

��� �
��������� ��� �	
#	�����#� ����
DE<�22��
������
��	���������#����
��
��	
��
�����	
"
�
�
������	���
��	
�����"��DE<�22
�������P�	
�	
"
�
� /85��
��������� ��� 7�#�	�� 8�� ����� ���	�	��� -);.� ������	
� ����
������
	
�� ���� "����	�
��

	
�� ��������#� ����
�

�"������
� �
	� �	
#	�����#� ���� �����	���� ����	����
��

���� �
� ���� ����
#� �
� ��#����� ����	����
�� ;
"
�� ��"
�
	�*��	��
������
� �
� �
&��
��� �	
#	��
�� ���� ����
�	����
�
���������
������	�������
���DE<�22����	
�	
��

	��
���
���	
#	��
�����	�����&��������DE<�22H
�)?=��
	�
�
������	����
������
� �
������:�� ����"�����
	�
�����
�#�

���	�����#
>�
�
�� ���
	�$�������)?=��
�� ����
�	�����
���������
������	������
�� �
�
	
��
���������
�����)?=��
	�
��
�� ��#�������������
#�
��

	
��
�� �	
#	����"�������	
������
����	
������
�� ����		���
��
�
���� 	
"
�� ��"
� ���
&�
������
�� ���	��� ���
� ������ ����
�

�� �&
� -&������	�� �
	����"�
���
��
������
H� ������ 	�>�
����	� �
��
��� ��
���
.�� �
� ����� �	
�� �"
�	���� �
�����
�
����
�������
�
� �
� �� �
	�� ����
$
�� ����	�������)��
������
��� ����� ��	����
������
� �
� "��
��� ���
����� ���
���� ���� �������#��#� �	
9���
�� 7
	� ��
������� ���� ��	
��
	
"
�� ��"� ��
�
������
� �
�� ����
�	���� �
���������
��
����	������
���
����������
�����
�
������	
"
�H
����
	��
-����DE<�22.�
�������
���
	�
�������

�������	�

��#���
'���
�������

�H
�'��"
�	���&�������
�	���
�����DE<�22�

�
�	�����	
��
	�&	�����
������
	��"����
	�&
	����	���
�
����	��������	
#	����
�
7������	
9���
������"������	��
����

��������������#��#�

������
��
����
	�
	����������	
#	������� ����'�
&���#��
����� ����� ��*��	��� ��	
�#�
��� ����
���
��	�� ���� ��	
��
�������	
9��������
������
��	
#	���	
"
�
��
�����#������
��:����
���'�����
��
	���������#��#���
��
������������
	
"
�
�������
����������	�&���
���
��������:������������
�
� 	����"�	� ��������� ����� ����� �
��
&���

� �����&����
���� 	
"
�
� &�	�� ����� ������� ��� ���� "�#�����#�
�� ����
��:��� ����� ����#����� ���� ��:�� &���
��� "�����#� ���
�
&���
��6�
���	��������#��#��������	
9����&�
��
��	
#	���
�&
� 	
"
�
� �*�������&����);� ������
	
>� ������� ���� ��
�
��
��	�� ���� �
��
��	H
� #
��� &�
� �
� ������� ���������
��������������������H
�#
���&�
��
���
���"���#����������
"�������
��
��	���������������	����"��
	��#�����#��������
"�������
��
��	��
�

�
�

�����
�&���������������
�
)���������� ���
����"������ �
� ��������� "�� �������#�
�	
9���
� ����� -2.� �	�� �
��	�
���
����������� ����	�����#�
������
�����
��
����
��&�����&�����
����������������
�	
9����
����������
�
�� ���� -0.� ����� ���������
�"#
��
�
���������"�����������"����
�"
���
���
�������������
����
�
��
����
��)�����
�&�������
�����������"�	��
�
��
��
�
� ��	?��
� ��	��� ����
���	� ����� ���"�	� �
�
� �
�� #���
������:������

���	��
������	
9����#	�����
��
���	�����
�
C�
���
� ���� ���� "������
� ���	�"���"��� �
� �
���"
	�������
�	
"���$"�
��� ��
�
��	�� ���	���#�� ���� 	
"
�� ��"
�
	�*��	��
������
� �
�
��	�����������#��	���������
���������
&���� 	�
����� �
� ��"�##��#�� �
�
���	��#� ��"�##��#�
������*��
� �
� �� �
�������� 	��#��#� �	
�� 	���
��
-������������ �����
	���.�� �
� "	���� �
	��� -������������
���
	���.�� �
� #��

��#� -���������� ����
	���.�� ����
�������� �
� ����	�������� -���������� ���
	���.�� ����
�
������������������������
��	
"
�$"�
�����"
���'������
��	
�� ��	��� �
	�
�
�� ��"�##��#� ����������������
� �����
�
����
������
� &����
����
��� ���"��� ����	������>� ���
����	��������� ����������� ���	
����� 6
� �� 	�
����� ����

���������
��

�

�� "�������	��"
����	�����#������
���
�
��
�� "��	�

�	�����������
���#����
���
�
��
�� ��
��

����
���
�
������	�
�
��
"
�	����"�����
	��

�
����������	����#��
�����	��	��������	��������

46

�� ��
��

�

����
�
������	�
�
����������	����#�
�
�����	��	��������	���

�
P�
��&����&��&���M�
�

1�"����
���
���

�
����
�	���#��
� ���� �

�
��
��� ��� ���
� �
�	
�������"����
�

�

��� "
��� ���
	������ ���� �
	������� ���� ���
	����
�

�

������
�����	���
��
	��
���������	���#�
�	���#��
�
����
���� ��� ���� �
�	
��� &����� ���� �
	���� �

�

�����
�
��
�
�
�� N�
���� DE22�� ����
������
	� �
��� ��� ����
�
�	
���)��������
���
���������������
�
� �	
�� �����0@@2�
����
�	��#� 0@@0� ��������� ����� ���� �
�	
�� &�
� &����
	����������
�
6� 21$*��
��
�� ���
	���� �

�

����� �

�� &�
� �
��� ����

��
�������������
�	
��&�
����#���������
�&���-���
�	��#�
0@@0.� �
� �

�

� ���� �����������

�
�� ���� ���	���#�

�	���#��
���������
������
	�����	
"
����"
�����
�������
�����
�	
�I������
�	
����
�"�������#������
�&����&������
���	�
����� ����� 0@@2��)�� #���	���� ����
������
� -0F� ���
���"�	.� &�	�� �

�� �

������ �"
��� ��
�
��	�� ���	���#�
���� ����
������
	� ���� 	
"
�
�� =����
�
� &�	�� ��������
&����	�
������
�&
	'��#����#	
��
���	��#����

�������"
��
=�������

������
����&�
�����
��
	��������
�
��	������
��

����
�
������	�����

����
����
�
�
I�
�� ������#������

���� &�
� ���� �	�
�	���
�� ����	������� �
� �� 	�
����
��
���	���	��� #	
��� ���"�	
�� &�
� ��#��� ������� ����	�
#	���
�� !��'��� *��::�
� &�	��
�	
�#��� ���
	��(

������
�
�����������*��::�
�����������
������
	�*��::�
�
��������
�-�
���������&�����������������*��
��
�
������
�
��
�
�� ����
���� �
�����
.�� ���� '���� �
�����
� �����
���	�� �	�
�� ��� ����	� ����
�� =�� ����
���	� ������

���

������
���
�#���*��::�
����	��
���
�	�

��������9
	����

��
������
���
�#������&�
���#

��������
��
������	
"
�
�
��� ���� �
�	
��� �	
#	�����#� ���� 	
"
�
� ������� �
�
	����
	��� ���� �
�����
� ����� ���	���� ���� �
�
���
-���
������.� ���� �
&�	�
�� ���� DE<�22� �	��������	�� ���
����
����
�������	�
���#�
��������
�����
��
��
&��
�
!����	�
������
�����
������
	>�
�
�� %/����
������
	5� ������� ��� �������� '�
&���#��

�"
�����������	�����
��	�������������

�+�
�� %/)�5� ������� ��� �
� ����	
����� &���� &�
�

��������#�+�
�� %!�� �
���� ��
�� ����
��� &���� ��������� �
	�

�	
����
�+�
�� %/)�5� ������� ��� ���	�� �
&� �
� �

��"��� ����

��
�

��"���+�
�� %/)�5�����������&�����	
#	�����#�+�
�
!����	�
������
�����	
"
�
>��
�
�� �/�������	
�����
��
������	
"
�
5�&�
���#

�������+�
�� %/����5����
	���������
�����
����	����������

�+�
�� %/����5� #���� ��� �
��������� �����)� ���� �
�

������#������
���
����

�"��������	
��+�

�� %/����5�&�	�����M+�
�� %/����5������ ��� �

�"��� �
�
��� ���� �
&�	�
�� ����

DE<�22��������
��+�
�
;�����������
	�����

�

������&������
��
�
�
��N�
����
DE22��&�
��
��������� ������

�

����� �
�"�
���
�� ����
	�
�
�
��
��03�
������
��&�
������	�9�
���

'������
�	
��
���
�
���
��	� -
�	��#� 0@@8.�
	�&�
� �

'� ��� ��� ���� ��
��
�&
����	
�������

�

�������������
������
��
&��#>�
�
�� ����
������
	�&�
�
�	��#���
	&�	���
��
������������

��	���
&����	���#���	���-08�
������
��������08?03.���
�� C���#� �"��� �
� ���&� ���� �

��"��	�

�	��� ���� ����

��	����� 	��	�
������
��
�� ���
	�� &�
� �������� ���
����	
������#��
&����
	������#�
��
����	
#	���
�
����������-24?03.���

�� ����
������
	� &�
� ��	������	��� �������� �
	�
����	
������#�
���'� ����������
�
� ���� ����
�����	����
� ��
�#� ���� ��	�
�
� ���	�

��#� �
��
�
-00?03.��

�� ����
������
	� ������������ ��"�##��#� "�� ��	������#�
���� �
�	� �
�
���� ��	
�#�� �	
#	��� �������
�� �����
&������
��#�

��
"
�	����
&����
	������	�#�
��	
�
����#���-2E?03.���

�� A����� ���� ��
����
�� �
��#� ����
������
	�
	� �
���

������
�
���� ����� &
���� ����� ��

��� �
� �
�� ����

������
	�
����� ��� ������� ����� �
� ��"�#� ����
����	
����������������
��
�����	
#	���-02?03.��

�
)�� ����� 0@@2?
�	��#� 0@@0��
�� 01?24� 	�
�
�
�
� �
� ��

������� ��������
���
���
�� �� 2$3� 	����#�� &��	�� 3� �
�
���������>��
�
�� ������	���� �
��
�� *��
��
�
�� ��
��

�
�
�� �����	�
��

���?
	� #	
��� &
	'� ��� ���� ���

� &�
� 	����� 1�E?1�4�
-���	�#��	����#.��

�� ���� 	���������
�� �
�	
�� ����	���
� �
�
����� �
�	
��

"9������
�&�
�1�1?1�E��

�� ����	���������
�����

��

�#�����
�&�
�1�3?1�F��
�� �����
������
��
���
&���������	������������
�	
��

&�
�1�1?1�D��
�� ���������������

�
�� ���� �
�	
�� ��� �������#��#� ����

����������������������&�
�1�F?1�F��
�� ����
��	����	����#�
�������
�	
��&�
�1�3?�1�F��
�

2�"����������������������
�3��4�
�
B
	�� �
&�	���� �

�

����� �
� ������� ���
	��	� �
�
*������������
����

�
���������	���#�
�	���#��
������

�
�
�
��� ��� ���� �
�	
��� C��� ���
������� ��������
�
��
�������
�
�����
�� ���� ��
�	���
	�
"
�	����
�
� �	�� �
�
���	����
�����
�	
�����������
�"���������������)��
�	�
����
�������
�

�� �
&�	����
�� ���� ���	���#�
�	���#��
� ����
���� ���
�����
�	
���	������;6�
����������

��	��������	
"���$
"�
��� ��
�
��	�� ��"
� -"
���
������
	� ���� 	
"
�.��)��
������
��� ��� ����
��"��������� ������
���"
	���������������
�	
"���$"�
���� ���� ����$"�
��� ���	���#�� ������ ���	���#�
�����������������
���
�
������
���
���	�
���	�
	��
������	���
�

47

���� �����
���� ��� ���� �����
������
�� ���� �
�	
�� �
� �
�
���������������"������
�
��N�
����DE22��
�
��������"
���
����������
�������
������
�	�����
���������
�
�����	�����
���� ����		���� �������#��)�� ���� ��	�� �
�#� 	��� ����&����

��������������	�
���������"

'���������
	�
	���
�"
�������
���������� ���
	����
���
��������������
��
�	
����������

�	���#��
������

�
��
����
������������
�
���
���������
�
�����
�
�����
�

.�"�
5
�
��
��
�
/25� ����
�� C�� �

��� �
	� ���������� ���� 7	����
�
>�
P

��$C�

��2448��

/05�P
��

������!���;�����P
��

����������P��<
��"����
�

��	���
��������������	

����������BO>�)���	����
��
C

'��
�������2440��

/85�����>??&&&���'��	
�����
�?�

/15� B���	
�� ���� ���� ��� C�� P
��
�� �	
�
����� �������
���	����������7	����
�
��P

��$C�

���"��
��	
��2448��

/35� B������
���� K�� G��� ���� ;�� <�� C���'�� %C������#�
K��	���#�����
>������G����
�<�	��

��#������
&�	�
��
������ A	
��
� ��� <�#��	� �������
��+� ����
����
	������
���	����������
�	���

���
	� ����	�!
�����
���N
���0��
��� G����� ���� P�� G�����	� -��
�.�� ������ �
���#�� �6>�
O���
���� �����	� �
	� �������#�� K��	���#�� ����
6

�

����������D3$E2��2441��

/D5�B����	�� A�� <���"��	
�
�����	� !������	����� ����	�
�������;���	��OP>��	�������<�����2444��

/F5�B
�
	
���BDE<�22�;���	�����B�������0@@2��

/E5�O���
��B�������#������$%&&����'()��
	���������
��

�� ����"
�
	
���$% �&&�"��	
�	
����
	��	��������	���
B�
��	H
� ���
�
�� �����	
����
�� ����
� ��� ��� ��

��
����	������
���
�����	����������0@@8��

/45�&&&�
�����?���?�������	���#?��

/2@5� �����	

��� ��� 6��� ���� P�� K�� <����

����
�����	�
*	����+���
�� ��
� ,������� ���� �	
��	�� -�
����	��

)���	������ ���� 7	����
�
�� �6>� B
	#��� G�������
��"��
��	
��244F��

/225� �����	�� ���� %����	��������� �

��	������ K�"
� ��� ��
7�	
���
�	
������
�����	�6	��������	��+��	
���
�����
��
����&../�0	
����	�����!
�����
���
���	�����10)!�2./3��
����
"�	#����6����$;=B��O
���"�	�244F��

/205������	������ �������������#�� QB
"���;
"
�
�������
B��������	
#	�����#�����=	#���:���
��Q��	
���
�����

�� ����	�
�������� 4.5�� ���� ���#
�� �6�� ��$;=B��
�����"�	�2443��
�
�

48

Building Resources for Teaching Computer Architecture
Through Electronic Peer Review

Edward F. Gehringer
Depts. of ECE and Computer Science

North Carolina State University
efg@ncsu.edu

1. Abstract

Electronic peer review is a concept that allows students
to get much more feedback on their work than they
normally do in a classroom setting. Students submit
assignments to the system, which presents them to other
students for review. Reviewer and author then com-
municate over a shared Web page, and the author has a
chance to submit revised versions in response to re-
viewer comments. At the end of the period, the review-
er gives the author a grade. Each author gets reviews
from several reviewers, whose grades are averaged. At
the end of the review period, there is a final round when
students grade each other’s reviews. Their grade is
determined by the quality of both their submitted work
and their reviewing.

This paper reports on our use of peer review in two
computer architecture courses, a microarchitecture
course and a parallel-architecture course. Students in
these courses engaged in a variety of peer-reviewed
tasks: Writing survey papers on an aspect of computer
architecture, making up homework problems over the
material covered in class, creating machine-scorable
questions on topics covered during the semester, anima-
ting and improving graphics in the lecture presenta-
tions, and annotating the lecture notes by inserting
hyperlinks to other Web documents. Students generally
found these exercises beneficial to their learning exper-
ience, and they have provided resources that can be
used to improve the course. In fact, with such a system,
large classes are actually a blessing, since they produce
better and more copious educational materials to be
used in subsequent semesters.

2. Peer Review in the Classroom

Peer review is a concept that has served the academic
community well for several generations. Thus, it is not
surprising that it has found its way into the classroom.
Dozens of studies report on different aspects of peer
review, peer assessment, and peer grading in an
academic setting. A comprehensive survey can be
found in Topp 98. Experiments with peer assessment
of writing go back more than 25 years [4]. Peer review

has been used in a wide variety of disciplines, among
them accounting [8], engineering [7, 10], mathematics
[3], and mathematics education [6].

However, electronic peer review experiments have
been much rarer. Although the Daedalus Integrated
Writing Environment [1] is widely used for peer assess-
ment of student writing, only a few computer-mediated
peer-review experiments have taken place in other
fields. An early project in computer-science and nursing
education was MUCH (Many Using and Creating Hy-
permedia) [9, 11]. The earliest reported software pro-
gram to support peer evaluation was evidently created
at the University of Portsmouth [12]. The software
provided organizational and record-keeping functions,
randomly allocating students to peer assessors, allowing
peer assessors and instructors to enter grades, integra-
ting peer- and staff-assessed grades, and generating
feedback for students. One of the early Web-based
peer-review experiments was described by Downing
and Brown [2]. Their psychology students collaborated
to create hypertexts which were published in draft on
the World Wide Web and peer reviewed via e-mail.
Our project was one of the first to use the Web for both
submission and review of student work.

3. Peer Review on the Web

There is much to recommend a Web-based approach to
peer review. Unlike software that is written for a
specific academic field (e.g., English composition), a
Web-based application can accept submissions in
practically any format, including diagrams, still
pictures, interactive demonstrations, music, or video
clips. Of course, the student has to understand how to
produce such a submission, but for each field, that
expertise tends to “come with the territory.”

Secondly, the Web is a familiar interface. Most
students use the Web in their day-to-day studies, so
they can pick up a Web-based application for peer
review with minimal effort. In addition, many if not
most students are already familiar with tools for
producing Web pages; for example, almost all
wordprocessors can save files in HTML format.

49

Thirdly, Web creation skills are of
increasing importance in business as
well as academia. In producing work
for Web-based peer review, students
not only learn about the subject of
their submission, but also gain valu-
able experience with software they
will use in their later studies and on
the job.

Fourthly, a Web interface enables the
peer-review program to be used in
distance education, which is an
important and rapidly growing
segment of the education market. On-
campus students can review distance-
education students, and vice versa,
bringing the two groups closer togeth-
er in their educational experience.
With Web-based submission, there is
no extra overhead for the instructor or
TAs in handling distance-education
students.

Finally, Web-based peer review facili-
tates the production of Web-based
resources. The best peer-reviewed
work can be turned into materials to
help future classes learn. For example,
students can create machine-scorable
questions for each lecture, with differ-
ent sets of students choosing different
lectures. The best questions on each
lecture can be incorporated into daily
quizzes delivered via a Web-based
testing system such as LON-CAPA [15],
Mallard [16], or WebAssign [17].

Or, students can write research papers
on various topics assigned by the
instructor (e.g., the branch-prediction
strategy of a particular processor arch-
itecture). The best paper on each topic
can then be presented to the next
semester’s students as background
reading on that topic. The writers can
be asked to include liberal doses of
hyperlinks in their papers, so that later students can read
not only their work, but also the analyses of experts.

4. The PG System

PG (Figure 1) is a Web-based application for peer
review and grading. It is written in Java and is servlet
based. Students submit their work over the Web.

Reviewers can be assigned pseudo-randomly by PG, or
by the instructor, using a spreadsheet. The number of
reviewers is arbitrary, but usually three or four students
are assigned to review each submission. Reviewers and
authors communicate double-blindly via a shared Web
page. At the end of the review process, the reviewer
assigns a grade to each author whose work (s)he has
reviewed. A student’s grade is the average of the
grades given by the reviewers, plus an incentive

Figure 1. PG’s welcome page

Figure 2. PG’s login page

50

described below to encourage
careful reviews.

A student entering the PG
system (Figure 2) has a choice
of whether to submit a new
page or review pages
submitted by others. If more
than one Web page is to be
submitted, they may be sub-
mitted sequentially, each with
a different filename, or sub-
mitted in a single Zip or tar
file, which PG will unpack
into its components. Entire
directory hierarchies may be
submitted in this manner.
Since the files themselves are
copied, all work to be
reviewed will have a URL
beginning with the pathname
of the PG system, not the
submitter. This ensures that
the reviewers will not be able
to guess their authors’
identities by dissecting the

URL. The ability to submit directory
hierarchies allows large projects to be
submitted as easily as small ones.

Reviewers communicate with their authors
via a shared Web page. There is one such
page for each author (Figure 3); the author
can view the reviewers’ comments and vice
versa. The instructor can configure the
system either to allow (Figure 4) or not to
allow reviewers to see the other reviewers’
comments and assigned grades. There are
reasons in support of both strategies.
Allowing reviewers to see each other’s
feedback provokes better dialogue over the
quality of a submission, but the first
reviewer’s comments may unfairly influence
subsequent reviewers’ assessments.

Grading is based on a rubric consisting of
several questions that the reviewer must
answer with a numeric score. The questions
may be assigned different weights, if desired.
The grade that a particular reviewer gives a
student is calculated by summing the product
of each score with the corresponding question
weight. A rubric-oriented approach is used to
insure that all students are graded on the same
criteria, and to reduce the chance that a
reviewer will give an unrealistically high

Figure 3. Page with links to submissions to be reviewed

Figure 4. Review page

51

grade due to ignoring some
of the criteria that the
submission is supposed to
meet. In addition to giving
numeric scores, the reviewer
has ample opportunity to give
feedback to the student on
how to improve. This can be
seen in Figure 5.

5. The Submit-
Review-Publish
Cycle

Our experience with PG has
led us to a four- to six-phase
cycle, capable of producing
high-quality peer-reviewed
work suitable for Web publi-
cation.

1. The signup phase
(optional): If not all
students are to do the
same assignment, the
students are given a list of
potential topics (relating
to research, or to a partic-
ular lecture, etc.) and sign
up for one of them. To
assure that all topics are
chosen, only a limited
number of students is
allowed to sign up for
any particular topic.

2. The submit phase.
Students prepare their
work and submit it to PG.

3. The initial feedback
phase. Students are given
a certain period of time—
usually 3 to 7 days—to
make initial comments on
all the work This phase was instituted after
students complained that their reviewers often did
not comment on their work until it was too late to
revise it. Reviewers may assign a grade during this
period, but they are not required to do so.

4. The grading phase. During the next period—again
usually 3 to 7 days—students can revise their work
in response to reviewers’ comments, and reviewers
can comment on the revisions. At the end of this
give-and-take, reviewers are required to assign a

grade. This grade is one component of the author’s
final grade for the assignment.

5. The review of review phase. After the review period
is over, each student is presented with a set of
reviews to assess. The students grade each review
based on whether it was a careful and helpful review
of the submission. The grades the students receive
on their reviewing is then factored into their grade
for the assignment (usually 25% of their grade is
based on their reviewing). This phase was instituted

Figure 5. Grading rubric

52

after it was discovered that many students were
doing cursory reviews. As will be seen in Section 7,
this is a sufficient incentive to be careful in
reviewing.

6. The Web publishing phase (optional). PG creates a
Web page with links to the best student assignment
in each category. As described below, this can serve
as a useful study tool for future generations of
students.

6. How Peer Review Has Been Used
in Computer-Architecture Classes

There are opportunities to use peer review in almost
any course. One of the best opportunities is in evalu-
ating student writing. Prospective employers and thesis
advisors widely believe that technical students need
frequent opportunities to hone their writing skills. But
students need ample feedback in order to improve. Peer
review can give more copious feedback than instructor
or teaching-assistant review, for the simple reason that
each student has only a few submissions to review,
rather than several dozen. Moreover, students will be
writing for an audience of their peers later in their ca-
reers, so it is important for them to learn how to do this.

In computer-architecture courses, I have assigned
students to write reviews of papers from the technical
literature. I always assign two or three related papers
so that the students cannot simply summarize a paper,
but must instead integrate material learned from
different sources. For example, in my microarchitect-
ure course (using the Hennessy-Patterson text
Computer Architecture: A Quantitative Approach), I
assigned these papers on power-aware architectures:

“Energy-effective issue logic,” Daniele
Folegnani and Antonio Gonzalez, 28th
International Symposium on Computer
Architecture, July 2001, pp. 230-239.

“Drowsy caches: simple techniques for
reducing leakage power,” Krisztian Flautner,
Nam Sung Kim, Steve Martin, David Blaauw,
and Trevor Mudge 29th International
Symposium on Computer Architecture, May
2002, pp. 148-157.

I also have students do annotations of my lecture
notes, which are on line as PowerPoint or Word files
[13]. Each student signs up to annotate one of the
lectures during the semester. Depending on how many
students there are in the course, two to four annotations
of each lecture are produced. This consists of inserting

hyperlinks to other Web pages that define the term or
describe the topic I am covering. Typically the students
insert several dozen hyperlinks in each 75-minute lec-
ture. The best annotation of each lecture (the one with
the highest grade) is then made available to students in
the next semester. In this way, students in one semester
produce a resource that helps students in subsequent
semesters to fill in gaps in their understanding of the
material.

An excellent way to improve students’ understanding of
the material is to have them make up questions over
what they have studied. I have assigned two different
kinds of peer-reviewed questions. The first is madeup
homework problems. Students are asked to make up a
problem similar to those on the problem sets I assign
for homework (typically these are problems from the
textbook or similar problems). The students then peer-
review each other’s problems. Students learn by check-
ing each other’s work, and the problems they make up
are often good enough to be used for subsequent home-
works and exams in the course. For example, in the last
three times I’ve taught my parallel architecture course,
I’ve used 27 problems that were made up by students in
previous semesters. Given the fact that most instructors
say [14] it is either important or very important to in-
crease their supply of questions beyond what they now
have, the usefulness of this approach cannot be denied.

Students’ comprehension of lectures can be improved if
they are asked a set of questions about the lecture after
viewing it. In recent years it has become possible to
pose questions and score student answers via a Web
assessment and testing system like LON-CAPA [15],
Mallard [16], or WebAssign [17]. It would be a major
time commitment for the instructor personally to write a
set of questions on each lecture, but peer review makes
it possible for the students to write the questions them-
selves. Moreover, these questions come already “pre-
tested” by a small set of students—the peer evaluators.
Beginning in Fall 2002, I had students write a set of
machine-scorable questions over the material in a
specific lecture. This produced a “bank” of questions
that can be used to create daily quizzes for students in
later semesters. Ultimately, they could become a
resource for a Web-enhanced version of the textbook
we are using.

Computer architecture is a rather visual subject—one’s
comprehension is often improved by seeing a picture,
or a graphical simulation, of a topic or an algorithm.
Cache coherence and instruction-level parallelism are
examples of such topics. Since some students are gifted
in visual arts, I have allowed students to choose an
animation as one of their peer-reviewed assignments.
The best of their animations can then be incorporated
into future lectures.

53

Peer review can be used
for research papers.
Though I have not yet
assigned this in a
computer-architecture
course, in my opera-
ting-systems course, I
had each student select
a research topic from a
set that included topics
like “Scheduling in
Windows NT,” “Dead-
lock handling in Unix
or a particular flavor of
Unix,” and “Virtual
memory in Linux.”
Similar topics in arch-
itecture would be the
cache-coherence
algorithm, branch
predictor, or instruc-
tion-retirement ap-
proach used by a
particular architecture.

Assuming that students
have the requisite
computer skills, elec-
tronic peer review is as
widely applicable as
peer review in general.
The author has prev-
iously reported on its
use in computer science
[18] and ethics in com-
puting [19] courses.

Through peer review,
each class can stand on
the shoulders of prev-
ious classes, learning
the material with better
resources, and produ-
cing ever-better tools to
teach future classes. In
some cases, instead of
seeing large classes as a
burden, an instructor may come to prefer them because
they can create more formidable Web-based resources,
and do so without burdening the instructor and with
additional grading responsibility. This is an example of
“education engineering” [20]—developing methodol-
ogies and tools to create educational materials more
quickly and in greater volume, and disseminate them
without loss of quality to the increasing numbers of
students seeking a technologically up-to-date education.

7. Choosing Assignment Types

During the semester, I assign several peer-reviewed
assignments, and several types of peer-reviewed work.
I give the students a choice of which order to do the
assignments, subject to the constraint that there is a
limit to the number of students doing each type of
assignment for each deadline. This strategy is

Figure 6. Peer-reviewed assignments in parallel-architecture class

Figure 7. Peer-reviewed assignments in microarchitecture class

54

motivated by a desire to students doing all kinds of
assignment soon after each lecture, so that, e.g., while
Lecture 10 is fresh in their minds, some students will be
making up problems, some will be annotating, and
some will be creating animations. This insures that I
get problems, animations, etc. over a wide range of
lectures, rather than having all submissions concen-
trated on the lectures that were covered near the time an
assignment was announced.

Figures 6 and 7 show the assignments I recently gave in
my masters-level parallel-architecture class (CSC/ECE
506) and my combined senior/masters-level
microarchitecture class (ECE 463/521).

8. Student reaction

Students in both architecture classes were surveyed at
the beginning of January 2003. In CSC/ECE 506, 16 of
36 students responded, a rate of 44.4%. In ECE
463/521, 71 of 96 students responded, a rate of 74.0%.
The classes did not vary much in their reaction.

The comments provided by students indicate fairly
strong support for the concept of peer review, but they
take issue with three aspects of the way it was
implemented for these two courses.

• They thought they were hurt by the fact thbat a few
students did not do their reviews. In fact, the
version of PG used at the time did not deduct
points for students who failed to do their reviews.
During Fall 2002, PG was modified to do this
checking, and it will be in the system in coming
semesters. This should lead to more reliable
reviewing and therefore address this criticism.

• While generally supporting the idea of multiple
review deadlines, they sometimes submitted an
update that was never re-reviewed by their

reviewers. Currently, there is no guarantee that a
reviewer won’t complete reviewing in Round 2
before an author resubmits. The scheme will be
changed in Spring 2003 to have extra deadline, so
that there is a review period followed by a
resubmission period, followed by a second review
period. This should take care of the problem.

• A number of students objected to reviewers who
gave low grades but few if any suggestions on how
to improve. Now students are told, during the
review-of-review period, to downgrade reviewers
who deduct points without explaining why.

Note that, in general, students thought that reviews of
reviews were effective (3.9 on a scale of 5) in motiva-
ting careful reviews. This suggests that giving students
some guidance in how to evaluate reviews can motivate
students to review according to guidelines that they are
given.

9. Conclusion

Electronic peer review has proved to be an effective
technique for teaching computer architecture. It allows
the students to get experience writing for their peers,
and it facilitates the production of educational resources
that can be used by future classes, such as annotated
lecture notes, homework and test questions, and daily
machine-scorable quizzes. However, effective
implementation of peer review is tricky. Reviewers
must be given good guidance in how to review and
sufficient motivation to do a good job. Authors must be
given enough time to revise their work pursuant to
reviews, and reviewers must be given enough time to
complete their final pass. Our experience with PG has
given us many ideas on how to improve the process and
outcomes of peer review.

Table 1. Student Evaluation of PG

CSC/ECE
506

ECE
463/521

1 Peer review is helpful to the learning process. 3.63 3.41
2 I was satisfied with the reviews of my work. 3.53 3.47
3 The feedback I obtained from the reviews helped me to

improve my work. 3.60 3.49
4 Two review deadlines were imposed, one for the first review

and another for the final grade. Did this provide an adequate
opportunity for you as an author to respond to the comments
of your reviewers? 3.60 3.83

5 The knowledge that my reviews would be reviewed motivated
me to do a careful job of reviewing. 3.93 3.92

55

10. References

[1] The Deadalus Group, Daedalus Integrated Writing
Environment,
http://www.daedalus.com/info/overtext.html

[2] Downing, T. and Brown, I., "Learning by cooperative
publishing on the World-Wide Web," Active Learning 7,
1997, pp. 14-16.

[3] Earl, S. E., "Staff and peer assessment: Measuring an
individual’s contribution to group performance,"
Assessment and Evaluation in Higher Education 11,
1986, pp. 60-69.

[4] Ford, B. W., The effects of peer editing/grading on the
grammar-usage and theme-composition ability of college
freshmen. Dissertation Abstracts International, 33, 6687.

[5] Gehringer, Edward F., “Strategies and mechanisms for
electronic peer review,” Proc. Frontiers in Education
2000, Kansas City, October 18–21, 2000 (to appear).

[6] Lopez-Real, Francis and Chan, Yin-Ping Rita, "Peer
assessment of a group project in a primary mathematics
education course," Assessment and Evaluation in Higher
Education 24:1, March 1999, pp. 67-79.

[7] MacAlpine, J. M. K., "Improving and encouraging peer
assessment of student presentations, Assessment and
Evaluation in Higher Education 24:1, March 1999, pp.
15-25.

[8] Persons, Obeua S., “Factors influencing students’ peer
evaluations in cooperative learning,” Journal of Business
for Education, Mar.–Apr. 1998.

[9] Rada, R., Acquah, S., Baker, B., and Ramsey, P.,
"Collaborative learning and the MUCH System,"
Computers and Education 20, 1993, pp. 225-233.

[10] Rafiq, Y., & Fullerton, H., "Peer assessment of group
projects in civil engineering," Assessment and
Evaluation in Higher Education 21, 1996, pp. 69-81.

[11] Rushton, C., Ramsey, P., and Rada, R., "Peer assessment
in a collaborative hypermedia environment: A case-
study," Journal of Computer-Based Instruction 20, 1993,
pp. 75-80.

[12] University of Portsmouth, "Transferable peer
assessment," in National Council for Educational
Technology [ed.], Using information technology for
assessment, recording and reporting: Case study

[13] http://courses.ncsu.edu/ece521/common/lectures/notes.ht
ml

[14] Gehringer, E., “Reuse of homework and test questions:
When, why, and how to maintain security?” submitted to
ASEE 2003 Annual Conference, Educ. Res. & Methods
Division.

[15] The Learning Online Network with CAPA,
http://www.lon-capa.org.

[16] Mallard: Asynchronous Learning on the Web,
http://www.ews.uiuc.edu/Mallard/.

[17] WebAssign, http://webassign.net.

[18] Gehringer, E., “Peer review and peer grading in
computer-science courses,” SIGCSE 2001: Thirty-
Second Technical Symposium on Computer Science
Education,” Charlotte, Feb. 21–25, 2001, pp. 139–143.

[19] Gehringer, E., “Building an Ethics in Computing
Website using peer review,” 2001 ASEE Annual
Conference and Exposition, Session 1461.

[20] Gehringer, E., "A Web-Based Computer Architecture
Course Database," 1999 ASEE Annual Conference and
Exposition, Session 3232.

56

Laboratory Options for the Computer Science Major
Christopher Vickery

Tamara Blain
Queens College of CUNY

Computer Science and Computer Engineering programs typically converge on the Dynamic-Static Interface (DSI)
from opposite directions. Computer Science (CS) introduces students to system architecture and organization so
they can have a better appreciation for the mechanisms that make their software work, whereas Computer Engineer-
ing (CE) introduces students to software design so they can have a better appreciation for the software that will be
using the hardware systems they design. Mindful of this distinction between CS and CE, we chronicle the efforts of
our CS department to capitalize on current trends in the design and implementation of digital systems to extend our
students’ expertise in this area. We summarize the current curriculum in our department, present a survey of the
language options we have explored for evolving our curriculum, and conclude with a brief description of the labora-
tory environment we have adopted, which is centered on the Handel-C hardware implementation language.

1 Introduction
Computer Science and Computer Engineering curricula
have traditionally brought significantly different per-
spectives to bear on what to cover and how to teach
computer architecture, the point where the two disci-
plines meet. Broadly speaking, the CS students bring
good software skills to their architecture courses,
whereas the CE students bring stronger circuit design
skills to theirs. The distinction carries over to the de-
sign of digital systems in industry, where a software
team and a separate engineering team typically work in
parallel during the development of a new product
(codesign), with software/hardware integration occur-
ring late in the development cycle.

But the inexorable advance of circuit complexity has
caused the traditional engineer/programmer dichotomy
to start to break down. We are not talking here about
shifting the dynamic-static interface [23, 25] for a par-
ticular system design, nor about the dual roles individu-
als might play in a design effort. Rather, we are
responding to changes in the way digital systems are
developed due to changes in the functionality of pro-
grammable logic devices (FPGAs in particular) and the
software tools used to develop systems using them.

Ours is a Computer Science department in a liberal arts
college. There is no engineering department on cam-
pus. Although the university encourages cooperation
among its member colleges, the fact remains that the
closest CE courses available to our students are a 90-
minute subway ride away from us. In this context of
CS isolated from CE, this paper reports on the options
we have considered as we adjust our curriculum to pro-
vide our undergraduate students with a better under-
standing of the principles and practices of
implementing digital architectures.

2 Context: A CS Department
Our undergraduate curriculum prepares students in the
broad areas of i)software design and implementation, ii)
formal methods, iii) hardware design, and iv) applica-
tions, in roughly that order of emphasis. Our offerings
in the “hardware design” area include a course in as-
sembly language and basic logic design, and a second
course that covers additional logic design and an intro-
duction to computer architecture. We have used a
number of textbooks for these courses over the years,
never finding ones that both students and faculty found
completely suitable. The current text for both courses
is by Murdocca and Heuring [22].

Our curriculum also includes a “Hardware Laboratory”
course, which has not been offered in recent years.
This course was developed in the days of SSI and MSI
integrated circuits and dropped by the wayside as simu-
lators have allowed us to develop a similar degree of
mastery to the old lab course without requiring the stu-
dents to spend time in the lab itself. Thus, the closest
our students have come to a hardware laboratory ex-
perience for the past several years has been through
simulation assignments in the two courses mentioned
above. The student edition of CircuitMaker [2] has
served our purposes in this regard, although the free
version must be installed only on the students’ personal
computers, not in college laboratory facilities.

Four years ago, we received NSF funding [16] to revise
our curriculum to use HDLs to give our students a more
realistic view of circuit design technologies. Our stated
goals were, “to give all of our students some knowledge
of the methods that are used in designing modern digi-
tal circuits [and] to provide those students who are in-
terested with hands-on experience in designing and
using digital logic as a method of teaching them about
computer architecture.”

57

At the time we prepared our grant proposal, VHDL
seemed to be the natural vehicle for introducing CS
students to logic design, leveraging their existing soft-
ware skills to introduce them to hardware design tech-
niques. There were several textbooks based on VHDL
available, it was an IEEE Standard, and seemed gener-
ally well suited to our needs. Although Verilog also
become an IEEE Standard in 1995, at the time of our
grant proposal, VHDL seemed like the most straight-
forward way to go. Since then, there has been a good
deal of foment in the CAD world, propelled by the need
for tools to adapt to the ever-increasing complexity of
digital devices. What follows is a survey of the evolv-
ing software development options we have seen.

3 Laboratory Options
A first question CS departments have to answer in
planning instruction in digital design is whether to fo-
cus on simulation only, or to have the students target
actual hardware devices. A second question is whether
to use commercial development tools or instructional
software. Once those questions are resolved, the issues
of software and (if hardware devices are targeted) pro-
totyping platforms need to be addressed.

3.1.1 Simulation or Hardware?
Simulation is a critical step in developing new hardware
designs, but in an instructional environment, simulation
can arguably be the end step in a student’s lab experi-
ence.

There are several arguments for using only simulation
for introducing CS students to the design of digital sys-
tems:

Cost. Except for the computers to run the simula-
tions, a relatively abundant commodity, simulation
avoids the overhead and costs of purchasing and
maintaining prototyping equipment and instrumen-
tation for a laboratory.

Ease of debugging. In addition to avoiding the
issues associated with bad connections and failed
components, simulation provides a software view of
the system under development which is not only
more familiar to CS students, but also more flexible
than hardware in terms of allowing students to visu-
alize and locate problems in their designs.

Simplicity. Development tools for hardware im-
plementations need to provide a richer feature set
than instructional simulations. The result can be
that students need to spend more effort learning to
use the tool than studying the simulations.

On the other hand, implementing actual circuits can be
much more motivating than just running “yet another
program.”

We have not had good luck with most of the student-
oriented simulators for logic design that are available at
low or no cost. Many had problems with reliable
schematic entry, and many have had unnecessarily poor
user interfaces. The student edition of the CircuitMaker
schematic entry and simulation software from Altium
cited above has been the best we have found so far [2].
Compared to a textbook-only presentation, it’s far supe-
rior. But it limits the size of the designs students can
implement, cannot be installed in departmental labs for
free, and it doesn’t provide a tie-in to actual hardware
implementation.

Another option for those graduates who become inter-
ested in chip design is to send them to commercially
available short courses that teach digital IC or systems
design, ECAD, or hardware/software codesign. But the
danger in these courses is that there is “insufficient time
to address any topic in the depth required by students to
gain proper insight into the subject area”. Thus these
courses may not adequately provide them with the skill
set necessary for designing and implementing complex
distributed embedded systems and Systems on Chip
(SOCs) [12]. And, of course, this option begs the ques-
tion of what to do in the context of a university curricu-
lum.

The gamut of options available for implementing cir-
cuits in hardware is extremely broad, ranging from in-
expensive breadboards with SSI and MSI ICs
connected by jumper wires to industrial-grade prototyp-
ing systems used in the development of commercial
ASIC designs at costs that are prohibitively high for
virtually all instructional purposes. FPGA-based de-
velopment systems strike a middle ground between
these two extremes, and are particularly well suited to
instructional laboratories. The boards are self-
contained units requiring no assembly on the part of the
student, although expansion headers are normally avail-
able for customized projects. Student designs are pre-
pared and simulated on PCs, and downloaded to the
prototyping board through a serial or parallel cable.
The use of reprogrammable FPGAs as the implementa-
tion target gives students a development cycle familiar
to them familiar from the software development world:
edit, compile, debug.

Major FPGA vendors, notably Altera and Xilinx, pro-
vide inexpensive or free student versions of their com-
mercial tools for FPGA development suitable for use
with a variety of prototyping boards from companies
such as Xess and Digilent. An inexpensive package
available from Altera’s University Program, for exam-
ple, includes a prototyping board with a 20,000 gate

58

FPGA, several LEDs, displays, and switches mounted
on the board, and I/O connectors for a mouse and VGA
display. This kit comes packaged with a good tutorial
volume [17] featuring a number of interesting projects
students can do. The kit includes a student edition of
Altera’s MAX+Plus development software, which in-
cludes schematic, waveform, and HDL text editors for
design entry. It should be noted, however, that this kit
uses a relatively small FPGA by today’s standards, (not
large enough to implement a full CPU) and that the
MAX+Plus software does not provide the same func-
tionality as Altera’s Quartus toolchain. Systems of this
type are more appropriate for introductory logic design
laboratories rather than CS Computer Architecture
courses, where students need to explore architectural
design parameters.

Hardware Description Languages (HDLs), most com-
monly VHDL and/or Verilog, are the most commonly
used means for entering designs for platforms like those
discussed so far. But today’s FPGA devices can have
millions of gates instead of tens of thousands, providing
architecture students with hardware targets rich enough
to support investigations into topics as advanced as
pipelining, cache design, and multiprocessor communi-
cation, not just basic logic design. Furthermore HDL
programming is evolving to deal with the complexity of
these newer devices. We review some of these lan-
guages below. An appealing alternative to working
with an HDL or one of its derivatives, at least for CS
students who are approaching the DSI from the soft-
ware side, is to use a language based on a traditional
High Level Programming Language (HLL). After our
survey HDLs and their derivatives, we will turn our
attention to Handel-C, a hardware implementation lan-
guage based on C that we are adopting for use by our
CS majors.

4 HDLs and Their Derivatives

4.1.1 Verilog and VHDL
Hardware design is dominated by the use of Verilog
and VHDL. They are most powerful as gate-level im-
plementation languages [1][3]. VHDL allows a multi-
tude of language or user-defined data types, which may
mean confusing conversion functions needed to convert
objects from one type to the other. All of the logical
operators, NAND, NOR, XOR, etc, are included in
VHDL but separate constructs, typically defined using
the VITAL language, must be used to define cell primi-
tives of ASIC and FPGA libraries. VHDL offers a
great deal of flexibility in terms of its abundance of
permissible coding styles. It allows for concurrent syn-
chronization schemes, such as semaphores. VHDL is
better suited than Verilog to handle very complex de-

signs. It is relatively weaker in lower level designs but
superior in higher level and system level designs, which
results in slower simulations. Its wealth of constructs,
attributes, and types make VHDL a good language for
design and verification [7]. It is strongly typed and
there are many ways to model the same circuit, features
which make it more robust and powerful than Verilog
but also more complex. This complexity means it is
more difficult to understand and use.

Verilog has adopted many of VHDL’s features, thus
Verilog is moving towards increasing complexity as
well [7]. Verilog is used for high-speed gate-level and
register-level circuit descriptions, fast IC modeling and
RTL simulation, easy synthesis, and test applications
[9]. Gate simulations in Verilog are 10x to 100x faster
than the same simulations in VHDL, which means
shorter time to verify designs [8]. Compared to VHDL,
Verilog data types are simple, easy to use and geared
towards modeling hardware structure as opposed to
abstract modeling. Because it is simpler, Verilog is
easier to learn. On a Verilog vs. VHDL debate forum,
an engineer who knows both languages cites: “If you
were just taught Verilog syntax, you're in trouble. If
you were taught syntax with guidelines, and warned
about legal Verilog constructs that should never be
used, you can gain expertise in half the time it takes to
become proficient in VHDL [8].” Because of its back-
ground as an interpretive language, there are no librar-
ies in Verilog whereas VHDL stores compiled entities,
architectures, packages, and configurations. Verilog
was originally developed with gate-level modeling in
mind, and so has very good constructs for modeling at
this level and for modeling cell primitives of ASIC and
FPGA libraries. For this reason, students may find Ver-
ilog more digestible than VHDL at first. Because it is
geared towards lower level modeling, it is faster in
simulations and effective synthesis. It lacks, however,
constructs needed for system level specifications. Ver-
ilog’s simple, intuitive and effective way of describing
digital circuits for modeling, simulation, and analysis
purposes make it very popular in the industry.

4.1.2 ESL Design
There is a movement towards system level modeling,
also called electronic system level (ESL) design. This
is the design of an electronic product at the conceptual
level, including hardware/software codesign; design
partitioning, and specification writing [20]. It demands
being able to describe requirements and functions inde-
pendently of implementation, and being able to talk
about interfaces and protocols without describing the
actual hardware [19]. Verilog is neither object-oriented
nor strongly typed, which makes it cumbersome for
system level design. Also, the previously attractive
flexibility of its syntax can lead to difficult to detect

59

errors. Neither Verilog nor VHDL provides the syntax
or semantics to describe a product at the system level
[20]. The trend of RTL engineers moving up in ab-
straction and systems engineer moving down, as well as
the fact that both Verilog and VHDL have shortcom-
ings in the requirements of ESL design, has necessi-
tated the need for either a new language, or the
extension of an existing language to bridge the gap be-
tween specification and implementation. The new topic
of debate is the question of which language is right for
ESL design [20].

4.1.3 Extended HDLs
Superlog is an extension of Verilog that includes fea-
tures that allow a more abstract description of an elec-
tronic system [20]. While most of the semantic
elements added were borrowed from VHDL, it retains
most of the features of Verilog, including support for
hierarchy, events, timing, concurrency, and multi-
valued logic [6]. Superlog’s major technical advan-
tages over VHDL are a clean and powerful interface to
C that allows hardware/software codesign, and C-based
constructs for system design and decomposition [1]. It
borrows useful features from C and Java, including
support for dynamic processes, recursion, arrays, and
pointers. It also includes support for communicating
processes with interfaces, protocol definition, state ma-
chines, and queuing. It has been estimated that Super-
log needs one half to one third the number of lines of
code to describe a function as Verilog at the same ab-
straction level, and Superlog can go much higher in
abstraction [6].

System Verilog. A radically revised version of Verilog
was presented at the 2001 International HDL Confer-
ence [15]. These changes represent a move towards an
even higher level of abstraction for the language and an
extension to its capability to verify large designs. Sys-
temVerilog is a blend of Verilog, C/C++, and Superlog
that allows module connections at a high level of ab-
straction [15]. Verilog currently allows the connection
of one module to another only through module ports,
which can be tedious. SystemVerilog introduces inter-
faces which makes it possible to begin a design without
first establishing all the module connections. C-
language constructs, such as globals, are another addi-
tion. In Verilog, only modules and primitive names can
be global. SystemVerilog allows global variables and
functions. SystemVerilog borrows abstract data types
from C, such as ‘bit’, ‘char’, ‘int’, and ‘logic’, which
provide more versatility then the existing ‘reg’ and ‘net’
types and allows C/C++ code to be included directly in
Verilog models and verification routines. Also in-
cluded is an assertion construct, similar to VHDL’s,
intended to do away with proprietary assertion lan-
guages. Because there’s much in Superlog that is not

part of SystemVerilog, Superlog will remain a superset
of SystemVerilog. With its new additions, SystemVer-
ilog may remove some of the impetus for C-language
design, at least for RTL chip designers. The question of
whether or not vendors will create tools to support Sys-
temVerilog remains to be seen. [15]

4.1.4 HLL Pros and Cons
Teaching system level design in a High Level Language
(HLL) is well suited to students with limited electronics
or CAD backgrounds and are unfamiliar with hardware
concepts such as signals, voltages, and details of the
clock. By starting with either Handel-C or SystemC,
hardware/software codesign becomes more accessible
to students whose initial programming experience will
most likely be C, C++, or Java rather than assembly
language [12]. It exposes the students to concurrency,
parallelism, software-to-hardware mapping, pipelining,
and computer architectures as well programming prin-
ciples [11]. In Handel-C, for example, each assignment
statement takes one clock cycle and each expression
evaluation takes no clock cycles, which makes it easy to
reason about the number of clock cycles required to
execute the code. This relationship encourages efficient
compact code form a hardware perspective [11].

However, there is a risk in HLL-based design for the
student who already has a software mindset. Specify-
ing hardware using an HDL is not programming, but
rather the building of hardware and arrays of gates.
Applying general purpose programming tactics to an
HDL too often makes too many gates and highly ineffi-
cient chip and logic layouts [21].

There are other shortcomings to the HLL approach.
One is that it is hard to integrate outside IP with any
hardware designed this way. This is due to the fact that
close examination of compiler-generated circuits re-
veals little of their purpose or about how they were
generated. Therefore, the “hooks” into the circuitry are
not readily apparent. The obfuscated nature of the
compiler generated circuits also makes it nearly impos-
sible to hand optimize any of these circuits. These
problems stem from the fact that the original HLL on
which these new languages are based either cannot ex-
press parallelism, or their concepts of memory, meth-
ods, and objects map poorly onto real hardware. Thus
the new languages are forced to include tools that in-
clude the necessary attributes, but at the expense of
generating clean hardware. But as one industry expert
points out, “elegance of implementation has never tri-
umphed over timesaving hacks. Mnemonics overtook
opcodes, compilers overtook assembly, and HDLs over-
took schematics. Each time, the old guard maligned the
inefficiency of the automated tools vs. the craftsman-

60

ship of their methods; but each time automation carried
the day [26].”

Many ASIC or FPGA based products include a mixture
of algorithmic processing most readily expressed in an
HLL and other sets of operations most efficiently im-
plemented directly in gates. FPGAs accommodate
these designs by providing CPU cores that can be
drawn from a library and implemented in the logic fab-
ric of the FPGA as well as the emergence of devices
such as Xilinx’ Virtex II Pro which include one or even
multiple hard CPU cores embedded directly in the de-
vice itself. In systems such as these, use of an HLL
based implementation language provides a good fit for
implementing the entire job [24].

An increasing amount of system functionality is ex-
pressed in embedded software; synthesis and layout are
linked into one process, and the typical hardware de-
signer is forced by complexity to work at a high level
[14]. S/he would use the ultimate design system, where
you wouldn’t even care what goes into the hardware or
software; you’d write C/C++ code and everything else
would just happen under the hood because of an intelli-
gent C/C++ compiler [1]. According to some industry
experts, this future may present itself in 5 to 10 years,
and those whose career paths extend that far would do
well to anticipate it [14].

4.1.5 C Based Languages
SystemC. SystemC is an open source language that is
more a structured class library than a language. An ar-
gument for SystemC is that the C language lacks the
object-oriented facilities that some complex system
designs require [19]. SystemC was developed to sup-
port system level design. Its class libraries add hard-
ware design-specific modeling constructs that increase
the power of the language to meet the needs of hard-
ware design [3]. The class libraries provide data types
appropriate for fixed-point arithmetic, communication
channels, which behave like pieces of wire (signals),
and modules to break down a design into smaller parts.
In addition, the class library contains a simulation ker-
nel - a piece of code that models the passing of time,
and calls functions to calculate their outputs whenever
their inputs change [10]. The syntax is simple and
close enough to C++ that students should find it easily
digestible.

SystemC partially addresses the problem that C lan-
guage design presents by creating a number of classes
that mimic hardware primitives and time-domain events
[20]. Although at present it offers only modeling sup-
port, SystemC is moving towards broader capabilities in
synthesis [5]. Future versions of the class library will
be extended to cover modeling of operating systems, to

support the development of models of embedded soft-
ware [10].

The major drawback of SystemC is the need to convert
a C/C++ based description to Verilog or VHDL in order
to synthesize it [20]. The problem is that there is not
yet a working behavioral synthesis tool available for
commercial use that can accept C++ as it’s input lan-
guage. The conversion process is currently a manual
decomposition of the design until the designer gets to a
low enough point of abstraction such that a commer-
cially available translator allows the use of RTL synthe-
sis. This process, even if done automatically, is prone
to errors that are difficult to find [19].

5 Handel-C
Handel-C [4] is both a subset and a superset of conven-
tional C. It does not include functional recursion, float-
ing-point data, or any of the Standard C runtime library
functions for I/O or string operations. However, its
integer type is augmented with a rich set of operators
and declarations for field widths, a par construct for
expressing parallelism, semaphores and communication
channels as primitives, and multiple main() functions,
each with its own clock [12]. Because it is a variation
on C rather than on C++, Handel-C is closer to the
hardware than SystemC [18].

Handel-C provides a rich set of code structures includ-
ing functions, arrays of functions, inline functions,
macro procedures, and macro expressions. These facili-
ties allow the student to explore time-space tradeoffs in
a design. Handel-C is not tied to any particular family
of target devices, although it is clearly aimed at FPGA
development in general [13].

The Handel-C development environment supports cycle
accurate simulation, allowing students to see multiple
statements being executed in parallel using a debugging
user interface fully reminiscent of traditional software
IDEs. Compiling generates an industry standard
(EDIF) netlist, which is then imported into the FPGA
vendor’s toolkit, where VHDL or Verilog based mod-
ules can be integrated and simulated with the Handel-C
part of the design if desired. The vendor’s tools then
perform place and route, and generate a bit stream for
downloading to the target device. [26].

Handel-C appears to be an ideal development language
for CS students with limited experience in hardware
design. But adopting it for laboratory use introduces
tradeoffs that need to be considered. In particular, pro-
totyping kits that take full advantage of the language’s
ability to generate complex systems can add considera-
bly to the cost of laboratory seats. For example, one
such kit is the RC200 from Celoxica, which includes a
standalone prototyping board with a 1M gate Xilinx

61

FPGA, audio, video, networking, and memory subsys-
tems and peripherals such as a camera and touchscreen.
Fully equipped, this kit costs as much as a complete
midrange PC.

6 Conclusion
Trying to evaluate software development toolchains
and/or target platforms can be as daunting a task as
trying to track emerging trends in design languages.
With the recent emergence of FPGA devices so power-
ful and fast they challenge the one-time undisputed
supremacy of ASICS for high-end designs, inexpensive
FPGA-based systems, such as those available from
Xess and Digilent, emerge as appealing vehicles for CS
programs interested in offering students exposure to
mainstream technologies of the day. And the main
FPGA vendors, such as Altera and Xilinx provide stu-
dent versions of their development platforms on very
reasonable terms for universities.

But logic design using VHDL or Verilog is not as at-
tractive an option for CS students as C-based develop-
ment languages. We found the Handel-C development
environment from Celoxica Ltd. particularly appealing.
Hardware is specified in Handel-C, and the resulting
netlist is then imported into an FPGA project (using
Altera or Xilinx tools, depending on the target), where
HDL modules, including IP cores, can be integrated if
desired. While inexpensive prototyping kits are avail-
able that provide support for logic designs of modest
complexity, we believe the options possible using Han-
del-C and more complex prototyping platforms like
Celoxica’s RC200 are more suitable for a CS laboratory
in computer architecture.

We are in the process of setting up a CS laboratory
based on Handel-C and RC200 development kits and
will be offering the first class using the lab during the
Fall 2003 semester. A major challenge for us is to de-
velop a set of laboratory exercises that guide students in
the effective use of this complex environment in a
meaningful way. We look forward to sharing our ex-
periences.

7 References
[1] Aldec, Inc. Evita: Advanced Verilog Tutorial
with Applications. www.aldec.com/Downloads.

[2] Altium Ltd. CircuitMaker Student Edition.
www.circuitmaker.com.

[3] Bartlett, Joan. “The case for SystemC”.
EEDesign. 7 March 2003.

[4] Celoxica Ltd. Handel-C Language Reference
Manual. Document Number RM-1003-3.0. 2002.

[5] Clark, Peter. “IP99: Designers see little need
to move away from HDLs”. EE Times. 4 Nov. 1999.

[6] Clark, Peter. “Startup to field next-generation
design language”. EE Times. 31 May. 1999.

[7] Cohen, Ben. Verification Guild. Vol. 1, No.
17. 14 Aug. 2000. janick.bergeron.com/guild.

[8] Cummings, Clifford E. Verification Guild.
Vol. 1, No. 17. 14 Aug. 2000. jan-
ick.bergeron.com/guild.

[9] Davidmann, Simon. “It’s time for a rethinking
of system-on-a-chip design”. EE Times. 25 Oct. 1999.

[10] Doulos Ltd. A Brief introduction to SystemC.
www.doulos.com/knowhow/systemc_guide/tutorial/intr
oduction.

[11] Downtown, A.C., Fleury, M., Self, R. P.,
Sangwine, S. J., and Noakes, P. D. Hardware/Software
Co-Design: A Short Course for Unbelievers.
www.celoxica.com/technical_library/files/”CEL-
CUPACPGENHardware Software Co-Design - A short
Course For Unbelievers-01002.pdf.”

[12] Downtown, A.C., Fleury, R. P., and Noakes,
P. D. Future directions in computer architectures cur-
ricula: Silicon compilation for hardware/software co-
design.
www.essex.ac.uk/ese/research/mma_lab/Handelc/21CC
omputer.pdf.

[13] Gaffar, A. A. “A Survey on the Handel-C
Language” Surprise Project 1999.
www.iis.ee.ic.ac.uk/~frank/surp99/article1/amag97

[14] Goering, Richard. “Rank and file don’t like
C”. EE Times. 15 Nov. 1999.

[15] Goering, Richard. “Standardization nears for
next-generation Verilog”. EE Times. 14 Nov. 2001.

[16] Goodman, S. G. and Vickery, C. A Laboratory
for Computer Organization and Architecture. NSF
DUE-9950364, 1999.

[17] Hamblin, J. O. and Furman, M. D. Rapid Pro-
totyping of Digital Systems: A Tutorial Approach.
Kluwer, 2001.

[18] Hammes, Jeffrey P. A High Level, Algo-
rithmic Programming Language and Compiler for Re-
configurable Systems.
www.cs.colostate.edu/cameron/Publications/hammes_e
nregle.pdf.

[19] Moretti, Gabe. “Get a handle on design lan-
guages”. EDN Magazine. 5 July 2002.

[20] Moretti, Gabe. “System-level design merits a
closer look.” EDN Magazine. 21 Feb. 2002

62

[21] Motorsabbath. Hardware design in JHDL.
www.slashdot.org, 16 Jan. 2002.

[22] Murdocca, M. J. and Heuring, V. P. Princi-
ples of Computer Architecture. Prentice Hall, 2000.

[23] Patt, Y. and Patel, S. Introduction to Digital
Systems. McGraw-Hill, 2001.

[24] Prophet, Graham. “System-level design lan-
guages: to C or not to C?” EDN Europe. 14 Oct. 1999.

[25] Shen, J. P. and Lipasti, M. H. Modern Proces-
sor Design. McGraw-Hill, 2003.

[26] Turley, Jim. “The Death of Hardware Engi-
neering”. Embedded.com. 28 Feb. 2002.

63

Activating Computer Architecture with Classroom Presenter
Beth Simon† Richard Anderson* Steven Wolfman*

†Math & Computer Science, U. of San Diego
San Diego, CA 92110
bsimon@sandiego.edu

*Computer Science & Engineering, U. of Washington
Seattle, WA 98195-2350

{anderson,wolf}@cs.washington.edu

Abstract
In this paper we discuss our experiences using a Tablet PC-
based presentation system in an undergraduate computer
architecture class. The system allowed us to integrate
PowerPoint slides with high quality pen-based writing and
to separate the instructor's view of the materials from the
students’ view. This allowed a more natural and interactive
development of class concepts and content.

The system that we used was Classroom Presenter which
was developed at University of Washington and Microsoft
Research. The system has received substantial use at
University of Washington, being used in approximately 15
large courses since Autumn 2002. The successful
deployment at the University of San Diego in a small
undergraduate course is interesting since the developers of
the system viewed Classroom Presenter as most appropriate
for large lectures and for distance courses. The deployment
at the University of San Diego explored new ground in
usage of the system. In this work we present an overview
of the system and discuss particular uses and advantages of
the system in an undergraduate architecture class setting.

1. Introduction
Presentation technology impacts the structure and delivery
of lectures. Different technologies support different
instruction styles and provide various mechanisms for
engaging an audience. In university classrooms
predominant presentation technologies include blackboards,
whiteboards, overhead projectors, and computers with data
projectors. Each of these technologies has properties that
may make them more or less suitable to specific instructors
or course material. In particular, delivering a computer-
based lecture has both advantages and disadvantages.
Advantages include the ability to structure material in
advance, prepare high-quality examples and illustrations,
and to share and re-use material[3]. But, these advantages
come at the expense of flexibility during presentation –
especially in an undergraduate architecture class where
we’d like students to experience for themselves the
tradeoffs inherent in the microarchitecture design process.

Classroom Presenter (hereafter, Presenter) is a system
developed and deployed by the University of Washington
as part of the Conference XP conferencing experience
project. The immediate goal of Presenter is to provide an
improvement to the computer-based lecturing environment
– offering, at a minimum, the benefits of prepared slides
and extemporaneous writing and diagramming. In the long

term, Presenter aims to enhance learning and teaching
through new technologies and software for the classroom.
The key components of the current system are the use of an
instructor Tablet PC (with high-quality inking support),
wireless network connectivity, and a data projector.

In this paper we focus on the presentation issues found in an
undergraduate Patterson and Hennessey-style architecture
course. We show how the interactive nature of inking on
empty (or intentionally incomplete) slides allows students
to participate in the microarchitecture design process, rather
than having it presented to them “fait accompli”.
Specifically, we investigate Presenter’s ability to support
the in-class development and modification of datapath
diagrams and active student participation in problem
solving. Additionally, we preview future Presenter support
for sharing tablet-based in-class group work.

Figure 1. A screenshot of the instructor’s Tablet PC
while using Presenter. The slide is minimized to provide
extra writing space. The filmstrip is along the left of the
figure allowing preview of and navigation among slides.
(CSE582, Univ. of Washington, Autumn 2002)

The rest of the paper is organized as follows. In Section 2
we describe the Presenter system and note three key
features that arose in its design process. In Section 3 we
describe an initial offering of an undergraduate computer
architecture class utilizing Presenter for class lecturing in a
small classroom setting (10-15 students). In Section 4 we
describe upcoming Presenter features that empower
additional classroom interaction and group activities in both
the small and large classroom environments. Section 5
describes related work and Section 6 concludes.

64

2. Presenter System
Figure 2 depicts the basic architecture of the Presenter
system. The instructor loads a presentation composed of an
ordered deck of slides onto a mobile tablet computer. She
can write on the slides with the tablet’s pen and control the
presentation—advancing slides, changing pen color, etc.—
using controls displayed on the tablet. The tablet wirelessly
transmits control information and writing to a computer
driving a data projector, synchronously displaying slides
and writing to the entire class. In a distance class, a remote
site would have its own computer and projector controlled
by the tablet via the Internet.

Figure 2. The architecture of Presenter in the
classroom. An instructor controls the presentation from
a mobile Tablet PC. The tablet is wirelessly connected
to a machine driving the display of the presentation on a
data projector.

Presenter transmits and displays writing and control
information in real-time over an 802.11b wireless network.
In-class use of Presenter has been tested with most known
brands of Tablet computers currently available (including
Acer, Toshiba, HP/Compaq, Fujitsu, NEC, and Motion
Computing models). The machine controlling the data
projector must either have an internet connection or be
connected to the same wireless network as the instructor’s
tablet (no live internet connection required). Assuming a
classroom has already been outfitted with a computer and
data projector, using Presenter would cost about $2000 for
the Tablet PC and $150 for a wireless base station. Both of
these could be shared across classes, or the tablet could be
used as a personal machine by an instructor.

Three key features of Presenter and, we believe, for lecture
presentation systems in general, emerged from our in-class
experiences with our system. First, Presenter integrates
writing directly on top of slides. The instructor can use the

tablet pen to write notes or diagrams directly over the slide,
as shown in Figure 1. The instructor can also shrink the
visible slide and writing, creating new writing space around
the slide. The ability to write in the context of the slides
maintains the connection between extemporaneous writing
and the prepared content. Sustaining this link enhances the
slides’ value as a support structure for communication – a
“mediating artifact” [16] − in the classroom. Additionally,
if the instructor has even more to say, she can jump to a
“whiteboard” slide to work an impromptu sample problem
or continue discussion beyond the context of the prepared
slide.

Second, writing in Presenter is represented with high-
quality ink, which renders in real-time and looks and feels
natural. This is enabled by the high pen sampling rates and
resolution on recent Tablet PCs and Tablet PC software
support for smooth curves and pressure-sensitive line
thickness. High-quality writing allows full use of the
available resolution on the display, increases instructor
comfort with writing and eases student comprehension of
hand-written text.

Finally, Presenter separates the instructor view of the
presentation from the projected display that students see.
Actually, Presenter supports three viewing modes:
instructor (seen on the “primary” tablet), projector, and
student. Instructor and projector modes are described here,
while student mode will be further discussed in Section 4.

The instructor uses the instructor view on her tablet while
the projector machine ships the display view to the public
screen. This separation allows the instructor view to
include a wide array of tools—such as pen color and style
controls—and information displays—such as the filmstrip
pane on the left side of the display, showing miniatures of
the slides immediately preceding and following the current
slide. Furthermore, with no tether to the data projector, the
tablet can go completely wireless, giving the instructor
freedom to control her presentation from anywhere in the
classroom or even to pass the tablet to a student.

Additionally, Presenter supports “instructor mode objects”
− text or drawings visible only on the instructor tablet view
and not shown on the projector view. These objects can
contain reminders, notes, or hints to the instructor of issues
to discuss in relation to the slide or questions to ask the
students. These objects can also encapsulate information
that the students will be asked to actively derive in-class –
in contrast to more traditional static “here’s the resulting
answer” treatments. Pictures, graphs, or diagrams can be
annotated with circles, lines, or other drawing objects that
the instructor can “draw over” in class to highlight
important areas or show modifications.

One unique capability of the Presenter system is that it
facilitates the creation of an artifact from a given lecture.
Inked notes created in class can be saved in conjunction

65

with the slides from the class and viewed at a later time.
This has implications for allowing instructors to review, in
greater detail, the material and discussions covered in a
given class period. Students could also be given access to
inked notes from class discussions, at the discretion of the
instructor.

3. Presenter for Undergraduate Architecture
We discuss one semester’s experimentation using Presenter
in a small-class undergraduate Patterson and Hennessey-
style computer architecture class. We give examples of the
various usages of Presenter system components in creating
a more interactive lecture while still maintaining the
organization and re-use features of an electronic
presentation. Many of these examples echo recommended
practices of modern pedagogy, e.g., active learning [9] and
Classroom Assessment Techniques [2]. A survey of the
class found strong student approval of the Tablet PC-based
system, despite occasional technical issues involved with
beta-testing.

Inking-Over for Emphasis, Notes to Mention
Perhaps the most often used form of interaction enabled by
the Presenter system is a simple circling or highlighting of a
word or phrase on a slide. This can allow the instructor to
visibly drive home an important concept or emphasize a
term students should understand. In Figure 3(a) we see a
projector view that might result after a discussion of
execution time versus throughput. These circles were
added at the same time a “verbal clue” was given to the
students – showing emphasis or distinguishing from
previously discussed concepts. Additionally, instructor-
only objects (shown in Figure 3(b) in rounded text boxes)
can remind the instructor of additional comments to make
or simply encourage the instructor to prompt the class for a
verbal response.

Another instructor using Presenter combined inking for
emphasis with a simple feature of Presenter to develop a
new discussion style. His discussion of a slide would focus
on certain features of the material (emphasizing these in ink
with highlights, circles, or other marks), next he would
erase the ink with the “chalkboard eraser” button in
Presenter’s top toolbar, and then he would discuss the slide
again from a different perspective and with different
markings. The rapid erase feature enabled this new style
and tempo of discussion.

Culling Participation from the Class
Next we show an example where the class will be shown
two graphs and asked to propose various conclusions that
can be drawn. Figure 4(a) shows the instructor view before
class discussion, Figure 4(b) shows the instructor view after

Figure 3(a). Projector view with key points emphasized
via circling and highlighting. Additional notes at
bottom of screen emphasize what was, hopefully, made
clear in verbal lecture.

Figure 3(b). Instructor view after discussion. The
rounded text boxes are instructor objects, not seen on
the projected display. These objects can hold reminders
of points to emphasize in class.

class discussion, and Figure 4(c) shows the projector view
after discussion.

This slide wraps up a discussion of benchmarking as a
manner of evaluating performance. Students are
encouraged to recall a previous concept then apply it to the
given problem. Specifically, students are asked to explain
why the doubling of the clock rate doesn’t produce a
doubling of performance (circles on the left graph remind
the instructor where to draw student attention). Instructor
notes at the bottom of the slide prompt the instructor to
write, one more time, the ET = IC * CPI * CT equation and
provide a color-coded reminder of the main topics students
should bring up.

66

Figure 4(a). Instructor view before discussion. The
“hand drawn” circles and lines, arrow, and text box are
instructor objects – not seen on projected slide.

Figure 4(b) Instructor view after discussion. In-class
inking has occurred overtop of “instructor object”
inking as issues are raised in class. Some “notes” at
bottom have been “copied” for students.

Figure 4(c). Projector view after discussion. This is
what the students see.

Note that, in class, the instructor can “draw over” the circles
and arrow instructor objects – either at the direction of an
astute student, or as a hint to the class if no suggestion is
forthcoming. If a student brings up some issue other than
those “expected” by the instructor, the instructor is free to
explore that topic, ignoring his own notes. If, after that
discussion concludes, he wants to return to a “clean”
version of the slide to discuss the planned topics, he can
erase all ink at once using the chalkboard eraser icon on the
top toolbar. If he wants to perform a partial erase of certain
words, the pencil eraser erases ink one stroke at a time.

Interactive, But Planned, Problem Solving
Figure 5 shows one example of interactive problem solving
where the students can get a first experience with applying
Amdahl’s Law. In order to be sure to cover all the “basics”,
there are instructor notes to encourage the instructor to fully
set up the equation and to relieve him of the need to
concentrate on simple math. A separate instructor note
shows an additional calculation that can be discussed or
omitted as time allows. A scroll bar on the instructor view
allows the instructor to “scroll up” the ink (as on an
overhead projector) of the Amdahl’s Law solution to
provide additional room to solve the speedup equation
(alternately, he can shrink the current slide to ¾ size and
show additional work around the edges). In Figure 5(b), we
see the projector version after the instructor has “scrolled
up” some inked notes to solve an additional problem.

Providing Unexpectedly Needed Review
“You all know how to convert from decimal to binary don’t
you?” When it becomes clear that one has misjudged the
background knowledge of the class, Presenter allows one to
easily “break out” of a planned lecture sequence. This can
be done either by jumping to a backup slide (perhaps stored
at the end of the slide deck and accessed through the
filmstrip view) or to a blank “whiteboard” slide to provide a
quick review or to recommend a reference for student use.

Summarizing What We’ve Learned
Presenter can add new life to the usual “here’s what’s
important from Chapter X” conclusion slides. Simply
converting current summary bullets to an instructor object
(not seen by students) can force students to take notes as the
instructor “overwrites” key topics or allow the class to
brainstorm their opinions of the most important material as
in the “Empty Outline” Classroom Assessment Technique
[2] pp.138-141.

Adding an Instruction to a Single Cycle Datapath
The freedom of instructor mode objects (rather than just
instructor mode text) is especially useful when explaining
and modifying charts, graphs, or diagrams. The slide
shown in Figure 6 was developed as an in-class review of a
homework assignment where several students had produced
confused answers. They had been asked to modify the

67

Figure 5(a). Instructor view where a pre-planned
practice problem has been solved in-class. Text in
bubbles are instructor objects and do not appear on
projected slide. Instructor can “trace over” instructor
object equations to avoid skipping through solution too
quickly. Notes in bottom instructor object bubble can
be discussed or skipped as time permits.

Figure 5(b). Projector view of 5(a) after “scrolling up”
first equation work to make room for new discussion.
This new ink addresses the bottom instructor object
bubble in 5(a).
MIPS single cycle datapath (developed in Patterson and
Hennessey, chapter 5) to support only lw and sw
instructions that had no displacement. In Figure 6(a) we
see the instructor view before discussion. The datapath has
been “drawn over” with instructor object lines in different
colors. Notes are scattered around the slide as reminders of
the format of the instruction and as a guide to an ordering
for discussing the datapath modifications. In class, we see
(Figure 6(b)) that the instructor has inked over the
instructor objects as discussion of the problem progresses.
Figure 6(c) shows the much less cluttered projected version.

4. Upcoming Features and Future Work

Additional Instructor Control Features
Currently, all instructor notes must fit within the available
real estate on the slide, and the built-in notes from
PowerPoint are ignored. The on-slide notes offer extra
flexibility—shapes, figures, etc. as notes rather than just
text; however, off-slide notes would ease space
management issues for instructors. In future versions, an
optional extra pane will display PowerPoint notes.

Furthermore, instructor notes are currently distinguished
from public slide elements by a shadow beneath the note,
allowing instructors to quickly determine which slide
elements students see and which are invisible to them.
However, some instructors prefer other mechanisms such as
making instructor object text all one color, or using only the
rounded box shape for notes. We plan to support a broader
range of mechanisms for distinguishing instructor notes.

Instructor-Only Inking
Future plans for “instructor-only” inking would allow
instructors to make private inked notes during class (visible
only on the instructor tablet). These notes could reflect
anything that pops into mind in class that the instructor
wants to remember afterward. Possibilities include
comments on the efficacy of certain slides, points of
confusion, and possible homework or test problem ideas.

Tablets for Student Interaction in the Small Classroom
While in-class group problem solving is often viewed by
students as very instructional, instructors often feel the class
time spent on these group activities comes at the cost of
lecture presentation time. Specifically, if students are to
benefit from the evaluation of other students’ work, then
one must ask different groups to present their results to the
class in some form (at the board, etc.). This adds yet more
time to the group activity.

Future versions of Presenter will support an additional,
“student view” that will be wirelessly transmitted to Tablet
PCs scattered throughout the class. While not every student
may have a tablet, for the purposes of group work, each
group (or a subset of groups) can be given a tablet on which
to record their work. The instructor tablet will have a
method of previewing the various student tablet screens,
and selecting one to be projected by the data projector. In
this way, a group can “show their work” instantaneously.
The group can be asked to describe their work, possibly
using additional ink (circling, etc) to emphasize points in
the discussion.

Some of the things students will be able do include working
on a “blank screen”, solving a problem proposed on a slide,
modifying a datapath diagram, or filling in an empty cache.

68

Figure 6(a). Instructor view before discussion. Many
instructor objects are present including text boxes, lines
drawn over the datapath, and values for control lines.

Figure 6(c). Projector view of modifications to support
lw without displacement. Pen color changed to show
which parts of the datapath had to be altered to
accommodate the new instruction.

Wireless Data Projectors
While current implementations require a separate machine
to drive the data projector (so as not to tether down the
instructor), future versions may discard this requirement
through the use of wirelessly enabled data projectors.
While still in their infancy, wireless data projectors could
set up a connection with the instructor tablet to project only
the projector view version of a slide.

Figure 6(b). Instructor view after discussion. Datapath
lines have been “inked over” in the order recommended
in an instructor object text note. The class was asked to
supply control line values, which could be “checked”
against instructor note values.

5. Related Work
There have been a number of related efforts to deploy
technology in the classroom to enhance learning, and to
capture the lecture for later playback. eClassroom
(formerly Classroom 2000) [1] is a premier project for
incorporating technology in the classroom to facilitate note
taking, capture, playback, and presentation. While
eClassroom includes some effort to improve presentation
facilities for the instructor, our work focuses directly on this
aspect. Classroom Presenter also differs from eClassroom
in that our goal is to deploy in a general data projector-
enabled classroom, as opposed to basing our design on a
dedicated facility. The Pebbles system [10] was one of the
first projects to explore steering a presentation from
wireless devices. Our emphasis on writing as part of
presentation relates to the broad literature on pen
computing and electronic whiteboards [11]. In this stage of
our work we are not attempting a semantic interpretation of
the ink, as in the Back of the Envelope project [6]. Work
on zoomable interfaces has relevance to our work, both in

69

suggesting alternative ways to view the display surface and
the presentation [5].

The importance of actively involving students in classroom
activities at regular intervals is supported by studies on
student attention spans [2][13]. There has been some
educational work attempting to evaluate the use of
PowerPoint in university classrooms [7][8][14]. The
overall results have been ambiguous with respect to
learning outcomes, but the papers have some perceptive
comments on the use of PowerPoint and indicate a
favorable student response. There has also been an active
debate on the lecture style supported by slides with
polemics on all sides [15][12][4].

6. Conclusions
This work describes the Classroom Presenter lecture
presentation system developed at the University of
Washington. We highlight some of the specific utilities of
the system in the context on an undergraduate computer
architecture course. The main benefits of Presenter stem
from wireless, high-quality inking over slides during lecture
combined with a separation of views between instructor and
projector. These features have enabled high levels of
spontaneity and interactivity in an undergraduate
architecture class. Specifically, the ability to use instructor-
only visible objects to annotate diagrams and graphs can
encourage the instructor to develop designs jointly with the
class rather than presenting them as problems already
solved.

References
[1]Abowd, G. D. Classroom 2000: an experiment with the
instrumentation of a living educational environment. IBM
Systems Journal, 38(4), 1999.
[2]Angelo, Thomas A. and Cross, K. Patricia. Classroom
Assessment Techniques. Jossey-Bass Publishers, San
Francisco, 1993.
[3]Bligh, D. A. What’s the use of lectures? Jossey-Bass
Publishers, San Francisco, 2000.

[4]Creed, Tom. PowerPoint No, Cyberspace Yes. The National
Teaching & Learning Forum, 1997,
http://www.ntlf.com/html/sf/cyberspace.htm

[5]Good, Lance and Bederson, Benjamin B. CounterPoint:
Creating Jazzy Interactive Presentations. HCIL Tech Report
#2001-03. University of Maryland, College Park, MD
20742, 2001.

[6]Gross, Mark D., and Do, Ellen Yi-Luen. Drawing on the
Back of an Envelope: a framework for interacting with
application programs by freehand drawing. Computers &
Graphics, 24 pp. 835-849, 2000.

[7]Hozl, J. Twelve tips for effective PowerPoint
presentations for the technologically challenged. Medical
Teacher, 19, 175-179, 1997.

[8] Lowry, R. B. Electronic presentation of lectures -- effect upon
student performance. University Chemistry Education, 3 (1), 18-
21. 1999.

[9]McConnell, Jeffrey J. Active Learning and Its Use in Computer
Science. SIGCSE/SIGCUE Conference on Integrating
Technology into Computer Science Education (Barcelona, Spain
June 2-5, 1996), also published as SIGCSE Bulletin, Vol. 28
Special Issue, 1996, pp. 52-54.

[10]Myers, Brad A. and Stiel, Brad A. and Gargiulo,
Robert. Collaboration using multiple PDAs connected to a
PC. In Proceedings of CSCW’98: ACM Conference on
Computer-Supported Cooperative Work, pages 285–294,
November 1998.
[11]Mynatt, E., Igarashi, T., Edwards, W. K., and LaMarca
A. Flatland: new dimensions in office whiteboards.
Proceedings of ACM Human Factors in Computing (CHI
99). New Your: ACM, pp 346-353. 1999.

[12]Rocklin, Tom. PowerPoint is Not Evil! National
Teaching and Learning Forum Newsletter, 1997.
http://www.ntlf.com/html/sf/notevil.htm

[13]Stuart, John and Rutherford, R. J. Medical Student
Concentration During Lectures. The Lancet, September 2,
1978, pp. 514-516.

[14]Szabo, Atilla and Hastings, Nigel, Using IT in the
undergraduate classroom: should we replace the blackboard
with PowerPoint? Computers & Education, 35 175-187,
2000.

[15]Tufte, E., "The Cognitive Style of PowerPoint",
www.edwardtufte.com, 2003.

[16]Vygotsky, L.S. Mind in Society. Cambridge, MA:
Harvard University Press, 1978.

Appendix: Classroom Presenter Feature List
The Filmstrip. The Filmstrip is a “preview strip” of slides
surrounding the currently displayed slide. The filmstrip
facilitates non-linear slide navigation order, which can
allow faculty to react to the development of ideas and
discussion in class.

Filmstrip preview. Another benefit of the filmstrip view is
to allow the instructor to make appropriate concluding
comments based on the content of the next slide to be
displayed. Filmstrip preview makes this more viable by
showing an instructor-visible “zoomed in” version of a
filmstrip slide when the tablet pen is “waved” over a
portion of the filmstrip.

The Toolbar. Back and forward buttons are placed at both
ends to allow easy movement one slide in either direction of
the current slide. Four inking colors are supported as well
as two ink “tips”: a square and a round tip. The next three
buttons select “regular pen” inking, highlighting, or stroke-
based erasing. The following three buttons control the
view: full slide, ¾ size slide, or blank whiteboard (you can

70

jump from the whiteboard back to your current slide by
clicking on the “full slide” button). The chalkboard eraser
erases all ink on the current slide. An upcoming feature
will be “undo” which can undo the last selection
(particularly important for the full erase).

ACKNOWLEDGMENTS: We thank the University of
Washington CS Education and Educational Technology
Group for their support and insights.

71

The Liberty Simulation Environment as a Pedagogical Tool

Jason Blome Manish Vachharajani Neil Vachharajani David I. August
Departments of Computer Science and Electrical Engineering

Princeton University
{blome, manishv, nvachhar, august}@cs.princeton.edu

Abstract

This paper describes how the Liberty Simulation Envi-
ronment (LSE) and its graphical visualizer can be used in a
computer architecture course. LSE allows for the rapid con-
struction of simulators from models that resemble the struc-
ture of hardware. By using and modifying LSE models, stu-
dents can develop a solid understanding of and learn to rea-
son about computer architecture. Since LSE models are also
relatively easy to modify, the tool can be used as the basis
of meaningful assignments, allowing students to explore a
variety of microarchitectural concepts on their own. In lec-
tures where block diagrams are typically displayed, LSE’s
visualizer can be used instead to not only show block dia-
grams, but to demonstrate the machine in action. As a result,
LSE can ease the burden of conveying complex microarchi-
tectural design concepts, greatly improving the depth of un-
derstanding a computer architecture course provides.

1. Introduction
The goal of a computer architecture course is to teach

students how microprocessor hardware operates and to give
them an opportunity to experiment with microprocessor de-
sign. To do this, the students need to learn about existing mi-
croarchitecture design techniques ranging from simple con-
cepts such as pipelining to advanced organizations such as
out-of-order machines including features such as specula-
tion, branch prediction, and register renaming.

Unfortunately for the student, the expanse of the com-
puter architecture design space is vast and complex. Within
a single design, each component plays an important role in
facilitating the correct and efficient execution of a program,
however, correct execution is only ensured when interaction
of all the components is carefully orchestrated. These com-
ponent interactions are often subtle making it difficult to
convey enough information in lecture to foster a deep un-
derstanding.

To remedy this, courses are augmented with periodic as-
signments that encourage the students to discover some of
the complexities on their own. Typically, these assignments
involve drawing pipeline sketches and evaluating block di-
agrams. Unfortunately, these assignments do little to foster
an understanding of the complex dynamic interactions and
instead reinforce the students’ understanding of the archi-

tecture’s high-level structure.
An approach that leads to a much better understanding of

a microarchitecture is to have the students design the hard-
ware for a machine and run programs on it in a simulated
environment. This way students will discover, on their own,
the intricacies of how different parts of the architecture in-
teract to facilitate the correct program behavior. The insight
gained from this process of design, test, and debugging is
often deeper than any knowledge gained in lecture. Unfor-
tunately, specifying the hardware, even in a synthesizable
hardware description language like VHDL or Verilog (as
opposed to a gate level description), can take many weeks.
As a result, when this method is employed, it is typically
limited to a single course-length project. While a project of
this type is better than no design experience, it only provides
insights about the techniques employed in one particular de-
sign, which is often a small subset of the techniques taught
in the class.

A promising alternative to specifying the hardware is us-
ing, building, and modifying higher-level simulation tools
for the microarchitecture. Assignments could consist of ask-
ing students to modify a simulator to incorporate new behav-
ior. Unfortunately, current simulation environments are too
difficult to modify to make this practical for periodic home-
work assignments. Furthermore, the most common method
of building a simulator (coding it by hand in C or C++) does
little to convey the actual hardware structure or the func-
tionality of its components [1]. Consequently the process of
reasoning about and building the simulator is very different
from the way in which a computer architect would design a
microprocessor thus making it unsuitable as a pedagogical
tool. Students should think like architects, not like simulator
writers.

To be effective for use in assignments, the simulation sys-
tem should have simulator descriptions that reflect the hard-
ware being modeled. Components used in modeling should
correspond to hardware blocks and they should be intercon-
nected via communication channels like hardware blocks.
On the other hand the simulation environment should not
impose, upon the student, the burdens that hardware descrip-
tion languages like VHDL or Verilog often do. Instead, it
should allow rapid construction and modification of models
so that working with an executable model can be a part of

72

regular assignments.
LSE is a simulator construction tool that meets the

requirements outlined above. In this paper we give an
overview of the Liberty Simulation Environment (LSE) and
describe how it can be used in a course to enhance student
understanding of computer architecture. In the next section
we describe the Liberty Simulation Environment. In Sec-
tion 3 we describe the LSE visualizer and how it visualizes
the LSE descriptions. Then, in Section 4 we give specific
examples of how to use LSE in a course. Finally, we con-
clude in Section 5.

2. The Liberty Simulation Environment

The Liberty Simulation Environment (LSE) is an excel-
lent tool for students to learn about and explore microarchi-
tecture. LSE descriptions resemble the hardware they model
and are easy to modify. This section describes enough about
LSE so that it is possible to understand how LSE can be used
for instructional purposes. Details of how LSE enables rapid
specification while still resembling the modeled hardware as
well as details of all the concepts described in this section
can be found elsewhere [1].

As shown in Figure 1, LSE consists of three main parts:
the Liberty Structural Specification Language (LSS), a com-
ponent library, and the Liberty Simulator Constructor. To
use the system, the user describes a machine by specifying,
in the LSS language, a set of interconnected instances of
components. These components, calledmodules, are typi-
cally taken from the module library although custom mod-
ules can be created if necessary. The user then invokes the
simulator constructor, and the constructor reads the specifi-
cation and the code from the module library and builds an
executable simulator for the described machine. This sec-
tion will discuss in more detail the properties of modules,
module communication, and collection of data from a run
of the simulator executable.

2.1. Modules

Each module is a parameterized template that is instan-
tiated in an LSS machine description to create amodule in-
stance (or simply instance). Much like components in hard-
ware design, modules can be leaves of a hierarchy, or they
can be constructed hierarchically by grouping collections
of other interconnected module instances. Like hardware
blocks, module instances execute concurrently [2] and com-
municate with other instances by passing data across com-
munication channels.

However, unlike hardware design, the details of instance
behavior (hierarchical or leaf) can be customized via module
parameters. When a user instantiates a module in a machine
description, the user specifies values for the parameters de-
clared by the module (or accepts the default value specified
by the module). These parameters are used to customize
the behavior of the module instance for the particular de-

LSS
Machine

Description

Liberty
Simulator

Constructor

Module

Simulator

Executable
C Code or

Library

Figure 1: Overview of main LSE components.

scription. Parameters can control simple configuration op-
tions (e.g. the cache line size or whether a 2-level branch
predictor has a global or per-address predictor table). Fur-
ther, parameters can also be used to allow control of algo-
rithms allowing users to customize complex behavior. For
example, the branch predictor has a parameter that allows
users to override the predictor state-machine code to imple-
ment a custom predictor if none of the provided predictor
options is suitable. Parameters can even control the instanti-
ation of hardware structures in lower levels of the hierarchy.

2.2. Communication Channels

Modules specify a communication interface for module
instances by declaringports. Each instance may have one or
moreport instances per port. Each port instance is a com-
munication channel and may have exactly one value sent on
it per cycle. For example, the register file module may have
an input port on which register read requests are made. Each
port instance would accept one register read request per cy-
cle. If two register reads per cycle were needed, there would
be 2 port instances of the register read request port, and two
instances of the output port on which these read requests
were returned. Another example is thetee module which
is used to fanout a given value to multiple receivers. The
tee duplicates the value received on its input port instances
on multiple output port instances.

Users specify how modules communicate by intercon-
necting port instances from one module to port instances
on the same or other modules. While details regarding
ports and the communication system can be found in [1],
other work describes LSE’s execution and messaging se-
mantics [2].

2.3. Data Collection

To allow modularity and flexibility even for data collec-
tion, LSE provides a data collection mechanism that avoids

73

Figure 2: Simple source to sink description.

the pitfalls of embedding instrumentation code directly into
the simulator code. Each LSE module may declare that
its instances emit certainevents during the execution of the
simulator. Each event includes data related to the event and
a dynamic identifier (dynID) that represents the system level
object that caused the event to occur. Orthogonal to the dec-
laration of events, users may associate, with any event, a
data collector which captures the event and records data or
computes statistics.

For example, a branch predictor module may emit an
event every time it makes a prediction. The event could in-
clude information about what prediction was made and what
predictor made that prediction. The dynID for the event
would identify the dynamic instruction instance that caused
the prediction to occur. A user could hook this event with a
data collector to count the number of predictions made or to
calculate a branch misprediction rate for example.

In addition to recording data or computing statistics, the
LSE visualizer (described in Section 3) hooks these events
to visualize the flow of data through the machine at runtime.
An example of this is described in Section 4.

3. Visualization
The LSE Visualizer provides a means to view LSS de-

scriptions as block diagrams. In addition, the LSE Visual-
izer provides an interface for compiling an LSS design into
an executable simulator, and it provides tools for observing,
via animation, the execution of the simulator. In this section
we will describe the visualizer in enough detail so that it is
possible to understand the discussion of how the visualizer
can be used in a computer architecture course as described
in Section 4.

Figure 2 is an LSE Visualizer screenshot showing the
block diagram of a simple system. In this system, a mod-
ule instance, called Generator, sends data to another module
instance, called Blackhole, which discards it. Generator is
an instance of thedatasource module, and Blackhole is
an instance of thesink module. Both thedatasource
andsink modules are provided by the LSE module library.
During simulator execution, a unit of data will be transfered
from Generator to Blackhole in each and every cycle until
the simulation is terminated manually.

In Figure 2 the module instances are represented by the
large boxes, while their ports are represented by the small
boxes. The single line between the box labeleddest and
the box labeledsrc represents a connection between the
respective port instances on the module instances Generator

Figure 3: Simple x + x description.

and Blackhole.
Figure 3 shows a screenshot of a slightly more sophis-

ticated machine configuration. Here, thedatasource
module instantiated as Generator is connected to an instance
of thetee module named Tee. The Tee in turn fans out the
data originating from Generator into port instances of ports
op1 andop2 of the instance ALU. ALU then computes the
sum of the values passed into it on these port instances and
sends the result to Blackhole to be thrown out. The function
of this machine is simply to compute the value ofx + x,
wherex is the value generated by Generator, and then throw
away the result.

In this diagram, there are a few interesting features to
note. First, notice that Tee’sdest port is connected twice,
meaning that there are two port instances of thedest port.
Also notice that the Tee and ALU instances have been given
custom shapes for their visual representation. In general
each module instance can be given a custom shape. This
feature allows the visualized modules to be recognizable
on sight instead of having each module be a nondescript
blue rectangle. We use this feature in the next section to
make the machine visualizations resemble diagrams found
in computer architecture textbooks.

In addition to the above schematic rendering features, the
visualizer can interface the generated simulator executable
and display execution information as it occurs. This is use-
ful for following instructions as they flow through a pipeline
or observing the status of ports in the system. Screenshots
of the visualizer interacting with the generated simulator are
shown in the next section.

4. Applications

In this section, we will give examples of how LSE can
be used in lecture to illustrate computer architecture con-
cepts and how LSE can be used to formulate assignments
that allow students to explore the myriad of interactions be-
tween architectural techniques. All the examples are cen-
tered around a simple Tomasulo-style [3] machine that exe-
cutes the DLX [4] instruction set.

4.1. LSE in the Classroom

Standard presentation tools do a fine job of illustrating
the static aspects of a design. However, dynamic interac-
tions are generally only briefly described or illustrated with
static pipeline diagrams. The LSE system and its visualizer,
however, can demonstrate thedynamic behavior of the ma-

74

chine by displaying, over time, events produced by the ex-
ecutable machine model. In a lecture environment, this can
be used to show the flow of data and update of state through
the modeled architecture.

To illustrate this we will show a few screenshots of the
Visualizer showing the flow of instructions through a simple
Tomasulo-style pipeline. A screen shot of the Visualizer is
shown in Figure 4. Notice that the structure of the machine
is fairly obvious. The block labeledRegister File is
the register file, horizontally stacked tall vertical blocks are
the reservation stations, the ALU looks like an ALU, and
the shifter, LSU, and branch unit are clearly labeled. The
machine does not support precise exceptions or speculation
and so there is no need for a reorder buffer.

Figure 5 shows a screen shot of the visualizer displaying
a table showing instruction arrival at various stages in the
pipeline and reservation station occupancy of the Tomasulo-
style machine shown in Figure 4. This table is dynamically
updated with data from the running simulator.

In Figure 5 we can clearly see theor instruction that suc-
ceeds the jump instruction stall in the fetch stage starting at
cycle 5 while the machine resolves the branch (recall that
the sample Tomasulo-style machine does not support spec-
ulation). We can also see thesll instruction stuck in the
reservation station awaiting operands during cycle 3. In cy-
cle 4, we see thesll instruction issue to the EX stage but
subseqently lose arbitration for the common data forcing a
re-issue in cycle 5. The instruction once again loses arbi-
tration and re-issues in cycle 6 and finally writes back in
cycle 7.

The table is constructed by specifying the appropriate
data collectors in the simulator description. The visualizer
then monitors the output of these collectors to generate the
table as the simulator runs. The table is completely generic
and thus users of LSE may specify the column headings
and how the table entries get filled via the specific messages
emitted by the data collectors.

As discussed in the literature, the power of this kind of
demonstration is invaluable since both the static machine
structure and its dynamic behavior can be seen simultane-
ously [5]. With the Liberty Simulation Environment, these
demonstrations can easily be constructed for many different
types of machines so that students can easily understand the
differences in the architectural techniques presented.

4.2. LSE for Student Exploration

As was described in Section 1, designing and implement-
ing a machine with an RTL level description is too time con-
suming to do regularly throughout an architecture course.
On the other hand, block diagrams do little to cement un-
derstanding of the dynamic elements of an architecture. The
Liberty Simulation Environment, however, provides an ex-
cellent middle ground between hand-drawn hardware block
diagrams and RTL level descriptions. Regular assignments

can be given in which the student is required to modify an
existing configuration to produce a new configuration. For
example, students may be asked to modify a Tomasulo-style
machine that does not execute loads and stores to one that
does execute loads and stores in order, in 2 clock cycles.
As the following example will demonstrate, this problem is
certainly tractable for students in a week long assignment.

Figure 4, described earlier, shows a Tomasulo-style ma-
chine that does not execute loads and stores. Figure 6 shows
that same machine with a load store unit added. Adding this
load store unit is relatively straightforward.

First, the reservation station module needs to be aug-
mented to force instructions to be issued in order. This aug-
mented module will form the load-store issue queue (LSQ).
This hierarchical module, shown in Figure 7 is built by tak-
ing the reservation station module and connecting it so that
all the slots of the reservation station go to aserializer
module, calledserialize in the figure, followed by an
aligner module, calledalign. Theserialize and
align instances, combined with the default control seman-
tics in LSE, force instructions to come out of thealign in-
stance in order. Both theserializer andaligner are
available in the standard LSE module library, and the reser-
vation station is part of the original Tomasulo-style config-
uration.

Next, several additional module instances (created from
modules in the library) are connected to the output of the
LSQ and are used to extract the destination register (rd) from
the data output by the reservation station, compute the load
or store address, and generate the control signal that decides
if the request will be a read or write. The specific fields that
the module instance extracts and the function it performs
are specified via algorithmic parameters (discussed in Sec-
tion 2) provided by the modules.

The output of these module instances is then connected
to a latch to end the first cycle of memory instruction ex-
ecution. The output of this latch is then connected to the
request ports of the data memory. Another module instance
then combines the output of the data memory (generated for
load requests) with the destination register field from the
reservation station (arriving via the latch) and sends them
off to the common data bus arbiter.

All of these modifications were performed in a few hours.
Students moderately familiar with LSE should be able to
complete such an assignment fairly easily. Furthermore, in
the configuration just described, the default control seman-
tics in LSE would allow students to vary the latency of the
memory module (while keeping the initiation interval fixed
at 1) and have the load-store logic stall waiting for the mem-
ory. Students could then explore the merits of their own de-
sign in the presence of different core-memory latencies with
very little additional effort.

When used in this way, LSE enables instructors to give
regular assignments that require students to build executable

75

Figure 4: Simple Tomasulo-style pipeline that executes the DLX ISA.

Figure 5: Table showing instruction arrival and reservation station occupancy in a Tomasulo-style DLX machine

76

Figure 6: A Tomasulo-style DLX machine with a load-store capability.

77

Figure 7: Load-Store issue queue.

models to verify that their understanding of an architectural
concept is sufficient (i.e. the model runs programs cor-
rectly). The students can learn about most of the techniques
presented in class with hands-on projects, instead of only a
handful they would see by doing a single class project.

As a further example, students can explore machines not
described in lecture by having them add architectural mech-
anisms to existing designs. For example, students could be
asked to add rename logic to a scoreboarded machine before
discussing advanced scoreboarded machines. In this way
students can appreciate the relationship between renaming
and WAR hazards and why scoreboards stall in circum-
stances where Tomasulo’s machine does not. LSE makes
this kind of exploration feasible in week long assignments.

5. Conclusion
To understand computer architecture, students must un-

derstand thedynamic interactions of all the hardware com-
ponents in a microarchitecture. Unfortunately, conveying
the many subtleties of this interaction during lecture is diffi-
cult. For many students,static illustrations and assignments
do not build intuition about dynamic systems. Class projects
which require students to build RTL simulation models are
extremely useful, but the overhead in low-level model con-
struction and modification often limits the scope of concepts
explored. Modifying or writing a high-level simulator in a
sequential language such as C allows students to avoid get-
ting bogged down in irrelevant low-level hardware details,
but it does so by obscuring the model. Students spend much
of their time dealing with sequential language simulator is-
sues rather than thinking about computer architecture.

In this paper, we have shown that the Liberty Simula-
tion Environment (LSE) is an alternative to tools currently
used in lecture and take-home assignments. LSE’s simulator
description resembles hardware, allowing students to think
about hardware rather than simulator design issues. LSE
descriptions are relatively easy to modify and use, allow-
ing students to study the dynamic execution behavior of a
wide range of machines. Furthermore, the LSE Visualizer
improves LSE’s use as a pedagogical tool by tying this all

together with an easy to use dynamic and graphical visual-
ization system.

References
[1] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I.

August, “Microarchitectural exploration with Liberty,” inProceedings
of the 35th International Symposium on Microarchitecture, November
2002.

[2] D. Penry and D. I. August, “Optimizations for a simulator construction
system supporting reusable components,” inProceedings of the 40th
Design Automation Conference, June 2003.

[3] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of Research and Development, vol. 11,
pp. 25–33, January 1967.

[4] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quan-
tatative Approach. San Francisco, CA: Morgan Kaufmann, 1996.

[5] C. T. Weaver, E. Larson, and T. Austin, “Effective support of simula-
tion in computare architecture instruction,” inProceedings of the 2002
Workshop on Computer Architecture Education (WCAE), May 2002.

78

Multimedia components for the visualization of dynamic behavior
in computer architectures

Peter Marwedel, Birgit Sirocic
Dept. of Computer Science,

University of Dortmund,
44221 Dortmund, Germany
peter.marwedel@udo.edu

Abstract

Understanding modern processors requires a good
knowledge of the dynamic behavior of processors. Tra-
ditional media like books use text for describing the
dynamic behavior of processors. Visualization of this
behavior, however, is impossible, due to the static na-
ture of books. In this paper, we describe multime-
dia components for visualizing the dynamic behavior of
hardware structures, called RaVi (abbreviation for the
German equivalent of “computer architecture visualiza-
tion”). Available RaVi components1 include models of
a microcoded MIPS architecture, of a MIPS pipeline,
of scoreboarding, Tomasulo’s algorithm and the MESI
multiprocessor cache protocol.

1 Introduction

The presented project aims at facilitating understanding
the dynamics of modern processor architectures, thereby
overcoming an important limitation of books. Videos
tapes and video distribution techniques have made it
possible to show non-interactive media elements to stu-
dents. However, video tapes have to be accepted by
teachers and users on an “as-is” basis. It is not possi-
ble to use instruction streams other than those employed
for the production of the video. Also, it is not possi-
ble to modify hardware structures in order to see the ef-
fect of hardware changes on the dynamic behavior. In
short, videos are very inflexible and cannot provide in-
teractiveness (except the simple type of interactiveness
possible with DVDs).

Providing this interactiveness, however, is difficult,

1We gratefully acknowledge the funding of the RaVi-project
(which is a subproject of the SIMBA-project) by the German ministry
of research and development (BMBF).

since it requires the simulation of hardware structures.
This can be a challenging task which cannot be solved
within the time-frame available for preparing a course.
Why not just use available hardware simulators? These
simulators are frequently designed for optimum simu-
lation speed and complex design projects. Ease of use,
excellent visualization and portability have normally not
been top goals for simulator design. Also, powerful sim-
ulators are typically proprietary and come at high costs,
preventing their widespread deployment to classrooms
and into the hands of students.

Therefore, we tried to design RaVi models for the
simulation-based visualization of the dynamic behavior
of hardware architectures. In contrast to available mod-
els, emphasis is on visualization.

This paper is structured as follows: a short description
of related work is provided in section 2. Section 3 de-
scribes the multimedia units developed so far. Section 4
discusses some design consideration regarding the avail-
ability and access-ability to various groups of students.
Section 5 contains some of the results. The final section
comprises a conclusion.

2 Related work

Simulators provide information about the dynamic be-
havior of computing systems. Plenty of simulators are
available either commercially or in the form of public
domain tools. They have been used for decades already.
However, these simulators have hardly been designed
for class room use. For such use, the limited resolu-
tion of screens must be taken into account. These days,
it is also required that the simulators can be given into
the hands of students. Expensive commercial simula-
tors cannot be used for this reason. Also, feature-rich
simulators requiring special training are not appropri-
ate for this type of application. The target group for

79

this material includes first year students. It would be
impossible to teach these students how to use a hard-
ware description language: teaching the syntax of com-
plex languages and to use tools such as Modelsim [6]
would take too much time in a course which also has to
cover a number of other important computer engineering
subjects. The effort of generating models, for example
in VHDL, should not be underestimated. Hence, most
of the available simulators do not provide the required
functionality. Notable exceptions include the JCachesim
[1]. JCachesim is a simulatorfor cache architectures.
However, JCachesim focusses on generating quantita-
tive data (statistics etc.). In contrast, the work in this
paper focusses of giving insight into how computer sys-
tems work.

3 Available multimedia units

3.1 Microcoded version of MIPS

Architectural models capable of executing a reasonable
subset of some instruction set require a certain complex-
ity of the model. The program counter, main memory,
register file, ALU, control logic and a number of multi-
plexers all have to be included in the model. Otherwise,
it would be impossible to demonstrate how instructions
are executed. Many of these hardware components are
connected. According to our observation, it is typically
difficult for the students to understand how all the wires
in a computer architecture are used. Also, the function
of multiport memories seems to be a problem for stu-
dents grown-up with von-Neumann languages.

Courses on computer architecture typically follow the
sequence of Hennessy/Patterson’s book for undergradu-
ates [4]. Consequently, a microprogrammed version of
the MIPS-machine is the first hardware structure which
is introduced. It has to be introduced in such a way that
students are able to comprehend how it works. We have
therefore designed a multimedia unit highlighting the
paths which are used during a certain micro-step (see
fig. 1).

Just color-coding the values on the wires would lead to
an abundance in color-coding and it would be difficult
to find out, which of the lines are actually important.
Therefore, only those paths leading to non-redundant
inputs are marked. Lines printed in bold in fig. 1 cor-
respond to the paths used in the final state of thestore
word instruction. The address input of memoryMem is
driven by the computed effective address, as stored in
temporary registerT. The value stored is coming from
the register fileReg. General simulators would typically
not implement such a feature and would therefore create

unnecessary barriers for the students.

Experimentation with this architecture is possible. For
example, the contents of the register fileReg as well as
the contents of the main memoryMem can be changed.
A small dedicated assembler is provided such that as-
sembly language programs can be assembled and loaded
into the main memory.

Modifications of the wiring are possible, using the in-
tegrated schematic editor. A number of standard com-
ponents are provided. These include multiplexers, reg-
isters, memories and ALUs. Modifications using these
standard components can be done by the user without
any programming. Adding new components not yet
available in the library requires programming the behav-
ior of these components in Java, however. This possibil-
ity is rarely used, except by the designer of the multime-
dia units.

3.2 MIPS-Pipeline

The operation of the MIPS-pipeline is described in the
book by Hennessy and Patterson [4]. Several pages of
the book are used for showing the different states the
pipeline can be in. Nevertheless, this technique for ex-
plaining the operation of the pipeline has its limits: it is
difficult to imagine, which situations arise for other code
sequences. This is especially true for stall cycles. From
available descriptions, it is difficult to understand which
of the pipeline stages are stalled when.

Furthermore, it would be nice to use interactive elements
in education. For example, students can be motivated to
think about the behavior of the architectures by letting
them “play around” with it.

All this is possible with RaVi models of the pipeline.
There are essentially three models:

• The first model is a simple model without any by-
passing. It can be used to demonstrate the wrong
implementation of the instruction set.

• The second model includes bypassing, but does not
have a separate adder for branches. This model can
be used for demonstrating the advantage of bypass-
ing.

Also, this model implements two phase clocking.
Using appropriate color coding, it can be shown
that the register file is updated as a result of falling
clock edges.

The same model can be used to demonstrate the
problems with branches ifno special comparator
for the instruction fetch stage and no special adder
for calculating branch target addresses are added.
Large branch delay penalties can be shown.

80

Figure 1. Microprogrammed version of the MIPS machine (segment of a screenshot)

Figure 2. Segment from screen-shot from pipeline unit

• The third model includes the special hardware cir-
cuits for reducing branch delay penalties (see fig.
2).

All instructions are color-coded so that it is easy to see
how instructions propagate down the pipeline. Imple-
mented models support all major opcodes as well as mi-

81

nor opcodes in the register-to-register class (major op-
code 0). A full implementation of all opcodes as well
as exception handling is not consistent with the goal of
keeping things simple so that students understand the
models. Accordingly, function registers (likeEPC) are
not implemented. The same applies for special regis-
ters HI and LO. Irregular multiply instructions leaving
their results in these registers (e.g.mult) have been re-
placed by their more regular pseudo instruction counter-
parts supported by the MIPS assembler (e.g.mul). Oth-
erwise, too many hardware components would have to
be on the screen.

3.3 MESI-protocol for a single cache block

The MESI protocol is typically included in the educa-
tion of computer scientist in their third year. Accord-
ing to this protocol, single read requests for certain ad-
dresses cause the corresponding cache line to be in the
exclusive state. Subsequent reads by other processors
will cause the same cache line to be in the shared state.
Writes in one processor will set the state in other caches
to invalid. Due to its distributed nature, it is more diffi-
cult to understand than algorithms for mono-processors.
We have therefore developed two multimedia units help-
ing students to understand this protocol. The first unit
shows the behavior of just a single cache block, of which
copies may be available at four different machines (see
fig. 3). The three state finitestate machine used by Hen-
nessy/Patterson [5] is replaced by the commonly used
4-state FSM.

Figure 3. RaVi visualization of the MESI
protocol for a single block

By generating read and write requests, the lecturer or
the student can explain the behavior of these finite state

machines. We found that students realized much faster
that, once the shared state is reached, there is no way
back to theexclusive state (in hardware, there is usually
no signal which would allow going back to stateexclu-
sive except through stateinvalid).

3.4 MESI-protocol for the entire cache

After demonstrating the behavior of the four state MESI
FSM for a single block, we are typically explaining the
full MESI model for a number of cache blocks, also
including tag bits. Fig. 4 shows a screen-shot of that
model. Read and write requests can be generated in-
teractively. Addresses and data for all read and write
requests can be changed by using the context menue of
the processors (shown at the top).

We found that students were surprised about the behav-
ior of that model in case the same index bits but differ-
ent tag bits are used in accesses to the different caches.
Also, students did not expect the complexity of the op-
erations on the bus.

3.5 Scoreboarding

Scoreboarding is known as one of the early techniques
for increasing processor speeds. Due to the distributed
nature of the algorithm, we found that students had prob-
lems with understanding the algorithm exactly. In order
to change this situation, we have developed a multime-
dia unit for this algorithm as well. In order to let students
make experiments with the model, different instruction
streams can be used and the effect of the resulting paral-
lelism can be studied. Fig. 5 shows a screen-shot.

We found that the resolution of currently available pro-
jection equipment puts a tight constraint on the level of
detail that can be shown for this algorithm.

3.6 Tomasulo algorithm

The Tomasulo algorithm is a more advanced algorithm
for speeding up processor architectures. The Tomasulo
algorithm employs a more decentralized control, making
it even more difficult to understand the overall behav-
ior. The corresponding RaVi unit avoids this problem.
Again, the students can “play” around with different in-
struction streams and observethe behavior of the archi-
tecture. Functional components can be deleted by the
user (lecturer or student) and new components can be
added. No programming is required as long as standard
components are added.

82

Figure 4. Segment of a screen-shot from RaVi cache protocol unit (Memory omitted)

Figure 5. Screen-shot from RaVi scoreboard unit

83

4 Implementation aspects

4.1 Availability

The RaVi system is built on top of the HADES visual-
ization framework for computer structures [3]. HADES
is implemented in Java. The entire RaVi model follows
the object-oriented paradigm. Every RaVi component is
an instance of the corresponding hardware component
class.

Due to being implemented in Java, RaVi can be used
at a variety of platforms. We decided to make RaVi
freely available on the Internet in order to promote its
use. Initial versions of RaVi required a download of the
software. Current versions are available as an applet and
can be used without any software installation effort (pro-
vided Java is already installed). RaVi is available from
//ls12.cs.uni-dortmund.de/ravi.

4.2 Gender-specific aspects

One of the goals of RaVi is to motivate also female stu-
dents to study computer engineering. A number of con-
siderations (see e.g. Fisher et al. [2]) have been taken
into account during the design of RaVi:

• Before enterering the University, women typically
have less hands-on-experience with computers in
general and with computer engineering in particu-
lar, compared to most men.Therefore, a very care-
ful definition of all technical terms must be used in
the accompanying technical material.

• Educational material should avoid unjustified
stereotypic views of computer users. For example,
female computer users also include scientists and
not only secretaries (in contrast, for example, to the
cliparts provided by Microsoft).

4.3 Limitations

Simulation in the underlying HADES library is based
on a VHDL-like two-phase simulation of synchronous
architectures. Communication is based on explicit inter-
connections (which can be hidden on the screen). Simu-
lation is less suited for applications in which explicit in-
terconnections are difficult to use. Nevertheless, it was
possible to use this simulation approach for demonstrat-
ing search in binary trees. Visualization is focussing on
2D models. 3D models are beyond the scope of the cur-
rent approach.

5 Results

The RaVi project led to several results:

• We found that the generation of the multimedia
units required significantly more time than ex-
pected. Due to using HADES, first versions could
be designed rather quickly, requiring production ef-
forts of a few weeks at most. However, the use of
these units in the classroom led to requirements for
improving the units. Only almost perfect units can
be used in the classroom environments and given
into the hands of students. Fine tuning of the units
required as much work as their original design. A
total of about 2 person years have been spent on the
project so far.

• It is good scientific practice to try to measure by
how much the quality of teaching can be improved
by using the multimedia units. Following the ad-
vice by researchers from social sciences, we tried
to get quantitative information on the level of un-
derstanding achieved through the use of these units.
Even though we had two large groups of students
(about 200 each) which could be compared, no
quantitative conclusions could be drawn. A number
of other effects (date and time of the teaching, char-
acteristics of the students etc.) resulted in a wide
variation of the results and prevented any meaning-
ful conclusions. According to more recent advice
from an expert in the area [7], attempts to quan-
titatively measure the effect of multimedia-based
education are in fact bound to fail and a waste of
time. One cannot expect more than just qualitative
information on the improvements achieved. Ac-
cording to this qualitative information, the goals of
the project have been reached.

• Students really like the presented units and appre-
ciate their availability. They are typically highly
motivated trying out these units at home and ask
for download options. Also, colleagues typically
comment very positively on the availability of these
units. The most important argument is the added
value of the units. While online-versions of static
material provide only limited added value, if com-
pared to books, visualization of dynamic properties
adds a completely new quality.

• Visualization of the dynamic behavior has proven
being indeed one of the key technologies for im-
proving the teaching further and for exploiting
modern equipment.

• Simulation based on the HADES simulation frame-
work was found to be appropriate for various kinds

84

of digital circuits. While is was possible to use
HADES for visualizing algorithms like tree-search,
it is less appropriate of analog and time-continuous
simulations. Simulation speed is sufficient even in
applet-based versions of RaVi.

6 Conclusion

In the RaVi project, we have demonstrated how a defi-
ciency of classical media for teaching computer archi-
tecture can be removed. We have shown that the visual-
ization of computer architecture dynamics is appreciated
by the students and helps them to understand the sub-
jects. In general, RaVi units seem to improve the moti-
vation of students. Unfortunately, it seems to be impos-
sible to measure the effect of the new teaching aids on
the student’s success. In the future, we will be extended
to approach to other areas of computer engineering. For
example, we have started designing similar material to
complement a book on embedded system design, which
is currently being written at Dortmund.

References

[1] I. Branovic, R. Giargi, and A. Prete. Web-based training
on computer architecture: The case of jcachesim.Pro-
ceedings of the workshop on computer architecture edu-
cation, pages 56–60, 2002.

[2] A. Fisher and J. Mangolis. Unlocking the clubhouse.
SIGCSE bulletin, Vol. 34, no. 2, Women and Computing,
pages 79–83, 2002.

[3] N. Hendrich. A Java-based framework for simulation and
teaching.Proceedings of the 3rd European Workshop on
Microelectronics Education, pages 285–288, 2000.

[4] J. L. Hennessy and D. A. Patterson.Computer Organiza-
tion – The Hardware/Software Interface. Morgan Kauf-
mann Publishers Inc., 1995.

[5] J. L. Hennessy and D. A. Patterson.Computer Architec-
ture – A Quantitative Approach. Morgan Kaufmann Pub-
lishers Inc., 1996.

[6] Model Technology. home page.//www.model.com, 2003.
[7] C. Moreau. Universite de Compiegne.Oral communica-

tion, 2003.

85

Didactic Architectures and Simulator for Network Processor Learning

Henrique Cota de Freitas1, Carlos Augusto P. S. Martins2

Postgraduate Program in Electrical Engineering
Pontifical Catholic University of Minas Gerais, Brazil

cota@pucminas.br1, capsm@pucminas.br2

http://www.inf.pucminas.br/projetos/pad-r/r2np.html

Abstract

In our university, we are developing a project about
Reconfigurable Network Processors (RNP). There are
four important results: Reconfigurable CISC Network
Processor (RCNP) architecture, Reconfigurable RISC
Network Processor (R2NP) architecture, Network
Processor Simulator (NPSIM), and a performance
analytical model for the ISA (Instruction Set
Architecture). The architectures and the simulator are
not commercial products, but conceptual models. This
paper shows the main functionality of those four results
and the their applicability on the Network Processor
learning. As our Network Processor architectures and
simulator are simpler than commercial products, their
conceptual models can aid students to learn network
processors concepts, as a first step to understand other
complex architectures.

Keywords: Reconfigurable Network Processors,
Didactic Architectures and Simulator, Learning
Process.

1. Introduction

Until the 1990’s, network equipments used the
traditional general-purpose processor (GPP) to process
many types of packets and management services. The
main advantage was flexibility. The software was
capable to define many functions and applicability for
the GPP’s, but the performance was very harmed.

Another solution to solve the performance problem
was the use of dedicated hardware. Using Application
Specific Integrated Circuit (ASIC), the processing
speed increases enough, but the flexibility was harmed.

So, there are two very important features: flexibility
and performance. Nowadays, the Internet [28] is the
main type of network, and the Quality of Service (QoS)
is very important. For this reason, a best approach
between those two features is necessary in network
equipments. For example, a router is concentration
point or a bottleneck in a network. The flexibility to
process any kind of packets and the performance

(processing time and throughput) are essential features
that the Network Processor has to be capable to
implement.

Network processors [19,20] appeared during the
1990’s to replace some GPP’s and ASIC’s in network
equipments. These processors were developed using
architecture models like ASIP (Application Specific
Processor) and SoC (System-on-Chip) [29] adding to
RISC (Reduced Instruction Set Computing) [24]
technique for a better computing performance. These
processors have a dedicated ISA (Instruction Set
Architecture) model for network operations. Thus, the
instruction set and the architecture of Network
Processors are specific to execute typical operations in
a data communication network [28].

In Post-graduation Program in Electrical
Engineering, we have a project called RNP
(Reconfigurable Network Processor). The research goal
is the development of a conceptual model of network
processor using SoC and Reconfigurable Computing
[17] techniques to improve computing performance and
flexibility. The partial results are: Reconfigurable CISC
Network Processor (RCNP) architecture [10],
Reconfigurable RISC Network Processor (R2NP)
architecture [11], Network Processor Simulator
(NPSIM) [12,13] and the performance analytical model
for the ISA (between RCNP and R2NP). During this
paper, these four results will be presented.

Our main objective in this paper is to present
didactic models of Network Processor architectures and
a simulator to aid students to learn simple Network
Processor architecture concepts. This is a first step to
understand some details and complex features.

We searched for documents about words like
learning and didactic models. However, nothing related
with Network Processors was discovered. Thus, our
motivation is present a simple way to learn the main
features of Network Processors using didactic
architecture models and a simulation tool.

86

2. Network Processors Overview

In this section we will describe the state-of-the-art
of Network Processors. The main architecture features,
the main functionalities, some related researches and
companies.

The main logic blocks (figure 1) of a Network
Processor are:

Multiple RISC processors, co-processors or
programmable ASIC’s;
Dedicated hardware for network operations;
High speed of memory interface;
High speed of I/O interface;
General-purpose processors interface.

Each Network Processor has a typical architecture
and uses some or all blocks showed. A Network
Processor can use one RISC processor and co-
processors like the packet processors, or only multiple
RISC processors. If the SoC technique is used, possibly
dedicated hardwares like switching fabric and memory
can be in the architecture. However, GPP interface like
PCI and I/O interface always appear. It’s an important
detail, because a Network Processor needs to
communicate to other processors (to help in system
management) and the network (the main of
functionality).

Figure 1 – Architecture Reference

The main functions of a Network Processor are:
To analyze and classify the contents of head
fields of a packet;
To find in tables association rules related to
head fields;
To solve the destination path or QoS
requirements;
If necessary, to modify the packet (type of
service or Diffserv, for example).

Nowadays, the active networks [6] are very
important for QoS requirements, and equipments like
active routers [27] appeared to improve performance
and quality for Internet. The Network Processors have
dedicated functionalities that provide flexibility and
performance. For this reason, it has a large application
in many network equipments.

During the developing process of Network
Processors some companies joined among them we
remark: Lucent / Agere [1], Motorola / C-Port [5] and
Sitera / Vitesse [25]. Below, the main Network
Processors and the companies are:

IXP 1200 – Intel Corporation [16];
NP4GS3 – IBM Corporation [15];
C-5 Family – Motorola / C-Port [5];
ASI/RSP/FPP – Lucent / Agere [1];
IQ2000 Family – Sitera / Vitesse [25];
AnyFlow 5400/5500 – MMC Networks [23];
NP-1 – EZChip Technologies [8];
NetVortex – Lexra Inc. [18];
CS2000 – Chameleon Systems [3].

The Chameleon Systems was the first company to
produce a Network Processor using the Reconfigurable
Computing technique. This is an important
characteristic. Reconfigurability is a technique that can
be used in the NP architecture to improve flexibility.

Some researches about Reconfigurable Network
Processors developed in universities are:

“Reconfigurable Network Processors Based
on Field Programmable System Level
Integrated Circuits”, University of Patras,
Greece [22];
“Design and Analysis of a Layer Seven
Network Processor Accelerator Using
Reconfigurable Logic”, University of
California, Los Angeles [9];

“Design and Analysis of a Dynamically
Reconfigurable Network Processor”, University
of Florida [14].

After section 1 and 2, it is possible to say that
flexibility and performance are two important features
during network processing. Thus, we conclude that
some concepts are very important, and so students must
know them before study a commercial Network
Processors:

CISC and RISC models;
The concepts of ASIC’s and ASIP’s;
The concepts of SoC’s;
The concepts of Reconfigurable Computing;
The main logic blocks of Network Processor
architecture;
The main functions of Network Processor.

The next sections will present the didactic models of
RNP project and the results that can aid students to
understand the functioning of Network Processors,
based on the features above.

3. Didactic Architecture Models

This section presents two architecture models: CISC
model (RCNP) [10] and RISC model (R2NP) [11].
Both architectures were developed and simulated using

87

Reconfigurable Computing [17] and SoC [29] concepts
and techniques to increase flexibility and performance.

Reconfigurable Computing: Input Ports and
Crossbar has more flexibility in time execution. Buffer
sizes and topologies can be created dynamically.

System-on-Chip: Functional blocks, that are found
externally, as memory, I/O ports and switching fabric,
are internally in the same chip. Like hierarchical
memory, the proximity between functional blocks
reduces processing time and increases performance.

The use of didactic architectures (RCNP and R2NP)
is presented in section 5. Subsection 3.1 and 3.2
presents only technical features. We will implement
both architectures using VHDL (VHSIC Hardware
Description Language) [21] and FPGA (Field
Programmable Gate Array) [21] in the future.

3.1 RCNP (Reconfigurable CISC Network
Processor) Architecture

The basic features of RCNP [10] architecture are the
following (figure 2):

Eight input ports;
Temporary buffers (one static buffer for each
port);
Permanent buffers (dynamic buffers,
reconfigurable size buffers);

Eight output ports;
Reconfigurable Crossbar;
Direct Access Memory (DMA);
Eight general-purpose registers (8 bits);
Data bus (8 bits) and address bus (24 bits);
Maximum of size memory (16Mbytes)

The RCNP architecture was developed as a System-
on-Chip. Memory, I/O ports and crossbar are placed
internally.

The Reconfigurable Computing appears in
Permanent Buffers and Crossbar. Thus, in execution
time the size of the buffers and topologies (defined by
crossbar) modifies dynamically.

The main features of instruction set are:
General-purpose instruction set

Arithmetic instructions (Ex.: ADD and SUB);
Logic instructions (Ex.: AND and OR);
Memory access instructions (Ex.: LOD and
STO);
Branch instructions (Ex.: JMP and JNZ);

Dedicated network instructions
Input port reading (Ex.: ENT);
Output port writing (Ex.: SAI);
Crossbar control (Ex.: SEC);
Status register control (Ex.: SRS and LRS);

The RCNP architecture was not designed with
pipeline technique. For this reason, all instructions are
executed sequentially. In section 7, the performance
analytical model for the ISA shows the impact of the
architecture without pipeline.

Like all CISC projects, other instructions (different
of load and store) access memory. The general-purpose
instruction set of RCNP is not optimized. There are 256
instructions that can be found in the project homepage
(http://www.inf.pucminas.br/projetos/pad-r/). The
simulation tool (NPSIM) also has the instructions
described in figure 9.

Figure 2 – RCNP Architecture

88

3.2 R2NP (Reconfigurable RISC Network Processor) Architecture

Figure 3 – R2NP Architecture

The evolution of RCNP is the R2NP [11]. This
architecture uses the RISC model, pipeline and other
reconfigurable blocks. The figure 3 shows the R2NP
architecture.

The basic features of RCNP architecture are the
follows:

Eight input ports;
Reconfigurable Multiplex;
Programmable Microengines (one
microengine for each port);
Permanent buffers (dynamic buffers,
reconfigurable size buffers);

Reconfigurable Crossbar;
Eight output ports;
Internal memory;
Main RISC processor with data cache and
instruction cache;
Direct Access Memory (DMA), dedicated
hardware;
256 registers (64 bits);
Data bus (32 bits) and address bus (32 bits);
Maximum of size memory (16Gbytes)

In R2NP project we add two important network
blocks: Reconfigurable Multiplex and Microengines.

Microengines: Are responsible for the first analysis
on the packet head. In this case the packet can be
forward to output ports with no intermediary copies to
buffers or memory.

Reconfigurable Multiplex: If you lost one
microengine or need to use it in other function, the
multiplex connects two or more ports to one
microengine.

The instruction set of R2NP is more optimized than
RCNP. Based on the RISC model, the instruction
format is fixed and only load and store instructions
access the memory. We present in table 1 the
instruction set of R2NP.

Table 1 – Instruction Set of R2NP
General-purpose

ADD A,B,C MOV A,B SPUSH A CONV
SUB A,B,C INC A LPOP A Network
MUL A,B,C DEC A JMP A FCX A,B,C
DIV A,B,C LOD A,End32 JZ A LOB A
AND A,B,C LDA A,End16 JMZ A BRC A
OU A,B,C LOX A,B JMI A SAI A,B
XOR A,B,C LDI A,Imed16 JNZ A LRS A
NEG A STO End32,A JNI A SRS A
ROD A STR End16,A CALL A SEC A,B
ROE A STX A,B RET ENT A,B,C

There are two kinds of store and load instructions:
with internal and with external memory access.

The internal memory is smaller and the instructions
number 16 (Ex.: LDI A,Imed16) use sixteen bits to
access the 64kbytes memory. The instructions number
32 (Ex.: LOD A,End32), access only the external
memory. If the instruction has 32 bits of address, two
fetch cycles will be necessary.

The network instructions (table 2) are very similar
with the RCNP network set. However, by optimization,
some differences appear in the instructions format.

The pipeline of R2NP is showed in figure 4. This is
very similar with the conceptual model of pipeline [24],
but the difference is the Buffer stage (together
memory). One instruction that access buffer does not
access memory.

89

Figure 4 – Pipeline Stages

The stages mean:
1. Fetch of instruction (B);
2. Decoding of instruction. Reading of register

bases (D);
3. Execution of instruction (E);
4. Reading or writing in memory of

reconfigurable buffers (M/BF);
5. Results. Writing in register bases (R);

The performance analytical model for the ISA, in
section 7, will show how the pipeline project increases
performance.

4. Didactic Network Processor Simulator

This tool [12,13] was constructed with C++, and the
main interfaces are capable to aid and guide the student
in the learning of Network Processor theory and
functioning. The simulator has six interfaces and it
simulates main logic blocks as memory, registers,
buffers, crossbar switch, DMA, I/O ports and others
that are responsible to store, process, receive and
transmit data. The student can modify and visualize the
status and movement of the data inside and between
logic blocks. There are two edition boxes, a program
assembler and an editor of network packets.

This tool simulates the RCNP architecture and is
available to download
(http://www.inf.pucminas.br/projetos/pad-r/r2np.html)
in two languages (idioms): Portuguese and English. It
makes functional tests in all logic blocks of the
processor. Through this tool, it is possible to write and
execute many algorithms (assembly programs) and
visualize the execution and the results in objects like:
registers, stacks and arrays represented in components
of C++ Builder 5.0 (used to construct and compile the
simulator).

The user interface has one main module and six
other modules:

Memory, Registers and Fast Access Buttons
(compose the main module – figure 5)
Assembler (assembly program window –
figure 5)
Permanent Buffers (reconfigurable buffers) –
(*).
Temporary Buffers (eight buffers for each
input) – (*).

Input Packets (network packet edition box –
figure 6)
Internal Crossbar (commutation array) – (*).
DMA Registers (Direct Memory Access) –
(*).

(*) These modules are not shown in this paper. In
figure 5, the number 1 shows where other modules can
be found. For more details see the references [12,13].

Figure 5 – Main Module (Assembler)

Figure 6 – Input Packets

In this section, we only describe the edition modules
like the assembler and input packets. The figure 10 and
11, show the part of the Temporary Buffers and
Crossbar modules, and its application as a way to learn
Network Processor concepts.

With this simulator, it is possible to write and
simulate routing algorithms (section 7), study the
functioning of CISC network processor (RCNP) and
understand the functioning of the Network Processors,
described in section 5.

Other information about this simulator can be found
in the papers: Simulation Tool of Network Processor
for Learning Activities [12] and NPSIM: Simulador de

90

Processador de Rede (NPSIM: Network Processor
Simulator) [13].

5. Using RNP Project to Learn NP Concepts
and Functioning

This section will show how RNP project (didactic
architectures and simulator) can help the students to
learn network processor functioning and concepts.

The figures 7 and 8 show interfaces of NPSIM,
which RCNP architecture and technical information.
These interfaces aid students to understand the NPSIM
modeling of RCNP proposal architecture. Basic
features and important blocks as buffers and crossbar
are described. Thus, concepts can be read and
functional blocks visualized before the software
execution. These interfaces can be found in the
“About” option (figure 5, number 2).

Figure 7 – RCNP Architecture

Figure 8 – Technical Information

The RCNP architecture has important blocks
described in the architecture reference (section 2).
Through the diagram architecture of RCNP we can
visualize these functional blocks that represent
important concepts of Network Processor, as flexibility

(reconfiguration) [17] and performance (ASIC’s). We
present in table 2 these concepts:

Table 2 – Concepts of RCNP blocks
Functional Blocks RCNP Concepts

Input Ports Reconfigurable ASIC (Buffers)
Output Ports ASIC
Internal Crossbar Reconfigurable ASIC
Internal Memory and External
Memory Interface

ASIC

Communication Interface ASIC
Typical and dedicated CISC
processor blocks

ASIP

The instruction set of RCNP can be visualized
through the NPSIM interface. The figure 9 shows the
instructions. This interface also can be found in the
“About” option (figure 5, number 2).

The figure 10 shows interface modules that
represent Temporary Buffers (inside Input Ports) and
Internal Crossbar together Output Ports. A network
packet sent by the Packet Interface (figure 6), arrives in
Temporary Buffers and the behavior can be analyzed
by students through control registers (figure 6, number
1). The behavior of routing algorithms and the
destination of packets are showed through buffers,
registers, crossbar, inputs and outputs. The buffers
receive and allocate packets from inputs, the registers
aid visualize the manipulation and data behavior, and
the crossbar (figure 10) shows the way from input to
output.

Figure 9 – Instruction Set of RCNP

These interfaces aid students to understand basic
functions of Network Processors. Algorithms that
execute functions described in section 2, as analysis
and modification of contents, search for association
rules, destination resolution, and QoS requirements can
be found in NPSIM.

91

Figure 10 – Interface Modules

Although, the RCNP has many features of a
Network Processor, one main characteristic does not
exist, the RISC technique. RISC processors have better
performance than CISC processors. Instruction format
and pipeline are very important to increase processing
speed and reduce processing time.

R2NP is the evolution of RCNP project. In this
project, the goal is add RISC concepts and optimize the
architecture and instruction set. The main difference is
the pipeline and the instruction format. In section 7, the
relation will be described.

The R2NP project is robuster than RCNP, and we
present in table 3 some concepts related with Network
Processors.

Table 3 – Concepts of R2NP blocks
Functional Blocks R2NP Features

Reconfigurable ASIC (Buffers)
Reconfigurable ASIC

(Microengines) Input Ports

Reconfigurable ASIC (Multiplex)
Output Ports ASIC
Internal Crossbar Reconfigurable ASIC
Internal Memory and External
Memory Interface

ASIC

Direct Access Memory ASIC
Communication Interfaces ASIC
Typical and dedicated RISC
processor blocks

ASIP

The figure 11 shows the project evolution, based in
hierarchical memory [24].

Figure 11 – Hierarchical Memory

The R2NP has data and instruction cache and RCNP
has not. The Temporary Buffers were replaced by
Microengines. In RCNP, packets could be store in
Temporary Buffers, but in R2NP the microengines that
also have static buffers, analyze and decide the
destination of a packet, with no packet allocation.
There are three routes: through crossbar and output
ports, in the reconfigurable buffers or memory. In
R2NP project, the main processor analyzes packets in
buffers and memory.

6. Commercial Architectures of Network
Processors

Some commercial architectures of Network
Processors are presented and related with the reference
architecture, also described in RNP project. The main
features are numbered and appear in each figure. It’s
important to say that each commercial example
represents details, features or concepts presented in our
proposal, proving the real capability of RNP project as
a didactic environment to learn Network Processors.

NetVortex Architecture [18] (figure 12): Each
NetVortex is composed of many packet processors. It
uses multi-threading in hardware and has the same
instruction set of MIPS. Some features related to
reference are:

1. Encryption Coprocessor: This architecture uses
coprocessors for specific applications;

2. Crossbar Switch: Also uses dedicated hardware
(ASIC) to increase performance;

3. Packet Processor: Specific processors for
packet processing.

Figure 12 – NetVortex Architecture

IQ2000 Architecture [25] (figure 13): The IQ2000
Network Processor has four scale processors inside the
chip. It has native support for MIPS, PowerPC and
others RISC processors. There are specific
coprocessors and hardware support for Quality of
Service (QoS). Some features related to reference are:

1. Multiples CPU´s: The IQ2000 uses parallel
processing based in multiples processors;

92

2. QoS Engine: Dedicated hardware (ASIC) to
increase performance.

Figure 13 – IQ2000 Architecture

IXP1200 [16] (figure 14): The IXP1200 is composed
of seven RISC processors. The first processor
(StrongARM) is responsible for managing the network
and for complex processing. The other six processors
(the microengines) are responsible for processing and
routing packets. Some features related to reference:

1. StrongARM Processor: The main processor
responsible for complex processing.

2. PCI Unit: Dedicated communication hardware
(ASIC).

3. Multiples microengines: For parallel processing
of network packets.

Figure 14 – IXP1200 Architecture

Reconfigurable Fabric of CS2000 [3] (figure 15):
This figure shows the reconfigurable block of CS 2000.
This block is divided in four slices with three blocks.

Each block has Datapath Units, Local Memories,
Multipliers and Control Logic Unit.

Figure 15 – Reconfigurable Fabric of CS2000

This section presented some features of RNP
project, how to learn Network Processors using it and
four commercial Network Processors. During all the
description we related the features of RNP project and
commercial NP to the architecture reference. The next
section will present the experimental results from
simulations and analytical model that contribute to
validate the evolution of RNP project.

7. Experimental Results using NPSIM

The simulation results and the performance
analytical model for the ISA were based in three
topologies. For each topology was written three
algorithms. These simulations were very important to
validate the concept of RCNP. Using the results, an
analytical model was proposed to verify the
performance between ISA of RCNP and ISA of R2NP.
The topologies (figure 16) are the follow:

Hypercube topology: Where each vertex is a
simulated network processor. The routing algorithm is
based in different bit resulted by XOR operation
between source address and destination address.

Unidirectional ring topology: Constructed using the
internal crossbar. The unidirectional ring program
shows how internal crossbar can construct a topology.

Balanced Tree: Where each vertex is a simulated
network processor. In this case the routing program
uses the standard address by each vertex. The addresses
grow from left to right.

93

Figure 16 – Simulated Topologies

The metrics defined to analyze performance for ISA
are:

Cf Clock Frequency (Hz)
Tp Time of Processor
Ncpc Number of cycles of program clock
Cpi Cycles per instructions
Npi Number of program instructions
Pf Performance factor
We can related through these equations:
Cpi = Ncpc / Npi
Tp = Npi * Cpi / Cf

It’s important to say that the RCNP model does not
use pipeline, the instructions are executed sequentially.
The RCNP and R2NP does not exist physically, for this
reason, the clock frequency is 500Mhz for definition.

For the Unidirectional Ring topology, the results are
the follows:

RCNP proposal
Npi = 45, Ncpc = 191, Cpi = 191 / 45 = 4,244
Tp = 191 / 500 10E6 = 0,382 µs
R2NP proposal
Npi = 38, Ncpc = 43, Cpi = 43 / 38 = 1,131
Tp = 43 / 500 10E6 = 0,086 µs
Pf = 0,382 / 0,086 = 4,44
The R2NP is 4,44 faster than RCNP for this simulation.

For the Hypercube topology, the results are the
follows:

RCNP proposal
Npi = 17, Ncpc = 73, Cpi = 73 / 17 = 4,294
Tp = 73 / 500 10E6 = 0,146 µs
R2NP proposal
Npi = 17, Ncpc = 21, Cpi = 21 / 17 = 1,235
Tp = 21 / 500 10E6 = 0,042 µs
Pf = 0,146 / 0,042 = 3,47
The R2NP is 3,47 faster than RCNP for this simulation.

For the Balanced Tree topology, the results are the
follows:

RCNP proposal
Npi = 12, Ncpc = 56, Cpi = 56 / 12 = 4,666
Tp = 4,666 / 500 10E6 = 0,112 µs
R2NP proposal
Npi = 15, Ncpc = 19, Cpi = 19 / 15 = 1,266
Tp = 19 / 500 10E6 = 0,038 µs
Pf = 0,112 / 0,038 = 2,94
The R2NP is 2,94 faster than RCNP for this simulation.
Through this analytical model, the students can

understand how RISC processor can be faster than
CISC processors, using project techniques as pipeline,
for example.

8. Conclusions

Nowadays, there is a great need of high
performance in the data communication network [2,28].
The study of various equipments [4,27] and their
functions, influenced in the project, and development of
dedicated processors, that can supply the need of
performance and quality. Thus, the Network Processors
were initially developed to contribute with the increase
of speed and quality of service in the communication
systems.

In this paper we presented a project called
Reconfigurable Network Processor (RNP) that has a
main goal: to aid students to learn and know initial
basic concepts of Network Processors, as a first step to
understand commercial products.

RCNP [10] and R2NP [11] architectures, and
NPSIM [12,13] simulator were described with many
options to understand the reference architecture and the
basic network processors functioning. In section 5, the
architectures and NPSIM were shown for the student to
compare the learning possibilities. The same features in
reference architecture appear in RNP project. Using
these didactic proposals it is possible to learn the basic
concepts. Four commercial architectures were
presented and related with the reference to show the use
of didactic models before the studying of commercial
Network Processors.

Didactic models and simulator were looked for, but
they were not found anywhere. However, one correlate
paper was presented in NP1, “A Methodology and
Simulator for the Study of Network Processors” [7].
But they have different goals. That paper describes a
model of the Cisco Toaster architecture and show
simulated performance results of a Diffserv
implementation. It describes a commercial product and
simulates performance. Our goals in this paper are
present a didactic model to introduce the main concepts
of Network Processors before the study of complex
architectures. A paper or research with didactic features
for NP’s, were not found.

The main presented results of our research, are the
RCNP architecture, R2NP architecture, NPSIM

94

simulator and experimental results. Those results
validated our goals and showed how conceptual models
can aid students to understand complex architectures of
Network Processors.

Thus, our main contribution, in this paper, is present
didactic architectures and simulator for beginning
process of Network Processors learning.

Our future works are: To simulate R2NP using
Rconf_KMT (Reconfigurable Simulation Tool) [26]
and VHDL (VHSIC Hardware Description Language)
[21], prototype using FPGA (Field Programmable Gate
Array) [21], simulate it in a real network system [2,28],
and to develop didactic environment to learn Network
Processors.

9. References

[1] Agere System, Fast Pattern Processor (FPP) Product
Brief, April 2001, http://www.agere.com

[2] Buya, R., High Performance Cluster Computing,
Volume 1, Prentice Hall, 1999

[3] Chameleon Systems, “CS2000 Reconfigurable
Communications Processor”, Family Product Brief,
2000

[4] Cisco Systems White Paper, “The Evolution of high-
end Router Architectures-Basic Scalability and
Performance Considerations for Evaluating Large-Scale
Router Designs”, 2001, http://www.cisco.com

[5] C-Port, C5e Network Processor Product Brief, January
2002, http://www.motorola.com

[6] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, G. J. Minden, “A Survey of Active Network
Research”, IEEE Communications Magazine, Volume
35, No 1, pp.80-86, 1997

[7] D. Suryanarayanan, G. T. Byrd and J. Marshall, “A
Methodology and Simulator for the Study of Network
Processors”, Workshop on Network Processor (NP1 at
HPCA 8), Cambridge Massachusetts, February 2-6,
2002

[8] EZChip Network Processors, http://www.ezchip.com
[9] G. Memik, S. O. Memik, W. H. Mangione-Smith,

“Design and Analysis of a Layer Seven Network
Processor Accelerator Using Reconfigurable Logic”,
The 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines
FCCM’02, Napa, California, 21-24 April, 2002

[10] H. C. Freitas, C. A. P. S. Martins, “Processador de
Rede com Suporte a Multi-protocolo e Topologias
Dinâmicas”, II Workshop de Sistemas Computacionais
de Alto Desempenho, WSCAD’2001, Pirenópolis - GO,
Brasil, pp.31-38 (in portuguese)

[11] H. C. Freitas, C. A. P. S. Martins, “R2NP: Processador
de Rede RISC Reconfigurável”, III Workshop de
Sistemas Computacionais de Alto Desempenho,
WSCAD’2002, Vitória, ES, Brasil, pp. 60-67 (in
portuguese)

[12] H. C. Freitas, C. A. P. S. Martins, “Simulation Tool of
Network Processor for Learning Activities”. Frontiers
in Education Conference (FIE 2002), Boston, MA,
USA, November 2002, Session S2F, pp.1-6

[13] H. C. Freitas, C. A. P. S. Martins, “NPSIM: Simulador
de Processador de Rede”. XXVIII Latin-American
Conference on Informatics, CLEI’2002, Montevideo,
Uruguay, November 2002 (in portuguese)

[14] I. A. Troxel, A. D. George, S. Oral, “Design and
Analysis of a Dynamically Reconfigurable Network
Processor”, IEEE Conference on Local Computer
Networks (LCN), Tampa, Florida, November 6-8, 2002

[15] IBM PowerNP NP4GS3 Databook, http://www.ibm.com
[16] Intel, “IXP 1200 - Network Processor”, Datasheet, May

2000, http://www.intel.com
[17] K. Compton, S. Hauck, “Reconfigurable Computing: A

Survey of Systems and Software”, ACM Computing
Surveys, Vol. 34, No. 2, June 2002, pp. 171-210

[18] Lexra, NetVortex Network Communications System
Multiprocessor NPU, http://www.lexra.com

[19] Lucent Technologies, Building for Next Generation
Network Processors, September 1999

[20] Lucent Technologies, The Challenge for Next
Generation Network Processors, September 10, 1999

[21] M. Glesner, A. Kirschbaum, “State-of-the-Art in Rapid
Prototyping”, XI Brazilian Symposium on Integrated
Circuit Design, SBCCI’98, Búzios, Rio de Janeiro,
1998, pp.60-65

[22] M. Iliopoulos, T. Antonakopoulos, “Reconfigurable
Network Processors Based on Field Programmable
System Level Integrated Circuits”, Field-Programmable
Logic and Applications, The Roadmap to
Reconfigurable Computing, 10th International
Workshop, FPL 2000, Villach, Austria, August 27-30,
2000, pp. 39-47

[23] MMC Networks, “EPIF-105, EPIF-200, GPIF-207,
XPIF-300, Packet Processors”, http://www.mmcnet.com

[24] Patterson, D. A., J. L. Hennessy, Computer
Organization and Design: The Hardware/Software
Interface, Morgan Kaufmann Publisher, 1997

[25] Sitera IQ2000, Network Processor Product Brief,
http://www.sitera.com

[26] T. H. Medeiros, C. A. P. S. Martins, “Reconf_KMT,
Uma Ferramenta Reconfigurável para a Simulação de
Microprocessadores”, III Workshop de Sistemas
Computacionais de Alto Desempenho, WSCAD’2002,
Vitória, ES, Brasil, pp. 32-38 (in portuguese)

[27] T. Wolf and J. Turner, “Design Issues for High
Performance Active Routers”, International Zurich
Seminar on Broadband Communications, Zurich,
Switzerland, 2000, pp. 199-205

[28] Tanembaum, A. S., Computer Networks, Prentice-Hall,
1996

[29] W. D. Mensch. Jr. and D. A. Silage, “System-on-chip
Design Methodology in Engineering Education”,
International Conference on Engineering Education,
ICEE2000 (IEEE/CS), Taipei, Taiwan, August 2000,
pp. 224-228

95

� � � � � � � � �
 � � � � �
 �
 � � � �
 � � ! � � # % & � ' # � � * # � � � � �

.
 0 1 � � � � 2 � � � � � � � � � � � 8 � � � # � �
 �

; < > > A B D E E H E H E L M N P R H D T M H E V W D
X B N E N Z \] < T T D _ D ` a b T N E

c B D T H E L
B b B D E E H E f Z P L j N D l m N P R H D T j m H E V W D f P > j Z P L j N D

s u v x y z { x

| } �
� � � � } �
� � � � � � � � � � � � � � � } � � � � � � � � � � � � � � � � � � � ¡ ¢ � � � £ � � � �

� } � ¥ � � � � � � � } � � § � � � � � � ¢ � � � � � £ © ª � � � } � � £ � � � � � } � �
� ¢ ¢ � � � � } � � � � � � � � � � � � � � � � � } � � � � � � � £ � � � } � � � � � � �
� } � � � � � � � � � � } � � � � � � � � � � � � � � ¥ � } � � � � � � � ¥ � � � } � � � �

§ � � � � � � � � � � � � � ¡ � � � � ©
| � � � ¥ ° � ª � � � � ± � � � � � £ £ � � � � ² � � � ³ � � � ¥ �

µ ª ± ² ³ ¶ � � � � £ ¢ � � £ � � � � � � � � � � � � � � � � � � � £ ¢ � � ¡
� � � } � ¹ ± ³ » ¼ ¾ ¿ � � � � � � � � � � � � � } � � � § � � � ¢ � � � � ©

À � � � � � � � � � � � � � � � � � } � � � � ¢ � � � � � � � � � � � � � � � � ¼ ± Â �
§ � � } �
� � � � � � � ¡ � � � � � � � ¥ � � � � � � § � � } � � � � � ¥ } � � � § � � �
� � Ç � � � � £ � � � � § � � } � � � � � � � � ¢ � � � � � � � � � � � � � � } �

Ë Ì Í Î Ï Ð Ñ Ò � � � � � � � } �
¢ � � � � � � � � ¢ � � � � � � £ ¢ � � � � � � � � ¥ § � � } � } � � � ¢ � � � � � � �
¢ � � � � � � � � � � � � � ©

Ö × Ø x y Ù Ú Ü { x Ý Ù Ø

Þ Ì ß à á â Ì Ë Î ä å æ ç à ß Ë è Ì â é ê Î ç ß Ë è ë ç ì è ç Ë Î ê í ç ì Î Ë à ì í
è Ì â é ê Î ç ß ç ì î ë ì ç ç ß ë ì î Ë Î ê í ç ì Î Ë à Î ð ß ë ì ë Î æ Ð Ì á á ç î ç
ñ ê ò á ë ì ó à ô ç ò ç ç ì à Ë õ ç í Î Ì è Ì ì Ë Î ß ê è Î à è Ì â é á ç Î ç
â ë è ß Ì é ß Ì è ç Ë Ë Ì ß Ë æ Ë Î ç â à Ë é à ß Î Ì Í Î ó ç è Ì ê ß Ë ç ö Ì ß õ ÷
ð ó ç Ë Î ê í ç ì Î Ë é ç ß Í Ì ß â Î ó ë Ë Î à Ë õ ç í ò æ ö ë ß ç Ï ö ß à é é ë ì î
ë ì Î ç î ß à Î ç í è ë ß è ê ë Î ø ù Ð ú è Ì â é Ì ì ç ì Î Ë Î Ì à û Ì Î Ì ß Ì á à
û Ð ü ý å å ý â ë è ß Ì é ß Ì è ç Ë Ë Ì ß ÷ ð ó ç ý ò ë Î í à Î à ò ê Ë õ ç ç é Ë

Î ó ç ß ç þ ê ë ß ç í à â Ì ê ì Î Ì Í ö ë ß ç ö ß à é é ë ì î Î Ì à ì à è è ç é Î Ï
à ò á ç á ç ô ç á ÷ ð ó ç Ð Ñ Ò ó à Ë ì Ì è à è ó ç Ë à ì í Î ó ç ß ç Í Ì ß ç
à á á Ì ö Ë Î ó ç Ì ò Ë ç ß ô à Î ë Ì ì Ì Í à á á â ç â Ì ß æ à è è ç Ë Ë ç Ë Ì ì

Î ó ç Ë æ Ë Î ç â ò ê Ë ÷ ð ó ç Ð Ñ Ò ë Ë è á Ì è õ ç í à Î à â Ì í ç Ë Î
� ÷ � û � � ÷ ñ ç Ë é ë Î ç ë Î Ë à î ç Î ó ç é ß Ì è ç Ë Ë Ì ß ë Ë ô ç ß æ Ë ê ë Î Ï

à ò á ç Í Ì ß Î ó ë Ë Î à Ë õ ò ê Î ë Î ó à Ë ò ç è Ì â ç ë ì è ß ç à Ë ë ì î á æ í ë Í Ï
� è ê á Î Î Ì Ë Ì ê ß è ç Î ó ç Ë ç Ð Ñ Ò Ë ÷ 	 ç ó à í Î Ì á Ì Ì õ Í Ì ß à ì

à á Î ç ß ì à Î ë ô ç Î ó à Î ë Ë ç þ ê à á á æ Ë ê ë Î à ò á ç Í Ì ß Î ó ç à é é á ë è à Ï
Î ë Ì ì ÷

 ç é á à è ë ì î Î ó ç û Ð ü ý å å ý ö ë Î ó à â Ì ß ç â Ì í ç ß ì Ð Ñ Ò
Î ó à Î ç � ó ë ò ë Î Ë Ë ë â ë á à ß é ß Ì é ç ß Î ë ç Ë ë Ë à Í ç à Ë ë ò á ç í ç Ë ë î ì

Ì é Î ë Ì ì ÷ 	 ç è Ì â é à ß ç í Î ó ë Ë Ì é Î ë Ì ì ö ë Î ó à ì à é é ß Ì à è ó
Î ó à Î ê Î ë á ë Ë ç Ë Ë Ì Í Î Ï Ð Ñ Ò Ë Î ó à Î ç � ç è ê Î ç Ì ì ß ç è Ì ì � î Ï
ê ß à ò á ç á Ì î ë è í ç ô ë è ç Ë ÷ Þ Ñ � � Ë Î ó à Î à ß ç á à ß î ç ç ì Ì ê î ó
Î Ì ó Ì á í à è Ì â é á ç � Ð Ñ Ò è à ì ò ç ò Ì ê î ó Î à Î à è Ì â é ç Î Ï
ë Î ë ô ç é ß ë è ç ÷

ù Î ö à Ë Ì ò ô ë Ì ê Ë Î ó à Î à ì Þ Ñ � � ò à Ë ç í Ë Ì á ê Î ë Ì ì
ö Ì ê á í ì Ì Î Ì ì á æ à á á Ì ö ê Ë Î Ì ß ç é á ë è à Î ç Î ó ç é ß Ì é ç ß Î ë ç Ë
Ì Í Î ó ç ç � ë Î ë ì î ò Ì à ß í ò ê Î à á Ë Ì Î Ì ë ì è ß ç à Ë ç Î ó ç Ë è Ì é ç Î Ì
à ì ç � Î ç ì Î Î ó à Î ë Î è Ì ê á í ò ç ê Ë ç Í ê á à Ë à ì ç í ê è à Î ë Ì ì à á Ï
à ë í Í Ì ß â à ì æ â Ì ß ç ê ì í ç ß î ß à í ê à Î ç à ì í é Ì Ë Î î ß à í ê à Î ç
è Ì ê ß Ë ç Ë ÷

ù ì Î ó ë Ë é à é ç ß � ö ç à ß î ê ç Í Ì ß Î ó ç â ë î ß à Î ë Ì ì
Í ß Ì â Ë Î à ì í à ß í Ð Ñ Ò Ë Ì ì è Ì â é ê Î ç ß à ß è ó ë Î ç è Î ê ß ç á à ò
ò Ì à ß í Ë � Î Ì à ì Þ Ñ � � ò à Ë ç í à é é ß Ì à è ó Î ó à Î ç â é á Ì æ Ë

� � � � � ¼ ± Â � ÷ ð ó ç Ë ç Þ Ñ � � ò à Ë ç í ò Ì à ß í Ë Ë ó Ì ê á í à á Ï
á Ì ö Î ó ç Ë Î ê í ç ì Î Î Ì í Ì ö ì á Ì à í à è ó Ì ë è ç Ì Í � � � � � ¼ ± Â
è Ì ß ç Ë ë ì Î Ì Î ó ç �
 � û ò à Ë ç í Þ Ñ � � ÷ � ì ê â ò ç ß Ì Í
è Ì ì � î ê ß à Î ë Ì ì Ñ
 � û Ë è à ì ò ç ê Ë ç í Î Ì ó Ì á í à ß à ì î ç

Ì Í Î ó ç Ë ç � � � � � ¼ ± Â è Ì ß ç Ë � Î ó à Î â à æ ò ç ë ì í ë ô ë í ê à á á æ
Ë ç á ç è Î ç í Î ó ß Ì ê î ó à ± » � � � � � � � � � � � § � � � } ò ç Í Ì ß ç Î ó ç
ò Ì à ß í ë Ë é Ì ö ç ß ç í Ì ì ÷ ð ó ë Ë à á á Ì ö Ë Î ó ç ê Î ë á ë � à Î ë Ì ì Ì Í

Î ó ç ò Ì à ß í Ë Í Ì ß à ô à ß ë ç Î æ Ì Í Î ç à è ó ë ì î Ì ò � ç è Î ë ô ç Ë � Í ß Ì â
à ö ë ß ç Ï ö ß à é é ç í â ë è ß Ì é ß Ì è ç Ë Ë Ì ß é ß Ì � ç è Î Î Ì Ð Ñ Ò í ç Ï
Ë ë î ì é ß Ì � ç è Î Ë ÷

	 ç é ß Ì é Ì Ë ç Î ó ç Í Ì á á Ì ö ë ì î � � � � � ¼ ± Â Ì é Î ë Ì ì Ë

! � Ë ë â é á ç ë ì Ë Î ß ê è Î ë Ì ì Ë ç Î é ß Ì è ç Ë Ë Ì ß Î ó à Î è à ì ò ç
ë â é á ç â ç ì Î ç í ò æ à Ë ç è Ì ì í Ï æ ç à ß Ë Î ê í ç ì Î

! � ì Ì é ç ì Ï Ë Ì ê ß è ç � Í ê á á æ è Ì ì � î ê ß à ò á ç � Ñ �
 Ð & ý
à ß è ó ë Î ç è Î ê ß ç è Ì ì Í Ì ß â ë ì î Î Ì Î ó ç ù (((Ï Ñ * � � ,
Ë Î à ì í à ß í

! . ç î à è æ à ß è ó ë Î ç è Î ê ß ç Ë Î ó à Î Ë ë â é á ë Í æ Î ó ç Î ß à ì Ë ë Ï
Î ë Ì ì Î Ì Þ Ñ � � Ï ò à Ë ç í ò Ì à ß í Ë ÷ � Î ð ß ë ì ë Î æ Ð Ì á Ï
á ç î ç ñ ê ò á ë ì ø ð Ð ñ ú Î ó ë Ë ß ç þ ê ë ß ç Ë à û Ì Î Ì ß Ì á à
û Ð ü ý å å ý è Ì â é à Î ë ò á ç è Ì ß ç ÷

� á á Ì Í Î ó ç é Ì Ë Ë ë ò á ç � � � � � ¼ ± Â Ì é Î ë Ì ì Ë â ê Ë Î ê Ë ç à
è Ì â â Ì ì Ë æ Ë Î ç â Ï ò ê Ë ë ì Î ç ß Í à è ç ÷ ù ì é à ß Î ë è ê á à ß � Î ó ç

Ì é ç ì Ë Ì ê ß è ç � Ñ �
 Ð è Ì ß ç î ë ô ç Ë Ë Î ê í ç ì Î Ë à è è ç Ë Ë Î Ì à
� ñ . â Ì í ç á Ì Í à 2 Ë Î à Î ç Ï Ì Í Ï Î ó ç Ï à ß Î 3 � ë ì í ê Ë Î ß æ Ë Î à ì í à ß í
é ß Ì è ç Ë Ë Ì ß ÷ ð ó ç à ò ë á ë Î æ Î Ì è Ì ì � î ê ß ç Î ó ç � ñ . Ë Ì ê ß è ç Ë

*

96

� � � � � � �
 � � �
 � � � �
 �
 � � �
 � �
 � � � � � � � �
 � �
 � � � & '
(� � � �
 � � �
 � � � � � � - � � � � � / � � /
 � (� / 3 � / & � (� � � � �
� � (� / � & � �
 � 6 8 � � � < � � � � � � 3 � �
 � / � �

 � �
 � � � �
 � � �
� � � � � � � � � � � / - / � � � �
 � � � � (� �
 - / � � � �
 � � � � / � � � 6

D � � � < � / � � � � / - / � � � �
 � � � � / � � � �
 � � � � � / � & � K � �
� � � � � K � � � � � � K � � / �
 � � � �
 �
 � < � / � ' < / � (� � � & '
(� �
 � & � � / � (/ � � � � � � / � K �
 � & � � �
 � � � � � - � �
 � �
 � � �
� K �
 � � � � � � � � � & (� � � � �
 / � �
 � � � � �
 � � & (�
 � / 6

� � � � / �
 �
 � (
 � � � � � �
 �
 � � � � � � � � - � � � � � �
 � �
< � (/ �
 �
 K (� � � � R S
 � � � � � � � � � / �
 � �
 � � � � �
 � �
� � � (� � ' � � � / � �
 S � � V � � / � X
 � � � � � � S ' � � � � [� � �
� � � � � � � � V \ # �]]] # � /
 � � ' D D R S
 � 6 8 � � � � � / �
< � � < / �

 � � � � � � � - � � K � � � � - � / � � � � � 3 � � � K � K �
 � � '
� � � � � � � #) a � & � � � � � � � < � � � / � - � � � � � K � � � � � (� �

� K
 � � � � / � (� � �
 (� � � � - � � � K X �
 � [< �
 �
 � � � � '

 � �
 � � � � 3 � � � � - � � � � � � 3 �
 � / � � (� � � & � � � � � � � 6 8 � �
) a � & � � � � � � � � � � - � / � � < �
 � � � e ' � �
 � �
 � � � � � � �
� � � � � � f � � �
 g h) .
 � � � � � � � �
 � � � �
 �
 � < � / � ' < / � (
� � � & (� �
 � & � � / � (/ � � � � � � / � K �
 � & 6 8 � � (/ � � � � � � / � �
� � � � - � / � �
 � / � � < �
 �
 � � � �
 � / � � � � � � � � � � � � � � � � � �

< � � � � � � � � < � �
 � � � �
 �
 � � � � � / � � � � � 3
 � � � � �
 / � � � '
� �
 � � � � � � � � - � � � - � � �
 �
 � � � � � K � � / � � � � � �
 � �
 �
 � �

� �
 � / � � � � K �
 � & � � � 6 8 � � � 3 � � � � �
 �
 � � � � � � - - � � - � 3

 � � � K �
 � & � � � � � � � < �
 � � � � � � � (& � �
 � 3 � / � � � '
& � �
 � / K � (� / �
 � � - � K �
 � & 6

/ 0 m n 2 4 o p q r s m r s 5 7 8 m t 7 s

: p o 2

u � � � - � � �
 � & � � / � < � / � � � � / � � � � � - � / � � � � � � - � � � � '
 � � � �
 � � � � � �
 � �
 � � � � � � - � 3 � � & (�
 � / � / � � �
 � � '

 � / � � � � �
 � � � < � � � � � (
 � � � �
 � � � � � � � � � � � � � '
/ � � � K � � � � � � & � � �
 / �
 � �
 � / � � - � � � � / � � � � < � / � �

(/ � � � �
 � 6 8 � � � � (/ � � � �
 � 3 � � � � & � � � � K � �
 � � � � � � -

 � � �
 � � � �
 � � � � � - � � � � � � / � � �
 � �
 � / � < �
 � � � � � �
(/ � � � �
 � � � / � � � � � - � / �
 � � � � � �
 � � � � � � �

 � f � 3 � � �
� � � �
 � - � � 3
 � � / � � � � � - � / � � � � � �
 � / � � 3
 � � � � � � / '

� K � � - � � / � < � / � � K �
 � & 6
> � / f � � � � � � � � � / / � � � � �

 � � � � � - � � � � � & (� � '

& � �
 � � �
 � & � � / � < � / � � � � � � & � � �
 � � �
 � � � � �

 � �
u � � � / � �
 K � 3 > � � f �
 � � \ � 6 8 � � � � � � � � � � � � � � ('
� � - � � � � & (� � & � �
 � � - � � � & (�
 � / � / � � �
 � �
 � / � � � � � � K
3 � /
 � � (� / (� � � � � 3
 � � � � � � - � � �
 � � � � � � � - � � � - �
(/ � � � �
 � � � / � � � � � � & � � �
 � � �
 � � � �
 � � � & (� � & � �

�
 6

 � � / � � � < � /
 � � � � � � � � & � � �
 � � � � � - � (/ � � � � '
� � / �
 � �
 � / � � �
 � � & (�
 � � � � < �
 � � � & & � / � � � � D � '
�
 / � �
 � � �
 �
 � / � � �
 � �
 � / � � X D
 � � [� � � � � � �
 � � < � / f
� � / / � � � � �
 �
) � / � / � � F � 6 8 � � � / ~ � � � H I (/ � � � � '
� � / � / � � �
 � �
 � / � < � � � � � � � (� � < �
 �
 � � � �
 � �
 � � � � 3

(/ � � � � � - � � � & (� � K �
 3 � � �
 � � � � � (� �
 3 � / &
 � / � � - �
< � � � �
 � � �
 / � � � � � �
 � � � �
 �
 �
 � � � (� / �
 � � � � 3 �
� � � � � & � � / � (/ � � � � � � / � K �
 � & 6

� (/ � � � �
 f �
 � � � � � � / � � � � � � � � � � �
 � � � � 3
 ' V S u
� / � � �
 � �
 � / � � � � � � � � � � � � � � � � � (� � � K
 / � K � � '
� � � / � � � � � � < �
 �
 � � � �
 � �
 � � � � 3
 � � � � � � - � � � � � � � & '
(�
 � / � / � � �
 � �
 � / � � � � � � (
 �
 � � � � � / - / � � � �
 � �
 � '
� � �
 � 6

> �
 � � �
 & � � � / � (� �
 � �
 �
 � � (/ � � � � � � / & � � � � � �

 � � � � � & (� � & � �
 �
 � � � � � � � �
 � � � � <
 � � � K �
 � &
 �
- / � < � � � � & (� � � �
 K � �
 � � �
 � � � �
 � � � � � / �
 � � � � � -
� 3 � K �
 � & � � � � - � � � � � � (
 � � � � / � � � � � 6 L K � � � � - 3 � � � K

3 � � �
 � � � � � � � � � � - � / � � � � (/ � � � � � � / & � � � � � �
 � � � � & '
(� � � �
 K � 3 � (� / �
 � � � � 3
 � � & � � / � (/ � � � � � � / � K �
 � &
& � K � �
 � � � � / � �
 � � � �

 � � � � � � � � 3 � � < � / � �
 �
 � '
� � �
 - / � � (� 6

V � / / � �
 � K � � & (�
 � / � / � � �
 � �
 � / � � � � � �
 � � � � �
 � �
V � & (�
 � /
 � � � � � � � � - / � � �
 8 V a � � � � � �
 � 3 � / F � O

� 3
 � � � � / � � �
 � � � � � � - � < � /
 6 D �
 � � � / �
 K � � / � 3

 � � � / �
 � � � � � � �
 � � � �
 � � / � � � � � �
 � � � � � � � � & � � K

� � � - � � - � S / � - / � & & � � - � a � - �
 � � � � - � � a � � � - � � � �
� � � �
 / �
 � � � � � � � - K 6

8 � � � � � � � / � � � � � / � � �
 � � 3 � � � � �
 � � � 3 � /
 � �
V � & (�
 � / � / � � �
 � �
 � / � � � � a � - �
 � � � � � �
 / � � � � �

� � � / � � � � �
 � � � � � � � � K � � / 6 8 � � � / �
 � � & � �
 � / � 3
 � � �
V � & (�
 � / � / � � �
 � �
 � / � � � � / � � / � � � � / � � �
 � � � �
 �
 �

� � � �
 / � �
 � < � / f � � - & � � / � (/ � � � � � � / � K �
 � & 3 / � & � � '

 � - / �
 � � � � / � � �
 X D V [� � & (� � � �
 � 6

 � � � �
 � < � / f � �
� & � � � - / � � (� � � � � � � < � / � < / � ((� � -
 � � �
 � / � � � � � �

 � � / � � � � / � � � � / � � �
 / K 6 R � - � / � � � � � < � � � � � � � � / �

 � �
 � � � � / / � �
 � K � � � � � K �
 � � � �
 � 3 � /
 � � � / & � � / � '
(/ � � � � � � / (/ � � � �
 � � � R � - � / � \ (/ � � � � � � � � � � & �
 � �

3 � /
 � � � � & � (/ � � � �
 6 � � � � � � � (� / �
 � � - � K �
 � &
 � �

� � � � � � � � � & & � � � � �
 � � � < �
 � � � � �
 � K �
 � & � � �
 � �
� � � � �
 � � � � 3 � ((� � � �
 � � � � � � � � � � � � � � � � � � (� � 6 D �

 � � � � � � � � � � �
 � � & � �
 � / �
 � � � �
 � � / � � �
 / � � � � � �
 �
) a � � � � � � � / � � � � �
 / � - � �
 � /
 / � � � 3 � / � �
 � � � � '
� � - � � 3 � � �
 � (�
 � � � � � � � � � � � - � � � � � �
 / � � 6 � � (� /

� 3
 � � � / � � � / � � < � / f � �
 � � � �
 � � / � � � f � �
 � � � � � - �
� h � �
 � (� � ' V K � � � h � � / � (/ � - / � & & � � D � �
 / � �
 � � �
 �

V � & (�
 � / 6 8 � � � � � � � - � � � � & (� � & � �
 � � � � #) a � 6

h � / � � � � � � � � � � (� �
 � � 3 � � & (�
 � / � / � � �
 � �
 � / �
� / � � � � / � � � � V � & (�
 � / � / � � �
 � �
 � / � D D � � � V � & '
(�
 � / � � - � � � � / � � - � �
 � � / � K � � / 6 8 � � � � � � � � � � � V D
 V
� � � � D
 V � / � � �
 � �
 � / � � � & � & � / K � � � / � / � � K � D Z � � � � '
� K �
 � & � � � � - � (� / 3 � / & � � � � (/ � � � � � � � - � K �
 � & � � � �
�
 D a � � � - � 6

D �
 � � � / � � � � K � � / �
 � � � �
 � & � K � � � � �

 < � � � & '
(�
 � / � � - � � � � / � � - / � � �
 � � � � � � � �
 � � V � & (�
 � / � / � � � '

 � �
 � / � � � � D �
 � - / �
 � � � � �
 K �
 � & � a � � � - � 6 8 � �
� (
 � � � � � � � � � � � � � � � � �
 � �
 � � � �
 �
 � � � � � � � � � � � �
K � � / (/ � � � �
 < �
 � � � � & (�
 � / � / � � �
 � �
 � / � � � �
 � �
 6

� � � & � � � / � K � � � � � � � �
 � � - �

 � � � & (�
 � / � � - � � � � / '
� � - �
 � � � �
 � 6 � � - � � � � / � � - �
 � � � �
 � & � K � � � � � �
 �

� � � �
 � � � � - / � � (/ � - / � & & � � � � � & (�
 � / � � - � � � � / '
� � - � 3 � � � � < � � -
 � � � / �

 < � K � � / �
 � �
 � / � � � & & � �

 � � � � � � - � � � � / � � - �
 � � � �
 � 6 8 � � � � �
 � � � �
 � / � � � � �

97

� � � � � 	 � � �
 � � � � � �
 	 � � � � 	 � � � � � 	 � � � ! ! � � � % ' ' � � +

�
 	 - . 	 � � . ! � � 	 � � �
 � � 	 � � � � 	 % 	 � � � � 	 - �
 � � � . �

! � � 	 � - � � 	 � � 	 - � � + 	 � � - � 	 � 	 � 9 	 ' � � � � � � . ! � 	 - - 	 +

� � � . � 9 	 � �
 	 % - � � � � D 	 � - � � �
 	 � � + 	 � � 	 	 G

H
 	 ! � � ! � - 	 + % ' ' � � + - -
 � � % + ' 	 - � � � ' % 	 � � � � - 	

� � . � - � � � �
 	 � � . ! � � 	 � � �
 � � 	 � � � � 	 � 	 % � 	 + - � ' � 	 � � -

� � � ' � �
 � � . ! � � 	 � - � � 	 � � 	 � + � � . ! � � 	 � 	 � � � � 	 	 � � � �

- � � + 	 � � - G

O � � - 	 � 9 � - � � � 	 + �
 � �
 	 � � - � � . ' � � % � T � � � � � %

U V W . � � � � ! � � � 	 - - � � - D - � 	 . � � % % ' 	 � 	 ! % � 	 + � � �
 �
 	

� 	 � � � � 	 ' - 	 + - � % � � � � � G [� � � 	 � � % D �
 	 U V W . � � � � �

! � � � 	 - - � � - D - � 	 . � - � - 	 � � � 	 �

 � - � D 	 � � � . ! � � 	 �

- � � 	 � � 	 - � � + 	 � � - � + �
 � � + D 	 � � � . ! � � 	 � 	 � � � � 	 	 � �

� � � - � � + 	 � � - U V W - - 	 . ' % D % � � � � 	 G H
 	 � � � 	
' � � + - � � � % + ' 	 � - 	 + � � � � � � � � � � � � � � � �
 U V W

� f
 . � + 	 % � + + � �
 � 	 � ' � � + �
 � - � ' - � � � � � 	 -

�
 	 � � � 	 � � � ! ! 	 + ! � � � � �
 	 ' � � + G H
 	 + � �
 � 	 �

' � � + � � � % + ' 	 ! � ! � % � 	 + � � �
 . � � 	 - � !
 � - � � � � 	 +

� � � 	 � � � 	 + � � � � � � � � � . ! � � 	 � � - �
 � % - � � W 	 + 9 � �

� � 	 � � � � % % � k ' � � ' � - � � + �
 G

H
 	 + � �
 � 	 � ' � � + � � � % + % - � ' 	 � - 	 + � � �
 9 	 � �

- � � � � � �
 	
 � � � � � � 	 �
 � � - � � �
 � � � 	 + � � � �
 � -

! � � ! � - 	 G H
 	 � � � 	 � � � % + � ! 	 � � 	 � � �
 � k ' � � - D - �

� 	 . ' � - � + � �
 	 - � � � % + ' 	 	 � ' % 	 + G � � � �
 	 � . � � 	 �
�
 	 � 	 � - - � � ! 	 � � � O � � � ! ' � % � � � 	 - - � �
 - � [O � +

� �
 	 � � 	 � G H
 � - � � �
 � � � � � � � � - - � � � ' % 	 � � � . � � 	

 + 9 � � 	 + � % - - 	 - G

H
 	 ! � � ! � - 	 + ' � � + � � � % + % - � % % � � - � � + 	 � � -

� � � � � - � � � � � . � � � � ! � � � 	 - - � � - D - � 	 . �
 � � � �
 � � � 	

� � ! ! � � � ' D � 	 . � 9 � � � �
 	 + � �
 � 	 � ' � � + � + � - � � �

 � V � ' � � 9 	 � - � � � � � �
 	
 � � � � � � 	 � �
 	 U V W � � . ! � �

� ' % 	 . � + 	 % � � - � � + 	 � � � ' � � % � T � % � � ! % 	 � [D � % 	 T � � � � �

! � � � � . . 	 + O � - � � � � � � � � � 	 � � � . ! � � 	 � � � �
 � V � ' � �

- D - � 	 . ' � - � � � 	 � � � 	 G

H
 	 � � � � 	 � � + 	 - � � � ! � � � 	 � � � - ' - 	 + � � � � + �
 	 � U �

' � � T � � � � � % T [U V w w V . � � � � ! � � � 	 - - � � � �
 � �
 � -

� 	 % 	 - 	 + � � � � V k G H
 	 . � � � 	 � � � 	 - � � �
 � - ! � � � 	 - - � �

 � 	 � � - [O � [� �
 � � 	 � � � � 	 � + V � ' � � 	 " � 	 � � % + �

' � - G H
 � - ! � � � 	 - - � � � - ' 	 � � . � � � � � � � � � + � 	 + � �

� 	 # 	 � � . � + 	 � � � � . ! � � 	 � � �
 � � 	 � � � � 	 � � 	 � + - � + - �

 � 	 � % � 	 � � � � 9 	
 + � � ' 	 - � � �
 � � �
 � �
 � - . � � 	

� � % � � 	 � � �
 � � � � 	 � � � 	 �
 � � % � � � � % + 	 9 	 % � ! . 	 � � - G

H
 	 . � � � � ! � � � 	 - - � � ! � � � 	 � � � 	 z � � � 	 - 	 �
 � � �
 	

- � � + 	 � � � � � � ! - � � � � . ! % 	 � 	 �
 	 � � % % � � � � � � - W - � �

� � + 	 � � � � ' � � � � � % % D � � � � � � � � % . � � � � ! � � � 	 - - � � - D - �

� 	 . �

% H
 	
 � - � � - W � - � � 9 	 � � � D �
 � �
 	 ! � � � 	 � �

' � � + ' - � � � 	 � � % � % � � W � � � � � � � � D � - � ! 	 � � � � � %

 � + � � � 	 � 	 � � 	 �
 	 � � � � 	 � � � U T � * - � � � % G

% 	 � % � � W + � 9 � + 	 � � - �
 	 � � . ! % 	 . 	 � � 	 + � - � � � � � 	

� � �
 	 � 	
 + 	 9 � � 	 - G 	 � V T � * - � � � % � - � - 	 +

 - �
 	 [� } � % � � W � � 	 z � 	 � � D � + � T � * - � � � %

� - � - 	 + - � 	 � 	 � 	 � � 	 - � � � % � � � �
 	 - 	 � � % ! � � �

' � + � � 	 � 	 � 	 � � � � � � � � � � � � � D G

% H
 	 � 	 - 	 � � � � � � � � � D � - �
 	 � + 	 - � � � 	 + � + � . ! % 	 �

. 	 � � 	 + � � � � + 	 � � � + 	 ' � � � � 	 �
 	 � 	 - 	 � � ' � � � � �

98

� � � � � 	 � � �
 � 	 � � � �
 � � � � 	
 � � � 	 � � � �
 � � # � �
 	 $ $ � � # � � � 	
 �

� �) � � +) � � 	 � 	 $ 	 � $ � � � � + + � 1 � � � � � + 	 � $ � � � � 	 	

 + �
 6
 8
 + 	 $ � � � �) 	 � � � � + + � 1 � � 	 # � �
 	 $ $ � � � �)
# 	 � � # � 	 � � + $ � � � 	 $ 	 �
 � � � 	
 � + 8 @

� A � 	 �)) � 	 $ $ $ # �
 	 � $ � � 	 � $ 	 � � 	 � �) � � � � � 	 H
� � � � $ 1 � 	 � 	 � � 	 � 	 I � � � I $ � �) M � � A $ � � 	
� � # #) � � $ � � � + � � �
 � � # + 	 � 	 � �) 1 � � � � � � � 	
� � � $ � � � � �) 	 � � �
 � � � � � + � � 	 # 	 � � # � 	 � � + $ 	 + 	
 �

$ � � � � + $ �

 � �) � � � � � � �) 	 Y �
 	 � 	 � � � 8 � � # H
� � � $ @

� A � 	 � Z � 	 I � $ � � 	 � # � � � � � � �) 1 � � � � � 	 $ �
� � � � � � � 1 � �
 � � + + � 1 $ � � 	 $ � �) 	 � � $ � � Y 	 � � � 8
� � � � � � 	
 � � 	 � � + � 	 H + � � �
 � � � $ _ 	 	 � � � # + 	 � 	 � �)
� �) � $ � � �
 � � � � � � �
 � � � 	
 � + 8 @

� A 1 � $ 	 � � � + # � � � $ � � 	 � � 	 � � � � 	 � � �
) 1 � � � � � 	
� �
 	 $ $ � � � �) � � 	 � � � � �
 � � � � � + � � 8 � 	 $ �) � $ � � �
� � � � � $ # � � 	 � � + � � 6 # � � � � � � � 1 � �
 � � + + � 1 $ � 1 �
$ 	 # � � � � 	
 � � $ � + 	 $ � �
 � � � 	
 � � � 	 �
 � � � � 	 � � $ � � �

� � 	 � �
 � � # � �
 	 $ $ � � $ 8 $ � 	 � @

� � � � � � $ $ � � � 	 � � � 	 # � � � 	
 � � � �) 1 � � 	 � � $ _ 	 	 �

 � � # + 	 �) � �) � � � � � � � � # � � � � � � � $ � � 1 1 � � � H

� 	 � � � � $ $ 	 � _ + 8
 �) 	 � �)) � 1 � + � �)) � � � � � � 	
� Z � 	 I @ A � � $ � $ � � 	 � � � + � � $ 6 � � � � 	
 � � # + 	 H

� � � � � � � � 	 � �
 � � # � �
 	 $ $ � �) 	 $ � � � # � � � 	
 � @

MAX3232

RAM

ROM

UART #2

UART #1

PROM

FPGA

Reset

25 MHz Clock

C
on

tr
ol

 S
ig

s

6.
25

 M
H

z
C

lo
ck

Logic

< CPLD >

Control Address <27:0>

Data <7:0>

1 MHz Clock

C
on

tr
ol

 S
ig

s

CPU

< FPGA >

Configuration

� � � � � 	 � � � + �
 6 i � � � � � � � � � � 	 Z � � � � � 8 # 	 i 	 $ � � �

 ! # $ & j l m l m () $ & j l - $ n m

A �) 	 $ � � � � � � � � 	 � 	 1 # � � � 	
 � 1 � $
 � 	 � �) � $ � � � � 	 H

 � � � � � � � _ + 	 + � � �
) 	 Y �
 	 $ � � � � # + 	 � 	 � � � � 	 p Z M � �)

 � � � � � + + � � �
 � � �
 � � � � �
 � � � � 1 � � � $ � � �) � �) � 	 I
� �) � � I
 � � # $ � � $ $ � � 1 � � � � � � � � 	 � @

� � � � � 	 # � � # � $ 	 $ � � # � � � � � 8 # � � � � �) 	 $ � � � � � � + 8
� � 	
 � � � � � � � � � � � Z � 	 I 1 � $ � $) � � $ � � � 	 � � 	 $ � � � H

p Z M @ � $ $ � � � � $ � � 	 _ � � �) � $ # � 1 	 �) H � � � � � 	 � Z � �
� $ � � � � � � � �
 � + + 8 # � � � � � � �) 1 � � � � � 	
 � � � 	 � � $ � �

99

� � � � � � � 	 � " � � � � � % & � (� � �
� � (� & � � � � � � & � " � � � � � � � " � . � & � � � � " �
 � � � � � � " 4

� � � " � " . � � � � � & � " � � � 9 � 4 < � ?
 A � � � � � � � � � � � � � A � � �
� � � & � � � � � � � � � � � < � ? � % � � � " � � � � A � � � � � � % & � 4
. & � M M � � � " � � � � � P �
 � � " % � A � & 4 � % 	 � � � � � � � � �
� � � � � � M % � � � � � � � � � " . � � A � � � � � � � � � � � � � � � A � � " � � �
� � � � & � " � � � � � � � " � . � & � � � � " � � � 9 � & � % � A � & A � � � % 4
% � � � � � � � � � % & � � � � � � � � & � 	

� � � % & � � � � � % � � � & � A � & � A � � � � � � . " � � A � � � � � �
� " � � " � � � " � 9 % & � (� � � " . � � M � � � � � M % � � � � � � � � � A � � �
� � � � � & & � " � � � � � . " % & � � � � � � � & � A � & �
 � " � � & M � � 9 � � � 4
� � � � " � � � M % � " � " � �
 A � � � � � � e � " . � � (� " � � . � � 9 � � �
� � (� " � � � � " � � � � " � � � . � � � " � � � � � � � (� " � � 9 � � � � & � . � 4
" � � % & � � � � � 	 � � � � � " � � � " � � � � � (� & � � � � � � . " � � � � � � � " �

� � � � � � � � � " . � � � � � � � M % � " � " � � � � & � � . � � � � � � �
� � � � . " 	

� � � � � " $ & (+ - / & 2 $ 5

� � � � � & � A � & � % � � � 9 � & M � � � � � " � � � � � � � � � " % & � 4
� � � � % � " . � � � " � A % & � � � � � � � � � . " A � � � � � � � & � � � l l
P �
 � 7 8 : 7 m : � � � � � " � � " � � " � � � � " A � � � � � � � � & 4

� � � l l % & � � � � � % � " . � � � & � 7 > : 7 o : 	 � � � � 9 � � � % & � � � � � % �
% & � � � � � � � & � � � � & � A � � � M % � � M � " � � � � " � � � � & � � e � � �
� & � � � 9 � � � � � � & � � � � " . � � � � � � � M % � " � " � � A � � � �
A � & � A � & � 4 A & � % % � � � � . � � � � & 	 � " � � � � � � � % 7 C :
 � " �
� � � � � � % 7 E r : � " � � A � � � & � � � % � & � � A � & � � � � � � � �

� � � � & " � � � � (� � � � � � % & � (� � � � � % � & � � � � � � � � 9 � � � < � ?
� � & � 	

� � � � 9 � � � � � " � & � � � � . � � A � � � M % � � M � " � � � � " � � �
� � M � P �
 � � � � � � � � � � � � < � ? � � & �
 � " � & � � & � �
% & � (� � � � � � � � � � � � . " A � � � � A � & e 	 G � � � � " � � � " � � & 4
� � e � " . � � � % & � � � � �
 � � A � (� &
 A � � � � M % � � M � " � � � � & � 4
s � � & � � � � " � & � � � � . � � � " � � � % � & � � � P �
 � � & < � � u

� � � � � � " � � � " � � � " � " . � � � < � ? 	
� � � � " � � & � � � � � � � � � " � � & 9 � � � A � � � � (� � � % � � � " � & 4

� � & � � � " � � & � � � � � � � � � � & � A � & � � � � � . " A � � � � � � 4
� � A � � � � & � " � � � 9 � 4 < � ? � % � � � " � � � � � & � "
 A � � � � � �
� � (� " . � � � � � " . � � " � % � � � � � � � A � & � " . � " � � � % & � � � � �
� � � & � 	 � " � % & � � � � � � & � � � � � M % � � M � " � � � � � � � � " � � & 4

9 � � � � � � � � � � % & � . & � M M � � � " � � � � � P �
 � � " � & � "
� " � � � � � & � A � & � � � � � � M 	 l � A � � � � � � � � � � � � � � � � � �
� � � � " � � & 9 � � � � " � � � � � 9 � � � � � � � & � � � � < m o r r o % & � 4
� � � � � & � � � � � � A � � � � & � � � � � " � � � � " � � � � � & & � " � � � � � . "
% & � � � � � � " � A � � � � 9 � � � � � � � � � � � � M � . & � � � � " � � � � � " � A
% & � � � � � � � � � . " 	

� � M � � O P Q S U & 5 W

� � � � X � Z 4 � E > 8 [M � � & � % & � � � � � � & 7 E : � � � � ` u �
M � � � � � 9 � a { 4 � � � � l G < % & � � � � � � & � � " 9 � & M � " . � �
� � � l X X X 4 E > 8 [� � � " � � & �
 A � � � � � � 9 � � � � � � M % � � � 4
� � � A � � � � � � G � � � < � o & � 9 � & � " � � � & � � � � � � � � & � 7 E E : 	
� � � M � � � � � � 9 � � � � � � " � � � � � � � � � � � " � � � " � � � M % � � 4

M � " � � � � " � � � � � G l < � � " � P �
 � � 	 l � � " � � & % � & � � � �

I−Cache D−Cache

AHB Interface

FPU

CP
Debug

Support
Unit

UARTs

Debug
Serial
link Controller

Memory Timers IRQ Ctrl

I/O Port

PROM

AHB/APB

User I/O

I/O SRAM SDRAM

Controller
AHB

PCI

Bridge

AMBA AHB

AMBA APB

LEON Processor

Integer Unit

P � . � & � [h i � � � e u � � . & � M � 9 � � � � X � Z � � & �

� " � " � � . � & � " � �
 � � % � & � � � � " � � & � � � � � " � " � � � � � � � � � � �
� " � % � & � % � � & � � M � � � � � �
 A � � � � � & � � � � � " � � & � � " " � � � � �

(� � � 9 � � � � M % � � M � " � � � � � " � 9 � " � � i � � � i l � ` i
� � � 7 E { :
 � � � � � A " � " P � . � & � [

� � � � X � Z % & � � � � � � & A � � � & � . � " � � � � � � � � . " � � � �
m � & �
 � � � � � & A � � � � A � & e � " . 9 � & � � � X � & � % � � " G % � � �
� . � " � � � " � � � � � & & � " � � � � " � � & � � (� � � % M � " � � �

 � � � � � & � � � � � & � � 	 � � � � & � � & � � � � � � � 9 � � � � X � Z � � & �

A � � M � � � � (� � � � � � � � " � � � � � � & E C C C � " � � � � � � � "
� � " � � " � � � � � � � % . & � � � � � " � � " � � " � � � � � " � � � � � " 	 l "
� & � � & � � % & � M � � � � � � G � � � < � � � " � � & � � " � � " � � � �
� � (� � � % M � " � � 9 � � � � � M 4 � " 4 � � � % � G � < � � � (� � � � � � � " .
G � � � < � � & � �
 � � � X G � M � � � � � � 9 � � � � � � & � � � � � � 9 � &

� � � % & � � � � � � & 9 & � � � � � (� � � � � � � � " � � & � � �
 Z ? 4 �
 � �
� � � � " � � 	

� � � � % & � � � � � � & p A � � � � � � � " � � � " � � � � & " � � � (� � �
� � � � � � � & � � � � < m o r r o � � � � � � � � � � . � � � (� � � 9 � � " 4
� . � & � � � � � � � � " � % & � (� " � % � & � � � � � � � 	 � � � % & � � � � � � &
M � � � �
 � � A � � � � � � � � � 9 � � � � � % % � & � � " . � � 9 � A � & � � � � � �

� & � 9 & � � � � � (� � � � � � � 9 & � M
 � � � � � & � � � � � & � � r 	

� � � % & � M � & � M � � � � � � 9 � � " � . � & � " . � � � � X � Z
� � & � � � � � & � � . � � � � % & � (� � � � . & � % � � � � � � � " � . � & � � � � "

� � � � � � �
 A � � � � � � � � � � � � & � � " � � � � � � " � � e � & " � � � � " 4
� . � & � � � � " � � � � � � � 	 � � � � M � � � � � % & � (� � � � � % � � � " � � �
� � " � . � & � M � � � � 9 � � � M � � � � 9 � " � � � � " � � � � � 	 ` � A � (� &

� � (� & � � M � � � & � � � � & � � � � " � A � & � M � � � � � � � � M � � � �
� � � & � � � � � � � " � & � � & � � � " � & � � � � � . & � � � � & � � " � . � & � 4
� � � � � � � " � � � � � M � � � � 	 � � � � A � � � M % � & � � " � � � � � �
M � � � � � � � � � � � � � � � & � � � " � � � � � A � � � � � � M � e �
� � � � M % � � � � � � A � � � � � � � � � � � � � 9 � � � � � & & � " � � � � � . "
% & � � � � � 	

s � � � � " � � & " � � � � � � � " � � " � � & � � � � � " � � � � � � A � & �
M � � � & � M � (� � � �

s � � � � A � � " � � & " � � ? � � � � A � & � M � � � & � M � (� � � �

t u w x y { } ~ � � � ~ � } �
� �

100

� � � � � �
 �
 � � �
 � � �
 � � � � � � � � � �
 �
 �
 � � � " � # �

 � " � % � & � �

� � � � � �
 �
 � � � " � " �
 + " � , � � � � �
 �
 � #
 � � � � � �

 � �
 � " � % � � � 0
 � � ,
 � 2 # � � � � # � � 5 � � # � � 5
� % � 8 � " � , , � � � �

� � � � � �
 �
 � � � � � � �
 �
 � � � � 0
 � � & < �

 � � � � 8
 � � �
� � � � � � � � � � � � � � �
 �
 � # � �
 � �

 � � � � � � � � � 8 � < � #

& � � < , ,
 � � � � #

� � � � � & < �

 � � � � 8
 � � � ,
 �
 � 8 � � � " � # � � � � # � �

 � � 5 I J K L L K ,
 �
 � 8 � � � � � � # � % � � � , � # � � # � " 2
, � � " � �
 � # � � � 8 � � � � <
 � & � � � ,
 � � �

� � � � 0
 � � � � 8 � � � � � � � �
 � � " , � � " � �
 � # � � � < 8 � �
� � + � �
 � �

 � � �
 0 < � 8
 � � � � � �
 + 8 � < � # & � � � � & � � # �

� � � & � � # < � � � �
 � � �
 � , � � 8 � � 8 � � � � <
 �
 � � � <
 � � �
 + W Y �

 � � � � � + � �
 � � � , � � � � & � �
 � � &
 � � �
 � � �
 � � � � � � 0 < � 8 2

 � � � � � �
 + � 0
 � � " � # � � & + � �

 � � �
 � � � , ,
 � ,
 � �
 � 8 � � 2
� � <
 �
 � � � � ,
 � � � � W � � � � � � < � # � � � � �
 � � 8 �
 �
 � & �

 � � � �
 � #
 � � , � 8 � � 8 � � % � � � � 0 8 � " , � � � �
 + � # � , � � # � � �
� �
 � �
 �
 � �
 �
 � < , � 0 �
 < # � �
 � W

 �
 �
 � � 8 �
 � 8 � � � � <
 � #
 � �
 � " � �
 & � � � 8 � � % � � �
�
 � � < � # & � � < �
 � & � � 0 �
 < � � � � � # �
 � 8

 � , � � 8 � " � �

0 �

 � � 5 �
 �
 � � � 8 � � , � �
 � � # � � � � � ,
 � � � 8
 W Y
 � � < � #

� � � � & � , � � � � & � �
 � � � 8 � < # � " �
 � � # % � � 8 � # � ,
 � � � � � �

 � � 8 �
 � � � < 8 � � �
 � � � �
 �
 � � � d � � � � � � # 8 � 8 � � � � � 0 �
� � � � �
 � � % � � � 0 8 � " , � � � �
 + � � �
 � e < �
 � # W � � � � " � � � �

 � �

 � � ,
 � 8 � � � �
 8 � < � # & � � �

 � # < 8 � #
 � �
 < # � �
 � �

� �
 �
 � � # � � 8 � � # + � �
 � � % � � � � # 8 � < � # & � � � 8
 � � � � #

� � 8 � " , � � � �
 + � � �
 # �

 � 0 � � � � �
 � � "
 �
 � < � �
 � �
 #
� � # 0 � <

 � + � �
 � � � � � 8 � � 8 � ,
 � � � 8 � " , <
 �
 �
 8 � � 2

 � 8
 <
 � � � < 8 � � � 8 � 8 � � � � � �
 � � �

 � # < 8 � #
 �
 � � " W

� � � � � � � � � ! # % � � ')

* � 0
 � �
 �
 � � � � 0 �
 < � � � �
 �
 � � + , � . 8 �
 � �
 � 0
 � � � +
,
 � % � # � # & + 0 � � � � �
 � � � � �
 8 � W � � � � � � � 8 � < # � � � � " 2
< � �
 �
 � # � & < � � �
 � � # 8 � " , � � �
 � � � � 8 � 8 � � & � < � � # � �
8 � � � < � 8
 � � � � �
 �
 � � + , � . ,
 � 8 � � � �
 W

+ , I I * � �
 � � 8
 � � � 2 8 � " , � � �
 � + �
 � " 0 �
 + , � . W Y

8 � � & � < � � #
 � 8 � " , � � � I �
 � � � � " & � + ,
 � �
 � " � � �
 �
� 0 �
 " �
 � < �
 � & � � 0 �

 < � � � � � � �
 � � + , � . 8 �
 � W

� * Y 5 � � � � � " < � �
 �

 � �
 � " < � �
 � �
 � � + , � . 8 �
 � �
� � � 8 � � � < � � 0 < � 0 �

 � � 8 � � � �
 � � �
 < # � �
 � � & � <

 � �

* m � � I 5 K � Y * I � � � � " & � + � � � � < � � � � � # � � � � � � � �

 � � "
 � 8 � " , � � � � � #
 < � ,
 � �
 � " � � � � �
 � � # �
 #
, 8 W

q * d 5 � . � �
 � � q � & < � * < , , �

 d � �
 5 � . �
 �

� % � � � � & � � 0
 � " 0 � � � � �
 � � � � �
 8 � � � < �
 � & � � 0 �
 < � � � �
 �

 � � + , � . 8 �
 � W Y
 � � � � � � � 8 8 � � �
 �
 � � 8 � �
 � �
 � � 0

 � � + , � . � � 2 8 � � ,
 � � � �
 �
 � � � � �
 � � q * d � ,
 � � � � �
� � � & � � # � �
 � � ,
 � 8 � � � �
 � � # 8 � " " < � � 8 �
 � � � �
 �
 � �
& � �
 # < � � � � � # � # � 8 �
 � # d � � � W

: ; s t u < v w x s t w

� � � ,
 �
 �
 + , � # � � � � � � < 8 8 � � � 0 < � � + ,
 � % � #
 � �

 � �
" � # � � � # + , � . 8 �
 � � � � < �
 � & � � 0 �
 < � � � � � � � 0
 2

I m d � ,
 � � � � � �
 � 8 � � � � <
 � & � � � �
 # � �
 � , � �
 0 �
 " W
q < �
 �
 � � � " , � � " � �
 �
 � � � � 0 � �
 � � # �
 # � > � # & < �
� �
 �
 0 � 8 � � �
 � � �
 � � + , � . 8 �
 � �
 � � � � 0
 2 I m d � � �
� < 8 8 � � � 0 < � � + � & � �
 �
 < � � �
 � � ,
 �
 �
 + , � # & � �
 # < � 2
� � �
 � �
 ,
 � �
 � " �
 � �
 � � # & � � � �
 �

 � � � � * m � � I
� � � � " & � �
 � � # 8 � " , � � � # < � � � �
 � � + , I I � 8 � " , � � �

0 �
 + , � . W � � �
 � � < �
 � � � � �
 # � �
 � � + �
 � " � � 0 < � � +

 � 8 � � � � <
 � & � � � � � �
 <
 � � � # � � �
 � � < �
 � � % � �
 � � �
 �

 � � , � � � � & � � �
 + � 0 � " , � � " � �
 � � � � � #
 < � � � � � � � % �
 � �

� @ �
 � �
 � � 0
 2 I m d � ,
 � � � � � �
 � � ,
 �
 �
 + , � & � �
 # �
� �
 � � <
 � � % � � �
 � " � � � � � + " � # � � 8 �
 � � � �
 �
 � �
� �
 # � �
 � W

� � � + , � . 8 �
 � < � � # � �
 � � � � 0
 2 I m d 8 � < � # & �
� + �
 � � � � � � # � �
 � " � � + # � @ �
 � �
 8 � � � � <
 �
 � � � � � � � 2
� � � � � � � � � # � % �
 � �
 + � 0 � �
 # � �
 � � ,
 � � � �
 � & �

 � �
 � # � �
 � � & � �
 # W C � � 8 � " �
 � ,
 � �
 � " � � � < � #
� � � � �
 � � 8 � " , �
 � � � � � 0 # � @ �
 � �
 ,
 � 8 � � � �
 8 � � � � < 2

 �
 � � � � � � # � � < � # & � < � � 0 < � 0 �
 � � � � � � � �
 � � � , �
 0 �
 2
" � � 8 � # � @ �
 � � 8 � � # < �
 �
 � � % �
 � � < � �
 8 � �
 � 8
 <
 � �
0 � �
 <
 � � � � < 8 � � � � � �
 � �
 8 � 8 � � � � � � � � � � & � � # �
 � �
 �

8 � 8 � � � � > � � , � , � � � � � � � � �
 8 W � � � � � , � + � � 8 � � 8 � " , �
 2
� � � � � � � < � # & � � 0 < � �
 � # � @ �
 � �
 �
 < # � �
 �
 � < , � �
� , � � # � � � � �
 � � �
 � � % � � � 0 � � � � � � # � � � & � <
 8 � " 2
, <
 �
 �
 8 � �
 � 8
 <
 � � 8 � � 8 � ,
 � W

� � � F � � � # � 2 � � G � �
 <
 � � 0
 � � ,
 � � � 8
 � � � � � � �
 < 2
� �
 �
 � � � , �
 � " � �
 � �
 � # � @ �
 � �
 ,
 � 8 � � � �
 �
 8 � � 2

 � 8
 <
 � � � � # 8 � � � � <
 �
 � � � � � � � # � � � � �
 � �
 � � 8 � � � �
,
 � 8 � � � & + � # # � � � � ,
 � 8
 � 8 � � � � # �
 �
 � �
 � � �
 + � � #
8 � � 8 � ,
 � & � � � �
 � < � �
 W

H I v � v � K L s � M

� � � � �
 � # � � 8
 � & � # � �
 � � � , � , �
 � �
 � & � � � � � #
 � � & � 2
� � 8 � �
 # � �
 � # � � � � � � � # 8 � " , � � � �

 � e < �
 � " � �
 � � 0
�
 � 8 � � � � <
 � & � � � �
 # � �
 � & � �
 # < � � � � � � + �
 � � � � � 2
� & � � 5 O q + " � # � � � 0 � " � 8
 � ,
 � 8 � � � �
 W � � � � � �

 � � � � � � # � � � � � 0
 � "
 � � � � �
 � � �
 � # � � � � � � � # & < � � #
� # � # � 8 �
 � # � �
 # � �
 � & � �
 # & � � � # � �
 � � ,
 �
 �
 + , �
,
 � � � 8
 # � � � � � W � � � � & � �
 # 8 � < � # � � 8 � < # �
 � � � ,
 � � �

 � �
 �
 � � �
 � �
 " < �
 � , � � 8 � � � � <
 �
 � � � � � 0
 � � + , � .
8 �
 � � � �
 � % �
 + � � � # � �
 � � � � 0 8 � " , � � � �
 + � �
 � � % 2
�
 � � # � @ �
 � �
 ,
 � 8 � � � �
 �
 8 � �
 � 8
 <
 � � � � " , � � " � �
 � � �

 � � �
 � � # �
 # � > � # & < � � �
 �
 0 � 8 � ,
 �
 � 8 � � � � �
 � � � � �
& � �
 # � < � � � � " < �
 � , � � < � �
 8 � � � � <
 �
 � � � m � � 5 � W

* � % �
 � � # � @ �
 � �
 ,
 � 8 � � � �
 �
 8 � �
 � 8
 <
 � � 8 � < � # � � � �
& � � % � � < �
 � # � �
 � � � �
 # � �
 � � + �
 � " � 0 �
 � � � " , � � � �
� + �
 � � � � � � & � � 5 O q + " � # � � � 0
 � � 5 I J K L L K 8 � < � # & �
� � � � � � # � � # � " , � � " � �
 � # W � � � � � � + 8 � � �

 � � �
 � 0 �

� " , � � " � �
 � � � � ,
 � 8 � � � �
 �
 8 � �
 � 8
 <
 � � �
 � �
 � 8 � � 2
� � <
 � & � � � �
 # � �
 � & � �
 # �
 �
 � �

 � � + � " , � � " � �

101

� � � � � 	 � � � �
 	 � � � � � � � �
 	 � � � � � � � 	 " 	 $ � � & � � � � 	 � �

�
 	 $ � � & + � � + � 	 	 + . � $ � & � 	 � � � � 	 2

 � � � 4 � 5 6 � 8

� � � � 2 � � � $: 	 � � � ; < = � > � ? ? � @ A ; C A D E F G ; 2
� � � $: 	 � ! 	 $ 	 � � �
 � " 	 � 	 � . 	 � K L L K 2

 � � � % % O O O 2 � � � $: 	 � 2 � � � 2

� K � S � � � � � � 	 � � $ � & � " 	 � & (� � $ � � � & � � V � & � S � Y
� � 	 � � � � * [$ � & �] � $ � � � , � � + O � � 	 � & + � � � � Y

: � � � � & � � � � � � �] � � � � 	 � � � $ � 	 � $ V 	 � �
 Y
� & � � 1 3 < C 5 A d < e < = g < i e E k ; C m C o d F k ; o k E C ; r G >

E o s k F < = � K L L K 2

� 6 � " � & � 	 : 9 : : � � + � " � � u + , � : : � & + � ; � �
 � : � $ S � � Y

 � � S � � � � � 	 : � 	 	 � � * ? & �
 	 " 	 $ � � & � � � ; 	 O

] � [(� �
 � � 	 � � � � 	 � � � � 	 + � � � � � � � : � � � � $ 	 $ � 1
3 < C 5 A d < e < = g < i e E k ; C m C o d F k ; o k E C ; r G E o s >

k F < = � K L L K 2

� A � � 2 � � � � � * , � & + $ Y � &] � � � � 	 � (� �
 � � 	 � � � � 	 Y
V 	 � �
 � & � � � � � 	 $ $ � � � & + � & � 	 � � � � 	 + � � $ � 	 � $ " 	 Y
$ � � & O � �
 � � � ($ � 1 K L L � 2

� � � H � : � & I � K = k C < G E o k F < = k < k d ; � F C k ; � K K � C < G >
E o k � s i F � � 2 H � : � & I � & � � " 	 � 	 � . 	 � K L L � 2

 � � � % % O O O 2 I � : � & I 2 � � � 2

� � � H � : � & I � � F C k ; � K K m G � s = o ; � C < G E o k � e ; o >
F � o s k F < = 2 H � : � & I � & � � � 	 � 	 � . 	 � K L L K 2

 � � � % % O O O 2 I � : � & I 2 � � � 2

� M � H � : � & I � � F C k ; � K K � C < k < k � e ; � � s k � < C i
@ A ; C A D E F G ; 2 H � : � & I � & � � � � & 	 K L L � 2

 � � � % % O O O 2 I � : � & I 2 � � � 2

� � � H � : : � & I � � F C k ; � K K � � s k � < C i � � D m N s = G >
� < < 5 2 H � : � & I � & � � " 	 � 	 � . 	 � K L L � 2

 � � � % % O O O 2 I � : � & I 2 � � � 2

� P � (� � 	 : � * (� � 	 : (V K P R S L K L � : � $
 S 	 � � � � � 1
� 	 �
 2 � 	 2 � (� � 	 :] � � � � � � � � & � S � � K L L K 2

 � � � % % O O O 2 � � � 	 : 2 � � � 2

� � L � � � � � � * � � � � � � � 6 R S � L K A R � � � � � � ! (S � 1 � 	 �
 2
� 	 2 � � & � 	 � � � � 	 + � � : � � � & � � : � � � � & $ � & � � � � : � K L L K 2

 � � � % % O O O 2 � $ $ � 2 � � � 2

� � � � � � (!] � � � m � g � � Z s = E s � 2 � � (!]
� & � 	 � & � � � � & � : � & � � � � & � � � � � P P K 2

 � � � % % O O O 2 $ � � � 2 � � � 2

� � K � (! S � m Z] m � e ; o F � o s k F < = � � ? 2 (! S R � � Y
� � 	 + � S � � � P P P 2
 � � � % % O O O 2 � � � 2 � � � 2

102

Use of HDLs in Teaching of Computer Hardware Courses

Zvonko Vranesic and Stephen Brown
University of Toronto

{zvonko@eecg.toronto.edu}

Abstract
A modern treatment of an introductory course on the design of
logic circuits should include an early introduction of a hard-
ware description language (HDL). This can done without sac-
rificing the emphasis on fundamental concepts of logic circuit
design. An example of how this may be achieved is given.

1 Introduction

This presentation focuses on the use of hardware de-
scription languages and design automation tools in the
teaching of courses on logic circuits and computer ar-
chitecture. It is based on the experience gained at the
University of Toronto, which involved courses in Com-
puter Engineering, Electrical Engineering, and Com-
puter Science programs.

While there has been considerable debate about the
optimal way of structuring the courses that teach the
concepts of computer hardware, a traditional sequence
based on an introductory course in the design of logic
circuits and a subsequent course in computer organi-
zation (architecture) is still a very attractive option. It
is even better if these courses are followed by a more
advanced course in computerarchitecture. This is the
structure at the University of Toronto. Each course is
accompanied by a laboratory in which students develop
a real understanding of the key concepts and the various
ways in which they may be implemented in practice.
For the purposes of this discussion, we will assume just
the basic two-course sequence.

2 Logic Circuits

A course in logic circuits can be taught effectively as
soon as the students have acquired an understanding
of some high-level programming language and have
learned the fundamentals of good programming prac-
tices. The course should emphasize the important con-
cepts which include the notions of implementability,
cost, optimization, timing, stability, and performance.
The amount of material that can be covered depends on
the length of the course, the ability of the students, and
the quality of the supporting facilities comprising labo-
ratories and CAD tools.

While everybody agrees that the students must learn
about logic functions and their implementation, arith-
metic circuits, multiplexers, decoders, flip-flops, coun-
ters, finite-state machines, and other standard circuits,
there is less agreement about the means used to expose
students to this material. In particular, when and how
should the students discover CAD tools, and what lab-
oratory exercises provide the best learning experience?

Today it is highly advisable to introduce a hardware
description language (HDL) as soon as possible. With-
out an HDL it is impossible to exploit properly the
capabilities of CAD tools and FPGA-based laboratory
equipment. A prudent choice of HDL is either Verilog
or VHDL. It should be noted that Verilog is winning the
battle in the industrial environment of North America,
so it is likely that it will gain greater favor with aca-
demics in the near future.

Our experience shows that the HDL can be intro-
duced surprisingly early. Moreover, the instructor need
not spend an inordinate amount of time teaching the in-
tricacies of the language. Students are keen to learn
and use the HDL because of its obvious practical value,
hence they are willing to learn on their own many de-
tails that are illustrated in examples given in the text-
book. During lectures, the instructor has to focus on
explaining the important differences between the HDL
and computer programming languages that students are
familiar with. For example, explaining the key differ-
ences between Verilog and C can lead to fascinating
lectures. Since the HDL will be used in laboratory ex-
ercises, which requires a certain amount of homework
preparation, the material that should be taught in the
classroom may be covered in as little as three to four
lectures. This approach is particularly viable if the text-
book integrates efficiently the discussion of logic circuit
concepts and their possible HDL descriptions.

3 Introducing HDL - A Practical
Approach

A good understanding of computer hardware must be
based on a good understanding of underlying logic
circuits. An HDL, particularly when used at the
behavioral level, can mask many important aspects of
logic circuits. Therefore, it is important to find a good
balance between teaching the students the essence of

103

FA

xn 1–

cn cn 1–

yn 1–

sn 1–

FA

x1

c2

y1

s1

FA
c1

x0 y0

s0

c0

MSB position LSB position

Figure 1: Ann-bit ripple-carry adder.

circuits and the efficiency of design using the HDL and
CAD tools. It is particularly important that using the
HDL does not obscure the existence of fundamental
logic blocks such as gates and flip-flops. To illustrate
this notion, we will consider an example based on a
ripple-carry adder, using Verilog as the HDL [1].

Figure 1 shows the general structure of ann-bit
ripple-carry adder, comprising a cascade of full-adder
circuits. Knowing that the full-adder is defined by the
logic expressions

s = x ⊕ y ⊕ Cin

Cout = x · y + x · Cin + y · Cin

it is easy to visualize the functionality of the cascaded
circuit, as well as the propagation delay due to the
rippling of the carry. Using these expressions, the
full-adder can be defined in Verilog as shown in Figure
2.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x∧ y ∧ Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 2: Verilog code for the full-adder.

Now, we can specify a ripple-carry adder structurally
as indicated in Figure 3. To keep the example simple,
this specification defines the inputsX andY , as well
as the sumS, as four-bit vectors. The internal carries
are defined as a three-bit vectorC. The structure of the
resulting circuit is the same as in Figure 1.

This would be an awkward way of describing a larger
n-bit adder, so we can use a generic specification in-
stead. The ripple-carry adder in Figure 1 can be de-
scribed using the expressions

sk = xk ⊕ yk ⊕ ck

ck+1 = xkyk + xkck + ykck

module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);

endmodule

Figure 3: A four-bit adder.

for k = 0, 1, . . . , n − 1. A Verilog specification of the
adder based on these expressions is given in Figure 4. It
is apparent that this approach also implements the cas-
caded adder structure. Next, the students should learn
that Verilog includes higher-level constructs for specifi-
cation of commonly used circuits. One such construct
uses the arithmetic assignment statement, which allows
the adder to be specified as shown in Figure 5. We can
add to this circuit the capability to produce the carry-out
and arithmetic overflow signals as presented in Figure 6.
The expressions for these two signals are

carryout = xn−1yn−1 + xn−1sn−1 + yn−1sn−1

overflow = carryout ⊕ xn−1 ⊕ yn−1 ⊕ sn−1

They can be derived as a useful exercise.
A more elegant way of specifying the same circuit is

given in Figure 7. It uses an (n + 1)-bit vector named
Sum. The extra bit,Sum[n], becomes the carry-out from
bit positionn − 1 in the adder. To make the addends
n + 1 bits long, the vectorsX andY have a zero con-
catenated on the left side. This conveniently introduces
the Verilog concatenate operator. It also ensures that the
students seeX andY as bits in a circuit rather than just
numbers.

Having introduced the idea of concatenation in Ver-
ilog, our circuit can be defined more compactly as
shown in Figure 8. Finally, at this point the students
can see that even the full-adder circuit can be defined
behaviorally as depicted in Figure 9.

104

The progressive sequence of showing the students
different ways in which Verilog code can specify an
n-bit adder teaches a number of important aspects of
Verilog. It shows the difference between structural and
behavioral approaches in defining circuits. It illustrates
how a for loop generates a cascade by replicating a
subcircuit n times. It indicates that powerful state-
ments, such as the arithmetic assignment statement, ex-
ist which lead to simple and easily understandable code.
It also shows how clever ideas, exploiting the notion of
concatenation in our example, can be used to good ef-
fect.

It is important to understand that a behavioral spec-
ification will not necessarily lead to a circuit structured
in the form that the designer may envisage, perhaps as
learned from a textbook. When the Verilog compiler of
a given CAD tool encounters a construct used to define
a commonly used circuit, it will attempt to use a pre-
defined module from a library of parameterized mod-
ules provided with the CAD tool. Moreover, if the de-
signed circuit is to be implemented in a technology such
as an FPGA, then the final implementation will be in
the form of logic elements used in a particular FPGA
device. Thus, the implementation may not involve the
basic gates that one saw in the lectures!

4 Computer Organization

A good laboratory is essential for conveying the essence
of the various structures found in computer systems.
The students should learn what a computer looks like
through the eyes of a programmer interested primarily
in using the machine and a designer intent on develop-
ing the hardware needed to build systems. At the Uni-
versity of Toronto we use the Ultragizmo board, which
is a custom board containing a Motorola 68000-based
microcontroller device, an FPGA device and a variety
of interfaces that allow the board to be connected to
our main laboratory system which includes a full net-
working capability. We also use Altera’s UP-1 boards,
which include programmable logic devices, to provide
additional capability.

Typical experiments include investigation of simple
I/O using parallel and serial ports, interrupts, adding
SRAM chips, DMA controllers, design of arithmetic
circuits, A/D and D/A interfaces, and various applica-
tions such as processing of sound and controlling simple
Lego-implemented robots. At the end of our courses,
we tend to have a three-week project for which students
may implement anything that the instructor deems inter-
esting. The project may entail even designing a simple
processor, or building an interesting system based on an
existing soft-core processor that may be instantiated in
the FPGA.

The FPGA device makes it possible to quickly im-
plement relatively complexcircuits needed in specific
experiments. Of course, these circuits have to be spec-
ified in the HDL. This raises an interesting question
about the necessary competence of students in terms

of the HDL use. More specifically, is the knowledge
gained in the introductory logic course sufficient to deal
successfully with more ambitious designs needed in this
laboratory.

Instructors habitually complain that the students do
not know as much as they should. Specifically, given a
rather limited exposure to the HDL in the logic course,
they cannot immediately tackle more demanding tasks
in the computer organization laboratory. Indeed, this
may be true, particularly in the case of weaker students.
However, with just a single refresher tutorial on DOs
and DON’Ts of the HDL the students can be brought to
a level where they can handle the requirements of the
laboratory. As with most subjects, an early exposure
to the HDL, followed by a short review and subsequent
intensive use in the follow-on course, will leave the stu-
dents with reasonable competence and a great deal of
self-satisfaction.

The described approach has been successful in our
practice. It has led to the development of three books
[1-3]. The feedback from our students has been very
positive.

5 References

1. S. Brown and Z. Vranesic,Fundamentals of Digi-
tal Logic with Verilog Design, McGraw-Hill, 2002.

2. S. Brown and Z. Vranesic,Fundamentals of Digi-
tal Logic with VHDL Design, McGraw-Hill, 2000.

3. V.C. Hamacher, Z. Vranesic and S. Zaky,Com-
puter Organization, ed. 5, McGraw-Hill, 2002.

105

module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout;
reg [n−1:0] S;
reg carryout;
reg [n:0] C;
integer k;

always @(X or Y or carryin)
begin

C[0] = carryin;
for (k = 0; k < n; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k]);

end
carryout = C[n];

end

endmodule

Figure 4: A generic specification of a ripple-carry adder.

module addern (carryin, X, Y, S);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
reg [n−1:0] S;

always @(X or Y or carryin)
S = X + Y + carryin;

endmodule

Figure 5: Specification of ann-bit adder using arithmetic assignment.

106

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout, overflow;
reg [n−1:0] S;
reg carryout, overflow;

always @(X or Y or carryin)
begin

S = X + Y + carryin;
carryout = (X[n−1] & Y[n−1]) | (X[n−1] & ∼S[n−1]) | (Y[n−1] & ∼S[n−1]);
overflow = carryout∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

Figure 6: Ann-bit adder with carry-out and overflow signals.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout, overflow;
reg [n−1:0] S;
reg carryout, overflow;
reg [n:0] Sum;

always @(X or Y or carryin)
begin

Sum ={1’b0, X} + {1’b0, Y} + carryin;
S = Sum[n−1:0];
carryout = Sum[n];
overflow = carryout∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

Figure 7: A different specification ofn-bit adder.

107

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout, overflow;
reg [n−1:0] S;
reg carryout, overflow;

always @(X or Y or carryin)
begin

{carryout, S} = X + Y + carryin;
overflow = carryout∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

Figure 8: Simplified complete specification of ann-bit adder.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;
reg s, Cout;

always @(x or y or Cin)
{Cout, s} = x + y + Cin;

endmodule

Figure 9: Behavioral specification of a full-adder.

108

