
Laboratory Options for the Computer Science Major
Christopher Vickery

Tamara Blain
Queens College of CUNY

Computer Science and Computer Engineering programs typically converge on the Dynamic-Static Interface (DSI)
from opposite directions. Computer Science (CS) introduces students to system architecture and organization so
they can have a better appreciation for the mechanisms that make their software work, whereas Computer Engineer-
ing (CE) introduces students to software design so they can have a better appreciation for the software that will be
using the hardware systems they design. Mindful of this distinction between CS and CE, we chronicle the efforts of
our CS department to capitalize on current trends in the design and implementation of digital systems to extend our
students’ expertise in this area. We summarize the current curriculum in our department, present a survey of the
language options we have explored for evolving our curriculum, and conclude with a brief description of the labora-
tory environment we have adopted, which is centered on the Handel-C hardware implementation language.

1 Introduction
Computer Science and Computer Engineering curricula
have traditionally brought significantly different per-
spectives to bear on what to cover and how to teach
computer architecture, the point where the two disci-
plines meet. Broadly speaking, the CS students bring
good software skills to their architecture courses,
whereas the CE students bring stronger circuit design
skills to theirs. The distinction carries over to the de-
sign of digital systems in industry, where a software
team and a separate engineering team typically work in
parallel during the development of a new product
(codesign), with software/hardware integration occur-
ring late in the development cycle.

But the inexorable advance of circuit complexity has
caused the traditional engineer/programmer dichotomy
to start to break down. We are not talking here about
shifting the dynamic-static interface [23, 25] for a par-
ticular system design, nor about the dual roles individu-
als might play in a design effort. Rather, we are
responding to changes in the way digital systems are
developed due to changes in the functionality of pro-
grammable logic devices (FPGAs in particular) and the
software tools used to develop systems using them.

Ours is a Computer Science department in a liberal arts
college. There is no engineering department on cam-
pus. Although the university encourages cooperation
among its member colleges, the fact remains that the
closest CE courses available to our students are a 90-
minute subway ride away from us. In this context of
CS isolated from CE, this paper reports on the options
we have considered as we adjust our curriculum to pro-
vide our undergraduate students with a better under-
standing of the principles and practices of
implementing digital architectures.

2 Context: A CS Department
Our undergraduate curriculum prepares students in the
broad areas of i)software design and implementation, ii)
formal methods, iii) hardware design, and iv) applica-
tions, in roughly that order of emphasis. Our offerings
in the “hardware design” area include a course in as-
sembly language and basic logic design, and a second
course that covers additional logic design and an intro-
duction to computer architecture. We have used a
number of textbooks for these courses over the years,
never finding ones that both students and faculty found
completely suitable. The current text for both courses
is by Murdocca and Heuring [22].

Our curriculum also includes a “Hardware Laboratory”
course, which has not been offered in recent years.
This course was developed in the days of SSI and MSI
integrated circuits and dropped by the wayside as simu-
lators have allowed us to develop a similar degree of
mastery to the old lab course without requiring the stu-
dents to spend time in the lab itself. Thus, the closest
our students have come to a hardware laboratory ex-
perience for the past several years has been through
simulation assignments in the two courses mentioned
above. The student edition of CircuitMaker [2] has
served our purposes in this regard, although the free
version must be installed only on the students’ personal
computers, not in college laboratory facilities.

Four years ago, we received NSF funding [16] to revise
our curriculum to use HDLs to give our students a more
realistic view of circuit design technologies. Our stated
goals were, “to give all of our students some knowledge
of the methods that are used in designing modern digi-
tal circuits [and] to provide those students who are in-
terested with hands-on experience in designing and
using digital logic as a method of teaching them about
computer architecture.”

At the time we prepared our grant proposal, VHDL
seemed to be the natural vehicle for introducing CS
students to logic design, leveraging their existing soft-
ware skills to introduce them to hardware design tech-
niques. There were several textbooks based on VHDL
available, it was an IEEE Standard, and seemed gener-
ally well suited to our needs. Although Verilog also
become an IEEE Standard in 1995, at the time of our
grant proposal, VHDL seemed like the most straight-
forward way to go. Since then, there has been a good
deal of foment in the CAD world, propelled by the need
for tools to adapt to the ever-increasing complexity of
digital devices. What follows is a survey of the evolv-
ing software development options we have seen.

3 Laboratory Options
A first question CS departments have to answer in
planning instruction in digital design is whether to fo-
cus on simulation only, or to have the students target
actual hardware devices. A second question is whether
to use commercial development tools or instructional
software. Once those questions are resolved, the issues
of software and (if hardware devices are targeted) pro-
totyping platforms need to be addressed.

3.1.1 Simulation or Hardware?
Simulation is a critical step in developing new hardware
designs, but in an instructional environment, simulation
can arguably be the end step in a student’s lab experi-
ence.

There are several arguments for using only simulation
for introducing CS students to the design of digital sys-
tems:

• Cost. Except for the computers to run the simula-
tions, a relatively abundant commodity, simulation
avoids the overhead and costs of purchasing and
maintaining prototyping equipment and instrumen-
tation for a laboratory.

• Ease of debugging. In addition to avoiding the
issues associated with bad connections and failed
components, simulation provides a software view of
the system under development which is not only
more familiar to CS students, but also more flexible
than hardware in terms of allowing students to visu-
alize and locate problems in their designs.

• Simplicity. Development tools for hardware im-
plementations need to provide a richer feature set
than instructional simulations. The result can be
that students need to spend more effort learning to
use the tool than studying the simulations.

On the other hand, implementing actual circuits can be
much more motivating than just running “yet another
program.”

We have not had good luck with most of the student-
oriented simulators for logic design that are available at
low or no cost. Many had problems with reliable
schematic entry, and many have had unnecessarily poor
user interfaces. The student edition of the CircuitMaker
schematic entry and simulation software from Altium
cited above has been the best we have found so far [2].
Compared to a textbook-only presentation, it’s far supe-
rior. But it limits the size of the designs students can
implement, cannot be installed in departmental labs for
free, and it doesn’t provide a tie-in to actual hardware
implementation.

Another option for those graduates who become inter-
ested in chip design is to send them to commercially
available short courses that teach digital IC or systems
design, ECAD, or hardware/software codesign. But the
danger in these courses is that there is “insufficient time
to address any topic in the depth required by students to
gain proper insight into the subject area”. Thus these
courses may not adequately provide them with the skill
set necessary for designing and implementing complex
distributed embedded systems and Systems on Chip
(SOCs) [12]. And, of course, this option begs the ques-
tion of what to do in the context of a university curricu-
lum.

The gamut of options available for implementing cir-
cuits in hardware is extremely broad, ranging from in-
expensive breadboards with SSI and MSI ICs
connected by jumper wires to industrial-grade prototyp-
ing systems used in the development of commercial
ASIC designs at costs that are prohibitively high for
virtually all instructional purposes. FPGA-based de-
velopment systems strike a middle ground between
these two extremes, and are particularly well suited to
instructional laboratories. The boards are self-
contained units requiring no assembly on the part of the
student, although expansion headers are normally avail-
able for customized projects. Student designs are pre-
pared and simulated on PCs, and downloaded to the
prototyping board through a serial or parallel cable.
The use of reprogrammable FPGAs as the implementa-
tion target gives students a development cycle familiar
to them familiar from the software development world:
edit, compile, debug.

Major FPGA vendors, notably Altera and Xilinx, pro-
vide inexpensive or free student versions of their com-
mercial tools for FPGA development suitable for use
with a variety of prototyping boards from companies
such as Xess and Digilent. An inexpensive package
available from Altera’s University Program, for exam-
ple, includes a prototyping board with a 20,000 gate

FPGA, several LEDs, displays, and switches mounted
on the board, and I/O connectors for a mouse and VGA
display. This kit comes packaged with a good tutorial
volume [17] featuring a number of interesting projects
students can do. The kit includes a student edition of
Altera’s MAX+Plus development software, which in-
cludes schematic, waveform, and HDL text editors for
design entry. It should be noted, however, that this kit
uses a relatively small FPGA by today’s standards, (not
large enough to implement a full CPU) and that the
MAX+Plus software does not provide the same func-
tionality as Altera’s Quartus toolchain. Systems of this
type are more appropriate for introductory logic design
laboratories rather than CS Computer Architecture
courses, where students need to explore architectural
design parameters.

Hardware Description Languages (HDLs), most com-
monly VHDL and/or Verilog, are the most commonly
used means for entering designs for platforms like those
discussed so far. But today’s FPGA devices can have
millions of gates instead of tens of thousands, providing
architecture students with hardware targets rich enough
to support investigations into topics as advanced as
pipelining, cache design, and multiprocessor communi-
cation, not just basic logic design. Furthermore HDL
programming is evolving to deal with the complexity of
these newer devices. We review some of these lan-
guages below. An appealing alternative to working
with an HDL or one of its derivatives, at least for CS
students who are approaching the DSI from the soft-
ware side, is to use a language based on a traditional
High Level Programming Language (HLL). After our
survey HDLs and their derivatives, we will turn our
attention to Handel-C, a hardware implementation lan-
guage based on C that we are adopting for use by our
CS majors.

4 HDLs and Their Derivatives

4.1.1 Verilog and VHDL
Hardware design is dominated by the use of Verilog
and VHDL. They are most powerful as gate-level im-
plementation languages [1][3]. VHDL allows a multi-
tude of language or user-defined data types, which may
mean confusing conversion functions needed to convert
objects from one type to the other. All of the logical
operators, NAND, NOR, XOR, etc, are included in
VHDL but separate constructs, typically defined using
the VITAL language, must be used to define cell primi-
tives of ASIC and FPGA libraries. VHDL offers a
great deal of flexibility in terms of its abundance of
permissible coding styles. It allows for concurrent syn-
chronization schemes, such as semaphores. VHDL is
better suited than Verilog to handle very complex de-

signs. It is relatively weaker in lower level designs but
superior in higher level and system level designs, which
results in slower simulations. Its wealth of constructs,
attributes, and types make VHDL a good language for
design and verification [7]. It is strongly typed and
there are many ways to model the same circuit, features
which make it more robust and powerful than Verilog
but also more complex. This complexity means it is
more difficult to understand and use.

Verilog has adopted many of VHDL’s features, thus
Verilog is moving towards increasing complexity as
well [7]. Verilog is used for high-speed gate-level and
register-level circuit descriptions, fast IC modeling and
RTL simulation, easy synthesis, and test applications
[9]. Gate simulations in Verilog are 10x to 100x faster
than the same simulations in VHDL, which means
shorter time to verify designs [8]. Compared to VHDL,
Verilog data types are simple, easy to use and geared
towards modeling hardware structure as opposed to
abstract modeling. Because it is simpler, Verilog is
easier to learn. On a Verilog vs. VHDL debate forum,
an engineer who knows both languages cites: “If you
were just taught Verilog syntax, you're in trouble. If
you were taught syntax with guidelines, and warned
about legal Verilog constructs that should never be
used, you can gain expertise in half the time it takes to
become proficient in VHDL [8].” Because of its back-
ground as an interpretive language, there are no librar-
ies in Verilog whereas VHDL stores compiled entities,
architectures, packages, and configurations. Verilog
was originally developed with gate-level modeling in
mind, and so has very good constructs for modeling at
this level and for modeling cell primitives of ASIC and
FPGA libraries. For this reason, students may find Ver-
ilog more digestible than VHDL at first. Because it is
geared towards lower level modeling, it is faster in
simulations and effective synthesis. It lacks, however,
constructs needed for system level specifications. Ver-
ilog’s simple, intuitive and effective way of describing
digital circuits for modeling, simulation, and analysis
purposes make it very popular in the industry.

4.1.2 ESL Design
There is a movement towards system level modeling,
also called electronic system level (ESL) design. This
is the design of an electronic product at the conceptual
level, including hardware/software codesign; design
partitioning, and specification writing [20]. It demands
being able to describe requirements and functions inde-
pendently of implementation, and being able to talk
about interfaces and protocols without describing the
actual hardware [19]. Verilog is neither object-oriented
nor strongly typed, which makes it cumbersome for
system level design. Also, the previously attractive
flexibility of its syntax can lead to difficult to detect

errors. Neither Verilog nor VHDL provides the syntax
or semantics to describe a product at the system level
[20]. The trend of RTL engineers moving up in ab-
straction and systems engineer moving down, as well as
the fact that both Verilog and VHDL have shortcom-
ings in the requirements of ESL design, has necessi-
tated the need for either a new language, or the
extension of an existing language to bridge the gap be-
tween specification and implementation. The new topic
of debate is the question of which language is right for
ESL design [20].

4.1.3 Extended HDLs
Superlog is an extension of Verilog that includes fea-
tures that allow a more abstract description of an elec-
tronic system [20]. While most of the semantic
elements added were borrowed from VHDL, it retains
most of the features of Verilog, including support for
hierarchy, events, timing, concurrency, and multi-
valued logic [6]. Superlog’s major technical advan-
tages over VHDL are a clean and powerful interface to
C that allows hardware/software codesign, and C-based
constructs for system design and decomposition [1]. It
borrows useful features from C and Java, including
support for dynamic processes, recursion, arrays, and
pointers. It also includes support for communicating
processes with interfaces, protocol definition, state ma-
chines, and queuing. It has been estimated that Super-
log needs one half to one third the number of lines of
code to describe a function as Verilog at the same ab-
straction level, and Superlog can go much higher in
abstraction [6].

System Verilog. A radically revised version of Verilog
was presented at the 2001 International HDL Confer-
ence [15]. These changes represent a move towards an
even higher level of abstraction for the language and an
extension to its capability to verify large designs. Sys-
temVerilog is a blend of Verilog, C/C++, and Superlog
that allows module connections at a high level of ab-
straction [15]. Verilog currently allows the connection
of one module to another only through module ports,
which can be tedious. SystemVerilog introduces inter-
faces which makes it possible to begin a design without
first establishing all the module connections. C-
language constructs, such as globals, are another addi-
tion. In Verilog, only modules and primitive names can
be global. SystemVerilog allows global variables and
functions. SystemVerilog borrows abstract data types
from C, such as ‘bit’, ‘char’, ‘int’, and ‘logic’, which
provide more versatility then the existing ‘reg’ and ‘net’
types and allows C/C++ code to be included directly in
Verilog models and verification routines. Also in-
cluded is an assertion construct, similar to VHDL’s,
intended to do away with proprietary assertion lan-
guages. Because there’s much in Superlog that is not

part of SystemVerilog, Superlog will remain a superset
of SystemVerilog. With its new additions, SystemVer-
ilog may remove some of the impetus for C-language
design, at least for RTL chip designers. The question of
whether or not vendors will create tools to support Sys-
temVerilog remains to be seen. [15]

4.1.4 HLL Pros and Cons
Teaching system level design in a High Level Language
(HLL) is well suited to students with limited electronics
or CAD backgrounds and are unfamiliar with hardware
concepts such as signals, voltages, and details of the
clock. By starting with either Handel-C or SystemC,
hardware/software codesign becomes more accessible
to students whose initial programming experience will
most likely be C, C++, or Java rather than assembly
language [12]. It exposes the students to concurrency,
parallelism, software-to-hardware mapping, pipelining,
and computer architectures as well programming prin-
ciples [11]. In Handel-C, for example, each assignment
statement takes one clock cycle and each expression
evaluation takes no clock cycles, which makes it easy to
reason about the number of clock cycles required to
execute the code. This relationship encourages efficient
compact code form a hardware perspective [11].

However, there is a risk in HLL-based design for the
student who already has a software mindset. Specify-
ing hardware using an HDL is not programming, but
rather the building of hardware and arrays of gates.
Applying general purpose programming tactics to an
HDL too often makes too many gates and highly ineffi-
cient chip and logic layouts [21].

There are other shortcomings to the HLL approach.
One is that it is hard to integrate outside IP with any
hardware designed this way. This is due to the fact that
close examination of compiler-generated circuits re-
veals little of their purpose or about how they were
generated. Therefore, the “hooks” into the circuitry are
not readily apparent. The obfuscated nature of the
compiler generated circuits also makes it nearly impos-
sible to hand optimize any of these circuits. These
problems stem from the fact that the original HLL on
which these new languages are based either cannot ex-
press parallelism, or their concepts of memory, meth-
ods, and objects map poorly onto real hardware. Thus
the new languages are forced to include tools that in-
clude the necessary attributes, but at the expense of
generating clean hardware. But as one industry expert
points out, “elegance of implementation has never tri-
umphed over timesaving hacks. Mnemonics overtook
opcodes, compilers overtook assembly, and HDLs over-
took schematics. Each time, the old guard maligned the
inefficiency of the automated tools vs. the craftsman-

ship of their methods; but each time automation carried
the day [26].”

Many ASIC or FPGA based products include a mixture
of algorithmic processing most readily expressed in an
HLL and other sets of operations most efficiently im-
plemented directly in gates. FPGAs accommodate
these designs by providing CPU cores that can be
drawn from a library and implemented in the logic fab-
ric of the FPGA as well as the emergence of devices
such as Xilinx’ Virtex II Pro which include one or even
multiple hard CPU cores embedded directly in the de-
vice itself. In systems such as these, use of an HLL
based implementation language provides a good fit for
implementing the entire job [24].

An increasing amount of system functionality is ex-
pressed in embedded software; synthesis and layout are
linked into one process, and the typical hardware de-
signer is forced by complexity to work at a high level
[14]. S/he would use the ultimate design system, where
you wouldn’t even care what goes into the hardware or
software; you’d write C/C++ code and everything else
would just happen under the hood because of an intelli-
gent C/C++ compiler [1]. According to some industry
experts, this future may present itself in 5 to 10 years,
and those whose career paths extend that far would do
well to anticipate it [14].

4.1.5 C Based Languages
SystemC. SystemC is an open source language that is
more a structured class library than a language. An ar-
gument for SystemC is that the C language lacks the
object-oriented facilities that some complex system
designs require [19]. SystemC was developed to sup-
port system level design. Its class libraries add hard-
ware design-specific modeling constructs that increase
the power of the language to meet the needs of hard-
ware design [3]. The class libraries provide data types
appropriate for fixed-point arithmetic, communication
channels, which behave like pieces of wire (signals),
and modules to break down a design into smaller parts.
In addition, the class library contains a simulation ker-
nel - a piece of code that models the passing of time,
and calls functions to calculate their outputs whenever
their inputs change [10]. The syntax is simple and
close enough to C++ that students should find it easily
digestible.

SystemC partially addresses the problem that C lan-
guage design presents by creating a number of classes
that mimic hardware primitives and time-domain events
[20]. Although at present it offers only modeling sup-
port, SystemC is moving towards broader capabilities in
synthesis [5]. Future versions of the class library will
be extended to cover modeling of operating systems, to

support the development of models of embedded soft-
ware [10].

The major drawback of SystemC is the need to convert
a C/C++ based description to Verilog or VHDL in order
to synthesize it [20]. The problem is that there is not
yet a working behavioral synthesis tool available for
commercial use that can accept C++ as it’s input lan-
guage. The conversion process is currently a manual
decomposition of the design until the designer gets to a
low enough point of abstraction such that a commer-
cially available translator allows the use of RTL synthe-
sis. This process, even if done automatically, is prone
to errors that are difficult to find [19].

5 Handel-C
Handel-C [4] is both a subset and a superset of conven-
tional C. It does not include functional recursion, float-
ing-point data, or any of the Standard C runtime library
functions for I/O or string operations. However, its
integer type is augmented with a rich set of operators
and declarations for field widths, a par construct for
expressing parallelism, semaphores and communication
channels as primitives, and multiple main() functions,
each with its own clock [12]. Because it is a variation
on C rather than on C++, Handel-C is closer to the
hardware than SystemC [18].

Handel-C provides a rich set of code structures includ-
ing functions, arrays of functions, inline functions,
macro procedures, and macro expressions. These facili-
ties allow the student to explore time-space tradeoffs in
a design. Handel-C is not tied to any particular family
of target devices, although it is clearly aimed at FPGA
development in general [13].

The Handel-C development environment supports cycle
accurate simulation, allowing students to see multiple
statements being executed in parallel using a debugging
user interface fully reminiscent of traditional software
IDEs. Compiling generates an industry standard
(EDIF) netlist, which is then imported into the FPGA
vendor’s toolkit, where VHDL or Verilog based mod-
ules can be integrated and simulated with the Handel-C
part of the design if desired. The vendor’s tools then
perform place and route, and generate a bit stream for
downloading to the target device. [26].

Handel-C appears to be an ideal development language
for CS students with limited experience in hardware
design. But adopting it for laboratory use introduces
tradeoffs that need to be considered. In particular, pro-
totyping kits that take full advantage of the language’s
ability to generate complex systems can add considera-
bly to the cost of laboratory seats. For example, one
such kit is the RC200 from Celoxica, which includes a
standalone prototyping board with a 1M gate Xilinx

FPGA, audio, video, networking, and memory subsys-
tems and peripherals such as a camera and touchscreen.
Fully equipped, this kit costs as much as a complete
midrange PC.

6 Conclusion
Trying to evaluate software development toolchains
and/or target platforms can be as daunting a task as
trying to track emerging trends in design languages.
With the recent emergence of FPGA devices so power-
ful and fast they challenge the one-time undisputed
supremacy of ASICS for high-end designs, inexpensive
FPGA-based systems, such as those available from
Xess and Digilent, emerge as appealing vehicles for CS
programs interested in offering students exposure to
mainstream technologies of the day. And the main
FPGA vendors, such as Altera and Xilinx provide stu-
dent versions of their development platforms on very
reasonable terms for universities.

But logic design using VHDL or Verilog is not as at-
tractive an option for CS students as C-based develop-
ment languages. We found the Handel-C development
environment from Celoxica Ltd. particularly appealing.
Hardware is specified in Handel-C, and the resulting
netlist is then imported into an FPGA project (using
Altera or Xilinx tools, depending on the target), where
HDL modules, including IP cores, can be integrated if
desired. While inexpensive prototyping kits are avail-
able that provide support for logic designs of modest
complexity, we believe the options possible using Han-
del-C and more complex prototyping platforms like
Celoxica’s RC200 are more suitable for a CS laboratory
in computer architecture.

We are in the process of setting up a CS laboratory
based on Handel-C and RC200 development kits and
will be offering the first class using the lab during the
Fall 2003 semester. A major challenge for us is to de-
velop a set of laboratory exercises that guide students in
the effective use of this complex environment in a
meaningful way. We look forward to sharing our ex-
periences.

7 References
[1] Aldec, Inc. Evita: Advanced Verilog Tutorial
with Applications. www.aldec.com/Downloads.

[2] Altium Ltd. CircuitMaker Student Edition.
www.circuitmaker.com.

[3] Bartlett, Joan. “The case for SystemC”.
EEDesign. 7 March 2003.

[4] Celoxica Ltd. Handel-C Language Reference
Manual. Document Number RM-1003-3.0. 2002.

[5] Clark, Peter. “IP99: Designers see little need
to move away from HDLs”. EE Times. 4 Nov. 1999.

[6] Clark, Peter. “Startup to field next-generation
design language”. EE Times. 31 May. 1999.

[7] Cohen, Ben. Verification Guild. Vol. 1, No.
17. 14 Aug. 2000. janick.bergeron.com/guild.

[8] Cummings, Clifford E. Verification Guild.
Vol. 1, No. 17. 14 Aug. 2000. jan-
ick.bergeron.com/guild.

[9] Davidmann, Simon. “It’s time for a rethinking
of system-on-a-chip design”. EE Times. 25 Oct. 1999.

[10] Doulos Ltd. A Brief introduction to SystemC.
www.doulos.com/knowhow/systemc_guide/tutorial/intr
oduction.

[11] Downtown, A.C., Fleury, M., Self, R. P.,
Sangwine, S. J., and Noakes, P. D. Hardware/Software
Co-Design: A Short Course for Unbelievers.
www.celoxica.com/technical_library/files/”CEL-
CUPACPGENHardware Software Co-Design - A short
Course For Unbelievers-01002.pdf.”

[12] Downtown, A.C., Fleury, R. P., and Noakes,
P. D. Future directions in computer architectures cur-
ricula: Silicon compilation for hardware/software co-
design.
www.essex.ac.uk/ese/research/mma_lab/Handelc/21CC
omputer.pdf.

[13] Gaffar, A. A. “A Survey on the Handel-C
Language” Surprise Project 1999.
www.iis.ee.ic.ac.uk/~frank/surp99/article1/amag97

[14] Goering, Richard. “Rank and file don’t like
C”. EE Times. 15 Nov. 1999.

[15] Goering, Richard. “Standardization nears for
next-generation Verilog”. EE Times. 14 Nov. 2001.

[16] Goodman, S. G. and Vickery, C. A Laboratory
for Computer Organization and Architecture. NSF
DUE-9950364, 1999.

[17] Hamblin, J. O. and Furman, M. D. Rapid Pro-
totyping of Digital Systems: A Tutorial Approach.
Kluwer, 2001.

[18] Hammes, Jeffrey P. A High Level, Algo-
rithmic Programming Language and Compiler for Re-
configurable Systems.
www.cs.colostate.edu/cameron/Publications/hammes_e
nregle.pdf.

[19] Moretti, Gabe. “Get a handle on design lan-
guages”. EDN Magazine. 5 July 2002.

[20] Moretti, Gabe. “System-level design merits a
closer look.” EDN Magazine. 21 Feb. 2002

[21] Motorsabbath. Hardware design in JHDL.
www.slashdot.org, 16 Jan. 2002.

[22] Murdocca, M. J. and Heuring, V. P. Princi-
ples of Computer Architecture. Prentice Hall, 2000.

[23] Patt, Y. and Patel, S. Introduction to Digital
Systems. McGraw-Hill, 2001.

[24] Prophet, Graham. “System-level design lan-
guages: to C or not to C?” EDN Europe. 14 Oct. 1999.

[25] Shen, J. P. and Lipasti, M. H. Modern Proces-
sor Design. McGraw-Hill, 2003.

[26] Turley, Jim. “The Death of Hardware Engi-
neering”. Embedded.com. 28 Feb. 2002.

	Laboratory Options for the Computer Science Major
	Introduction
	Context: A CS Department
	Laboratory Options
	Simulation or Hardware?

	HDLs and Their Derivatives
	Verilog and VHDL
	ESL Design
	Extended HDLs
	HLL Pros and Cons
	C Based Languages

	Handel-C
	Conclusion
	References

