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Computer Science and Computer Engineering programs typically converge on the Dynamic-Static Interface (DSI) 
from opposite directions.  Computer Science (CS) introduces students to system architecture and organization so 
they can have a better appreciation for the mechanisms that make their software work, whereas Computer Engineer-
ing (CE) introduces students to software design so they can have a better appreciation for the software that will be 
using the hardware systems they design.  Mindful of this distinction between CS and CE, we chronicle the efforts of 
our CS department to capitalize on current trends in the design and implementation of digital systems to extend our 
students’ expertise in this area.  We summarize the current curriculum in our department, present a survey of the 
language options we have explored for evolving our curriculum, and conclude with a brief description of the labora-
tory environment we have adopted, which is centered on the Handel-C hardware implementation language. 

1 Introduction 
Computer Science and Computer Engineering curricula 
have traditionally brought significantly different per-
spectives to bear on what to cover and how to teach 
computer architecture, the point where the two disci-
plines meet.  Broadly speaking, the CS students bring 
good software skills to their architecture courses, 
whereas the CE students bring stronger circuit design 
skills to theirs.  The distinction carries over to the de-
sign of digital systems in industry, where a software 
team and a separate engineering team typically work in 
parallel during the development of a new product 
(codesign), with software/hardware integration occur-
ring late in the development cycle. 

But the inexorable advance of circuit complexity has 
caused the traditional engineer/programmer dichotomy 
to start to break down.  We are not talking here about 
shifting the dynamic-static interface [23, 25] for a par-
ticular system design, nor about the dual roles individu-
als might play in a design effort.  Rather, we are 
responding to changes in the way digital systems are 
developed due to changes in the functionality of pro-
grammable logic devices (FPGAs in particular) and the 
software tools used to develop systems using them. 

Ours is a Computer Science department in a liberal arts 
college.  There is no engineering department on cam-
pus.  Although the university encourages cooperation 
among its member colleges, the fact remains that the 
closest CE courses available to our students are a 90-
minute subway ride away from us.  In this context of 
CS isolated from CE, this paper reports on the options 
we have considered as we adjust our curriculum to pro-
vide our undergraduate students with a better under-
standing of the principles and practices of 
implementing digital architectures. 

2 Context: A CS Department 
Our undergraduate curriculum prepares students in the 
broad areas of i)software design and implementation, ii) 
formal methods, iii) hardware design, and iv) applica-
tions, in roughly that order of emphasis.  Our offerings 
in the “hardware design” area include a course in as-
sembly language and basic logic design, and a second 
course that covers additional logic design and an intro-
duction to computer architecture.  We have used a 
number of textbooks for these courses over the years, 
never finding ones that both students and faculty found 
completely suitable.  The current text for both courses 
is by Murdocca and Heuring [22]. 

Our curriculum also includes a “Hardware Laboratory” 
course, which has not been offered in recent years.  
This course was developed in the days of SSI and MSI 
integrated circuits and dropped by the wayside as simu-
lators have allowed us to develop a similar degree of 
mastery to the old lab course without requiring the stu-
dents to spend time in the lab itself.  Thus, the closest 
our students have come to a hardware laboratory ex-
perience for the past several years has been through 
simulation assignments in the two courses mentioned 
above.  The student edition of CircuitMaker [2] has 
served our purposes in this regard, although the free 
version must be installed only on the students’ personal 
computers, not in college laboratory facilities. 

Four years ago, we received NSF funding [16] to revise 
our curriculum to use HDLs to give our students a more 
realistic view of circuit design technologies.  Our stated 
goals were, “to give all of our students some knowledge 
of the methods that are used in designing modern digi-
tal circuits [and] to provide those students who are in-
terested with hands-on experience in designing and 
using digital logic as a method of teaching them about 
computer architecture.” 



At the time we prepared our grant proposal, VHDL 
seemed to be the natural vehicle for introducing CS 
students to logic design, leveraging their existing soft-
ware skills to introduce them to hardware design tech-
niques.  There were several textbooks based on VHDL 
available, it was an IEEE Standard, and seemed gener-
ally well suited to our needs.  Although Verilog also 
become an IEEE Standard in 1995, at the time of our 
grant proposal, VHDL seemed like the most straight-
forward way to go.  Since then, there has been a good 
deal of foment in the CAD world, propelled by the need 
for tools to adapt to the ever-increasing complexity of 
digital devices.  What follows is a survey of the evolv-
ing software development options we have seen. 

3 Laboratory Options 
A first question CS departments have to answer in 
planning instruction in digital design is whether to fo-
cus on simulation only, or to have the students target 
actual hardware devices.  A second question is whether 
to use commercial development tools or instructional 
software.  Once those questions are resolved, the issues 
of software and (if hardware devices are targeted) pro-
totyping platforms need to be addressed. 

3.1.1 Simulation or Hardware? 
Simulation is a critical step in developing new hardware 
designs, but in an instructional environment, simulation 
can arguably be the end step in a student’s lab experi-
ence. 

There are several arguments for using only simulation 
for introducing CS students to the design of digital sys-
tems: 

• Cost.  Except for the computers to run the simula-
tions, a relatively abundant commodity, simulation 
avoids the overhead and costs of purchasing and 
maintaining prototyping equipment and instrumen-
tation for a laboratory. 

• Ease of debugging.  In addition to avoiding the 
issues associated with bad connections and failed 
components, simulation provides a software view of 
the system under development which is not only 
more familiar to CS students, but also more flexible 
than hardware in terms of allowing students to visu-
alize and locate problems in their designs. 

• Simplicity.  Development tools for hardware im-
plementations need to provide a richer feature set 
than instructional simulations.  The result can be 
that students need to spend more effort learning to 
use the tool than studying the simulations. 

On the other hand, implementing actual circuits can be 
much more motivating than just running “yet another 
program.” 

We have not had good luck with most of the student-
oriented simulators for logic design that are available at 
low or no cost.  Many had problems with reliable 
schematic entry, and many have had unnecessarily poor 
user interfaces.  The student edition of the CircuitMaker 
schematic entry and simulation software from Altium 
cited above has been the best we have found so far [2].  
Compared to a textbook-only presentation, it’s far supe-
rior.  But it limits the size of the designs students can 
implement, cannot be installed in departmental labs for 
free, and it doesn’t provide a tie-in to actual hardware 
implementation. 

Another option for those graduates who become inter-
ested in chip design is to send them to commercially 
available short courses that teach digital IC or systems 
design, ECAD, or hardware/software codesign.  But the 
danger in these courses is that there is “insufficient time 
to address any topic in the depth required by students to 
gain proper insight into the subject area”.  Thus these 
courses may not adequately provide them with the skill 
set necessary for designing and implementing complex 
distributed embedded systems and Systems on Chip 
(SOCs) [12].  And, of course, this option begs the ques-
tion of what to do in the context of a university curricu-
lum. 

The gamut of options available for implementing cir-
cuits in hardware is extremely broad, ranging from in-
expensive breadboards with SSI and MSI ICs 
connected by jumper wires to industrial-grade prototyp-
ing systems used in the development of commercial 
ASIC designs at costs that are prohibitively high for 
virtually all instructional purposes.  FPGA-based de-
velopment systems strike a middle ground between 
these two extremes, and are particularly well suited to 
instructional laboratories.  The boards are self-
contained units requiring no assembly on the part of the 
student, although expansion headers are normally avail-
able for customized projects.  Student designs are pre-
pared and simulated on PCs, and downloaded to the 
prototyping board through a serial or parallel cable.  
The use of reprogrammable FPGAs as the implementa-
tion target gives students a development cycle familiar 
to them familiar from the software development world: 
edit, compile, debug. 

Major FPGA vendors, notably Altera and Xilinx, pro-
vide inexpensive or free student versions of their com-
mercial tools for FPGA development suitable for use 
with a variety of prototyping boards from companies 
such as Xess and Digilent.  An inexpensive package 
available from Altera’s University Program, for exam-
ple, includes a prototyping board with a 20,000 gate 



FPGA, several LEDs, displays, and switches mounted 
on the board, and I/O connectors for a mouse and VGA 
display.  This kit comes packaged with a good tutorial 
volume [17] featuring a number of interesting projects 
students can do.  The kit includes a student edition of 
Altera’s MAX+Plus development software, which in-
cludes schematic, waveform, and HDL text editors for 
design entry.  It should be noted, however, that this kit 
uses a relatively small FPGA by today’s standards, (not 
large enough to implement a full CPU) and that the 
MAX+Plus software does not provide the same func-
tionality as Altera’s Quartus toolchain.  Systems of this 
type are more appropriate for introductory logic design 
laboratories rather than CS Computer Architecture 
courses, where students need to explore architectural 
design parameters. 

Hardware Description Languages (HDLs), most com-
monly VHDL and/or Verilog, are the most commonly 
used means for entering designs for platforms like those 
discussed so far.  But today’s FPGA devices can have 
millions of gates instead of tens of thousands, providing 
architecture students with hardware targets rich enough 
to support investigations into topics as advanced as 
pipelining, cache design, and multiprocessor communi-
cation, not just basic logic design.  Furthermore HDL 
programming is evolving to deal with the complexity of 
these newer devices.  We review some of these lan-
guages below.  An appealing alternative to working 
with an HDL or one of its derivatives, at least for CS 
students who are approaching the DSI from the soft-
ware side, is to use a language based on a traditional 
High Level Programming Language (HLL).  After our 
survey HDLs and their derivatives, we will turn our 
attention to Handel-C, a hardware implementation lan-
guage based on C that we are adopting for use by our 
CS majors. 

4 HDLs and Their Derivatives 

4.1.1 Verilog and VHDL 
Hardware design is dominated by the use of Verilog 
and VHDL.  They are most powerful as gate-level im-
plementation languages [1][3].  VHDL allows a multi-
tude of language or user-defined data types, which may 
mean confusing conversion functions needed to convert 
objects from one type to the other.  All of the logical 
operators, NAND, NOR, XOR, etc, are included in 
VHDL but separate constructs, typically defined using 
the VITAL language, must be used to define cell primi-
tives of ASIC and FPGA libraries.  VHDL offers a 
great deal of flexibility in terms of its abundance of 
permissible coding styles.  It allows for concurrent syn-
chronization schemes, such as semaphores.  VHDL is 
better suited than Verilog to handle very complex de-

signs.  It is relatively weaker in lower level designs but 
superior in higher level and system level designs, which 
results in slower simulations.  Its wealth of constructs, 
attributes, and types make VHDL a good language for 
design and verification [7].  It is strongly typed and 
there are many ways to model the same circuit, features 
which make it more robust and powerful than Verilog 
but also more complex.  This complexity means it is 
more difficult to understand and use. 

Verilog has adopted many of VHDL’s features, thus 
Verilog is moving towards increasing complexity as 
well [7].  Verilog is used for high-speed gate-level and 
register-level circuit descriptions, fast IC modeling and 
RTL simulation, easy synthesis, and test applications 
[9].  Gate simulations in Verilog are 10x to 100x faster 
than the same simulations in VHDL, which means 
shorter time to verify designs [8].  Compared to VHDL, 
Verilog data types are simple, easy to use and geared 
towards modeling hardware structure as opposed to 
abstract modeling.  Because it is simpler, Verilog is 
easier to learn.  On a Verilog vs. VHDL debate forum, 
an engineer who knows both languages cites: “If you 
were just taught Verilog syntax, you're in trouble. If 
you were taught syntax with guidelines, and warned 
about legal Verilog constructs that should never be 
used, you can gain expertise in half the time it takes to 
become proficient in VHDL [8].”  Because of its back-
ground as an interpretive language, there are no librar-
ies in Verilog whereas VHDL stores compiled entities, 
architectures, packages, and configurations.  Verilog 
was originally developed with gate-level modeling in 
mind, and so has very good constructs for modeling at 
this level and for modeling cell primitives of ASIC and 
FPGA libraries.  For this reason, students may find Ver-
ilog more digestible than VHDL at first.  Because it is 
geared towards lower level modeling, it is faster in 
simulations and effective synthesis.  It lacks, however, 
constructs needed for system level specifications.  Ver-
ilog’s simple, intuitive and effective way of describing 
digital circuits for modeling, simulation, and analysis 
purposes make it very popular in the industry. 

4.1.2 ESL Design 
There is a movement towards system level modeling, 
also called electronic system level (ESL) design.  This 
is the design of an electronic product at the conceptual 
level, including hardware/software codesign; design 
partitioning, and specification writing [20].  It demands 
being able to describe requirements and functions inde-
pendently of implementation, and being able to talk 
about interfaces and protocols without describing the 
actual hardware [19].  Verilog is neither object-oriented 
nor strongly typed, which makes it cumbersome for 
system level design. Also, the previously attractive 
flexibility of its syntax can lead to difficult to detect 



errors.  Neither Verilog nor VHDL provides the syntax 
or semantics to describe a product at the system level 
[20].  The trend of RTL engineers moving up in ab-
straction and systems engineer moving down, as well as 
the fact that both Verilog and VHDL have shortcom-
ings in the requirements of ESL design, has necessi-
tated the need for either a new language, or the 
extension of an existing language to bridge the gap be-
tween specification and implementation.  The new topic 
of debate is the question of which language is right for 
ESL design [20]. 

4.1.3 Extended HDLs 
Superlog is an extension of Verilog that includes fea-
tures that allow a more abstract description of an elec-
tronic system [20].  While most of the semantic 
elements added were borrowed from VHDL, it retains 
most of the features of Verilog, including support for 
hierarchy, events, timing, concurrency, and multi-
valued logic [6].  Superlog’s major technical advan-
tages over VHDL are a clean and powerful interface to 
C that allows hardware/software codesign, and C-based 
constructs for system design and decomposition [1].  It 
borrows useful features from C and Java, including 
support for dynamic processes, recursion, arrays, and 
pointers.  It also includes support for communicating 
processes with interfaces, protocol definition, state ma-
chines, and queuing.  It has been estimated that Super-
log needs one half to one third the number of lines of 
code to describe a function as Verilog at the same ab-
straction level, and Superlog can go much higher in 
abstraction [6]. 

System Verilog.  A radically revised version of Verilog 
was presented at the 2001 International HDL Confer-
ence [15].  These changes represent a move towards an 
even higher level of abstraction for the language and an 
extension to its capability to verify large designs.  Sys-
temVerilog is a blend of Verilog, C/C++, and Superlog 
that allows module connections at a high level of ab-
straction [15].  Verilog currently allows the connection 
of one module to another only through module ports, 
which can be tedious.  SystemVerilog introduces inter-
faces which makes it possible to begin a design without 
first establishing all the module connections.  C-
language constructs, such as globals, are another addi-
tion.  In Verilog, only modules and primitive names can 
be global.  SystemVerilog allows global variables and 
functions.  SystemVerilog borrows abstract data types 
from C, such as ‘bit’, ‘char’, ‘int’, and ‘logic’, which 
provide more versatility then the existing ‘reg’ and ‘net’ 
types and allows C/C++ code to be included directly in 
Verilog models and verification routines.  Also in-
cluded is an assertion construct, similar to VHDL’s, 
intended to do away with proprietary assertion lan-
guages.  Because there’s much in Superlog that is not 

part of SystemVerilog, Superlog will remain a superset 
of SystemVerilog.  With its new additions, SystemVer-
ilog may remove some of the impetus for C-language 
design, at least for RTL chip designers.  The question of 
whether or not vendors will create tools to support Sys-
temVerilog remains to be seen. [15] 

4.1.4 HLL Pros and Cons 
Teaching system level design in a High Level Language 
(HLL) is well suited to students with limited electronics 
or CAD backgrounds and are unfamiliar with hardware 
concepts such as signals, voltages, and details of the 
clock.  By starting with either Handel-C or SystemC, 
hardware/software codesign becomes more accessible 
to students whose initial programming experience will 
most likely be C, C++, or Java rather than assembly 
language [12].  It exposes the students to concurrency, 
parallelism, software-to-hardware mapping, pipelining, 
and computer architectures as well programming prin-
ciples [11].  In Handel-C, for example, each assignment 
statement takes one clock cycle and each expression 
evaluation takes no clock cycles, which makes it easy to 
reason about the number of clock cycles required to 
execute the code.  This relationship encourages efficient 
compact code form a hardware perspective [11]. 

However, there is a risk in HLL-based design for the 
student who already has a software mindset.  Specify-
ing hardware using an HDL is not programming, but 
rather the building of hardware and arrays of gates.  
Applying general purpose programming tactics to an 
HDL too often makes too many gates and highly ineffi-
cient chip and logic layouts [21]. 

There are other shortcomings to the HLL approach.  
One is that it is hard to integrate outside IP with any 
hardware designed this way.  This is due to the fact that 
close examination of compiler-generated circuits re-
veals little of their purpose or about how they were 
generated.  Therefore, the “hooks” into the circuitry are 
not readily apparent.  The obfuscated nature of the 
compiler generated circuits also makes it nearly impos-
sible to hand optimize any of these circuits.  These 
problems stem from the fact that the original HLL on 
which these new languages are based either cannot ex-
press parallelism, or their concepts of memory, meth-
ods, and objects map poorly onto real hardware.  Thus 
the new languages are forced to include tools that in-
clude the necessary attributes, but at the expense of 
generating clean hardware.  But as one industry expert 
points out, “elegance of implementation has never tri-
umphed over timesaving hacks. Mnemonics overtook 
opcodes, compilers overtook assembly, and HDLs over-
took schematics. Each time, the old guard maligned the 
inefficiency of the automated tools vs. the craftsman-



ship of their methods; but each time automation carried 
the day [26].” 

Many ASIC or FPGA based products include a mixture 
of algorithmic processing most readily expressed in an 
HLL and other sets of operations most efficiently im-
plemented directly in gates.  FPGAs accommodate 
these designs by providing CPU cores that can be 
drawn from a library and implemented in the logic fab-
ric of the FPGA as well as the emergence of devices 
such as Xilinx’ Virtex II Pro which include one or even 
multiple hard CPU cores embedded directly in the de-
vice itself.  In systems such as these, use of an HLL 
based implementation language provides a good fit for 
implementing the entire job [24]. 

An increasing amount of system functionality is ex-
pressed in embedded software; synthesis and layout are 
linked into one process, and the typical hardware de-
signer is forced by complexity to work at a high level 
[14].  S/he would use the ultimate design system, where 
you wouldn’t even care what goes into the hardware or 
software; you’d write C/C++ code and everything else 
would just happen under the hood because of an intelli-
gent C/C++ compiler [1].  According to some industry 
experts, this future may present itself in 5 to 10 years, 
and those whose career paths extend that far would do 
well to anticipate it [14]. 

4.1.5 C Based Languages 
SystemC.  SystemC is an open source language that is 
more a structured class library than a language. An ar-
gument for SystemC is that the C language lacks the 
object-oriented facilities that some complex system 
designs require [19].  SystemC was developed to sup-
port system level design.  Its class libraries add hard-
ware design-specific modeling constructs that increase 
the power of the language to meet the needs of hard-
ware design [3].  The class libraries provide data types 
appropriate for fixed-point arithmetic, communication 
channels, which behave like pieces of wire (signals), 
and modules to break down a design into smaller parts.  
In addition, the class library contains a simulation ker-
nel - a piece of code that models the passing of time, 
and calls functions to calculate their outputs whenever 
their inputs change [10].  The syntax is simple and 
close enough to C++ that students should find it easily 
digestible. 

SystemC partially addresses the problem that C lan-
guage design presents by creating a number of classes 
that mimic hardware primitives and time-domain events 
[20].  Although at present it offers only modeling sup-
port, SystemC is moving towards broader capabilities in 
synthesis [5].  Future versions of the class library will 
be extended to cover modeling of operating systems, to 

support the development of models of embedded soft-
ware [10]. 

The major drawback of SystemC is the need to convert 
a C/C++ based description to Verilog or VHDL in order 
to synthesize it [20].  The problem is that there is not 
yet a working behavioral synthesis tool available for 
commercial use that can accept C++ as it’s input lan-
guage.  The conversion process is currently a manual 
decomposition of the design until the designer gets to a 
low enough point of abstraction such that a commer-
cially available translator allows the use of RTL synthe-
sis.  This process, even if done automatically, is prone 
to errors that are difficult to find [19]. 

5 Handel-C 
Handel-C [4] is both a subset and a superset of conven-
tional C.  It does not include functional recursion, float-
ing-point data, or any of the Standard C runtime library 
functions for I/O or string operations.  However, its 
integer type is augmented with a rich set of operators 
and declarations for field widths, a par construct for 
expressing parallelism, semaphores and communication 
channels as primitives, and multiple main() functions, 
each with its own clock [12].  Because it is a variation 
on C rather than on C++, Handel-C is closer to the 
hardware than SystemC [18]. 

Handel-C provides a rich set of code structures includ-
ing functions, arrays of functions, inline functions, 
macro procedures, and macro expressions. These facili-
ties allow the student to explore time-space tradeoffs in 
a design.  Handel-C is not tied to any particular family 
of target devices, although it is clearly aimed at FPGA 
development in general [13]. 

The Handel-C development environment supports cycle 
accurate simulation, allowing students to see multiple 
statements being executed in parallel using a debugging 
user interface fully reminiscent of traditional software 
IDEs.  Compiling generates an industry standard 
(EDIF) netlist, which is then imported into the FPGA 
vendor’s toolkit, where VHDL or Verilog based mod-
ules can be integrated and simulated with the Handel-C 
part of the design if desired.  The vendor’s tools then 
perform place and route, and generate a bit stream for 
downloading to the target device. [26]. 

Handel-C appears to be an ideal development language 
for CS students with limited experience in hardware 
design.  But adopting it for laboratory use introduces 
tradeoffs that need to be considered.  In particular, pro-
totyping kits that take full advantage of the language’s 
ability to generate complex systems can add considera-
bly to the cost of laboratory seats.  For example, one 
such kit is the RC200 from Celoxica, which includes a 
standalone prototyping board with a 1M gate Xilinx 



FPGA, audio, video, networking, and memory subsys-
tems and peripherals such as a camera and touchscreen.  
Fully equipped, this kit costs as much as a complete 
midrange PC. 

6 Conclusion 
Trying to evaluate software development toolchains 
and/or target platforms can be as daunting a task as 
trying to track emerging trends in design languages.  
With the recent emergence of FPGA devices so power-
ful and fast they challenge the one-time undisputed 
supremacy of ASICS for high-end designs, inexpensive 
FPGA-based systems, such as those available from 
Xess and Digilent, emerge as appealing vehicles for CS 
programs interested in offering students exposure to 
mainstream technologies of the day.  And the main 
FPGA vendors, such as Altera and Xilinx provide stu-
dent versions of their development platforms on very 
reasonable terms for universities. 

But logic design using VHDL or Verilog is not as at-
tractive an option for CS students as C-based develop-
ment languages.  We found the Handel-C development 
environment from Celoxica Ltd. particularly appealing.  
Hardware is specified in Handel-C, and the resulting 
netlist is then imported into an FPGA project (using 
Altera or Xilinx tools, depending on the target), where 
HDL modules, including IP cores, can be integrated if 
desired.  While inexpensive prototyping kits are avail-
able that provide support for logic designs of modest 
complexity, we believe the options possible using Han-
del-C and more complex prototyping platforms like 
Celoxica’s RC200 are more suitable for a CS laboratory 
in computer architecture. 

We are in the process of setting up a CS laboratory 
based on Handel-C and RC200 development kits and 
will be offering the first class using the lab during the 
Fall 2003 semester.  A major challenge for us is to de-
velop a set of laboratory exercises that guide students in 
the effective use of this complex environment in a 
meaningful way.  We look forward to sharing our ex-
periences. 
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