
1

1®®
WCAE 2003 06/15/03

Intel Itanium™ Floating-Point 
Architecture

Marius Cornea, John Harrison, and Ping Tak Peter 
Tang

Intel Corporation 

2®®
WCAE 2003 06/15/03

Agenda
Intel® Itanium® Architecture 
Intel® Itanium® Processor Floating-Point 
Architecture
Status Fields and Exceptions
The Floating-Point Multiply-Add
Exact Arithmetic
Accurate Remainders
Accurate Range Reduction
Comparison and Classification
Division and Square Root
Additional Features 
Conclusion



2

3®®
WCAE 2003 06/15/03

Intel® Itanium® architecture
One of the major processor architectures present 
in the market today

2001 – Intel Itanium processor
2003 – Intel Itanium 2 processor – highest SPEC 
CFP2000  score currently
Price/performance ratio and power 
consumption better with every new 
implementation
Large register sets : 128 floating-point registers
Predication 
Speculation
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Intel® Itanium® architecture
Support for explicit parallelism: static and 
rotating registers
Floating-point features aimed at speed and 
accuracy
EPIC (Explicitly Parallel Instruction Computing) 
design philosophy 
Target the most demanding enterprise and 
high-performance computing applications
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Itanium Processor Floating-Point 
Architecture

Floating-point multiply-add (fused multiply-add) 
allows higher accuracy and performance

Software and hardware interaction 

Division: the throughput can be as high as one 
result for every 3.5 clock cycles

Floating-point formats: 24, 53, 64 bit significands; 
8, 11, 15, 17-bit exponents; 1-bit sign

Register and memory encodings: 0, normalized 
values, denormalized/unnormalized values,  
infinity, NaN, NaTVal (‘not a value’, for speculative 
operations); redundant representations
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Itanium Processor Floating-Point 
Architecture

Examples:
Using double-extended intermediate precision 
calculations to compute a double precision 
function: the double precision input arguments 
can be freely combined with double-extended 
intermediate results.
Computing functions involving constants with 
few significant digits: whatever the precision of 
the computation, the short constants can be 
stored in single precision
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Status Fields and Exceptions
64-bit Floating-Point Status Register (FPSR)

six trap disable bits control the five IEEE 
Standard exceptions and the denormal
exception
four 13-bit status fields: s0, s1, s2 and s3
six flags per status field, that record the 
occurrence of each of the 6 exceptions 
Seven control bits per status field: rounding (2 
bits), precision (2 bits), traps disable, flush-to-
zero (ftz), and widest-range exponent (wre bit, 
for 17-bit exponents)
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Status Fields and Exceptions
Status field usage determined by software 
conventions:

s0 is the main user status field 
s1, with wre enabled and all exceptions 
disabled is used in many standard numerical 
software kernels such as those for division, 
square root, and transcendental functions
status fields s2 and s3 are commonly used for 
speculation 



5

9®®
WCAE 2003 06/15/03

The Floating-Point Multiply-Add
Basic assembly syntax:

(qp) fma.pc.sf f1 = f3, f4, f2
which calculates f1 = f3 ⋅ f4 + f2 with one rounding 
error
Addition and multiplication are implemented as 
special cases of the fma: x + y = x⋅1 + y and x ⋅ y = 
x⋅y + 0
Two variants of the fma exist: the fms (floating-
point multiply-subtract) and fnma (floating-point 
negative multiply-add):

(qp) fms.pc.sf f1 = f3, f4, f2
(qp) fnma.pc.sf f1 = f3, f4, f2

compute f1 = f3 ⋅ f4 – f2 and f1 = –f3 ⋅ f4 + f2 
respectively 
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The Floating-Point Multiply-Add
Example: the vector dot product  x ⋅ y of two n-
dimensional vectors:

p = ∑ xi ⋅ yi
can be evaluated by a succession of fma
operations of the form

p = p + xi ⋅ yi
requiring only n floating-point operations, 
whereas with a separate multiplication and 
addition it would require 2n operations, with a 
longer overall latency
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Exact Arithmetic
Addition - if |x| ≥ |y| the exact sum x + y can be 
obtained as a two-piece expansion Hi + Lo:

Hi = x + y
tmp = x – Hi
Lo = tmp + y

(Hi + Lo = x + y exactly, with Lo a rounding error in
Hi ≈ x + y)
Multiplication - the exact product x ⋅ y can be 
obtained as a two-piece expansion Hi + Lo:

Hi = x ⋅ y
Lo = x ⋅ y - Hi

(Hi + Lo = x ⋅ y exactly, with Lo a rounding error in
Hi ≈ x ⋅ y)
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Accurate Remainders
If a floating-point number q is approximately equal 
to the quotient a / b of two floating-point numbers, 
the remainder r = a – b ⋅ q can be calculated 
exactly with one fnma operation, if q is within 1 
ulp (unit-in-the-last-place) of a / b
Useful in software implementations of the floating-
point division, square root, and remainder; also 
for integer division and remainder computations, 
implemented based on floating-point operations
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Accurate Range Reduction
Many algorithms for mathematical functions (e.g. 
sin) begin with an initial range reduction phase, 
subtracting an integer multiple of a constant such 
as π / 2
With the fma this can be done in a single 
instruction x – N ⋅ P
Typically:

y = Q ⋅ x
N = rint (y)
r = x – N ⋅ P

where rint (y) denotes the rounding of y to an 
integer, and Q ≈ 1 / P
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Comparison and Classification
Syntax:

(qp) fcmp.frel.fctype p1, p2 =  f2, f3 
where the frel completer determines the relation 
that is tested for. 
Mnemonics for frel: eq for f2 = f3, lt for f2 < f3, le 
for f2 ≤ f3, gt for f2 > f3, ge for f2 ≥ f3,and unord for 
f2 ? f3.
There is no signed/unsigned distinction but there 
is a new possibility, (f2 ? f3): two values may be 
unordered, since a NaN (Not a Number) compares 
false with any floating-point value, even with itself
fctype is the comparison type – normal, or 
unconditional
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Division and Square Root

Implemented in software, based on the reciprocal 
approximation and reciprocal square root 
approximation instructions
Given two floating-point numbers a and b, the 
floating-point reciprocal approximation
instruction, frcpa, normally returns an 
approximation of 1/b good to about 8 bits

(qp) frcpa.sf f1, p2 =  f2, f3
Given a floating-point number a, the floating-point 
reciprocal square root approximation instruction 
normally returns an approximation of 1/√a good to 
about 8 bits:

(qp) frsqrta.sf f1, p2 =  f3
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Additional Features
Transferring values between floating-point and 
integer registers by means of the getf and setf
instructions
Foating-point merging with fmerge, useful in 
combining fields of multiple floating-point 
numbers
Floating-point to integer and integer to floating-
point conversion using the fcvt instructions
Integer multiplication and division - implemented 
using the floating-point unit
Floating-point maximum and minimum, using the 
fmax, famax, fmin and famin instructions
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Conclusion
The Itanium floating-point architecture was 
designed with high performance, accuracy, and 
flexibility characteristics which make it ideal for 
technical computing 
All floating-point data types are mapped internally 
to an 82-bit format, with 64 bits of accuracy and a 
17-bit exponent - calculations are more accurate 
and do not underflow or overflow as often as on 
other processors
Highest current SPEC CFP2000 score for a single 
processor system: 1431, for an Itanium 2 system 
at 1GHz - the Hewlett-Packard HP Server RX2600 
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