Intel Itanium™ Floating-Point
Architecture

Marius Cornea, John Harrison, and Ping Tak Peter
Tang
Intel Corporation

° WCAE 2003 06/15/03

Agenda

Q Intel® Itanium® Architecture

O Intel® Itanium® Processor Floating-Point
Architecture

0 Status Fields and Exceptions

a The Floating-Point Multiply-Add
0 Exact Arithmetic

0 Accurate Remainders

0 Accurate Range Reduction

0 Comparison and Classification
0 Division and Square Root

0 Additional Features

0 Conclusion

° WCAE 2003 06/15/03

Intel® Itanium® architecture

0 One of the major processor architectures present
in the market today

¢ 2001 — Intel Itanium processor

¢ 2003 — Intel Itanium 2 processor — highest SPEC
CFP2000 score currently

e Price/performance ratio and power
consumption better with every new
implementation

e Large register sets : 128 floating-point registers
e Predication

e Speculation

° WCAE 2003 06/15/03

Intel® Itanium® architecture

e Support for explicit parallelism: static and
rotating registers

e Floating-point features aimed at speed and
accuracy

e EPIC (Explicitly Parallel Instruction Computing)
design philosophy

e Target the most demanding enterprise and
high-performance computing applications

° WCAE 2003 06/15/03

Itanium Processor Floating-Point
Architecture

Q Floating-point multiply-add (fused multiply-add)
allows higher accuracy and performance

0 Software and hardware interaction

a Division: the throughput can be as high as one
result for every 3.5 clock cycles

0 Floating-point formats: 24, 53, 64 bit significands;
8, 11, 15, 17-bit exponents; 1-bit sign

0 Register and memory encodings: 0, normalized
values, denormalized/unnormalized values,
infinity, NaN, NaTVal (‘not a value’, for speculative
operations); redundant representations

° WCAE 2003 06/15/03

Itanium Processor Floating-Point
Architecture

0 Examples:

e Using double-extended intermediate precision
calculations to compute a double precision
function: the double precision input arguments
can be freely combined with double-extended
intermediate results.

e Computing functions involving constants with
few significant digits: whatever the precision of
the computation, the short constants can be
stored in single precision

° WCAE 2003 06/15/03

Status Fields and Exceptions

0 64-bit Floating-Point Status Register (FPSR)

e six trap disable bits control the five IEEE
Standard exceptions and the denormal
exception

e four 13-bit status fields: s0, s1, s2 and s3

e six flags per status field, that record the
occurrence of each of the 6 exceptions

e Seven control bits per status field: rounding (2
bits), precision (2 bits), traps disable, flush-to-
zero (ftz), and widest-range exponent (wre bit,
for 17-bit exponents)

° WCAE 2003 06/15/03

Status Fields and Exceptions

0 Status field usage determined by software
conventions:

e s0 is the main user status field

e s1, with wre enabled and all exceptions
disabled is used in many standard numerical
software kernels such as those for division,
square root, and transcendental functions

o status fields s2 and s3 are commonly used for
speculation

° WCAE 2003 06/15/03

The Floating-Point Multiply-Add

0 Basic assembly syntax:
(gp) fma.pc.sf A = 13, f4, f2

which calculates f1 = f3 - f4 + f2 with one rounding
error

0 Addition and multiplication are implemented as
special cases of the fma: x+ y=x1+yandx-y=
xy+0

0 Two variants of the fma exist: the fms (floating-
point multiply-subtract) and fnma (floating-point
negative multiply-add):

(gp) fms.pc.sf A1 =13, f4, f2
(gp) fnma.pc.sf A =13, f4, 12

compute 1 =f3-fA-f2and A =-f3-f4+ f2
respectively

° WCAE 2003 06/15/03

The Floating-Point Multiply-Add

0 Example: the vector dot product x - y of two n-

dimensional vectors:

p=Xxi-yi
can be evaluated by a succession of fma
operations of the form

p=p+Xxi-yi
requiring only n floating-point operations,
whereas with a separate multiplication and

addition it would require 2n operations, with a
longer overall latency

° WCAE 2003 06/15/03

Exact Arithmetic

0 Addition - if |x]| > |y| the exact sum x + y can be
obtained as a two-piece expansion Hi + Lo:

Hi=x+y
tmp =x— Hi
Lo=tmp+y

(Hi + Lo = x + y exactly, with Lo a rounding error in
Hi~x +y)

0 Multiplication - the exact product x - y can be
obtained as a two-piece expansion Hi + Lo:

Hi=x -y
Lo=x-y-Hi

(Hi + Lo = x - y exactly, with Lo a rounding error in
Hi~x -y)

° WCAE 2003 06/15/03

Accurate Remainders

Q If a floating-point number q is approximately equal
to the quotient a / b of two floating-point numbers,
the remainder r = a - b - q can be calculated
exactly with one fnma operation, if q is within 1
ulp (unit-in-the-last-place) of a/ b

0 Useful in software implementations of the floating-
point division, square root, and remainder; also
for integer division and remainder computations,
implemented based on floating-point operations

° WCAE 2003 06/15/03

Accurate Range Reduction

0 Many algorithms for mathematical functions (e.g.
sin) begin with an initial range reduction phase,
subtracting an integer multiple of a constant such
asn/2

0 With the fma this can be done in a single
instructionx-N- P

a Typically:
y=Q-x
N = rint (y)
r=x-N-P

where rint (y) denotes the rounding of y to an
integer,and Q~1/P

° WCAE 2003 06/15/03

Comparison and Classification

0 Syntax:
(gp) fcmp.frel.fctype p1, p2 = 12, 3

where the frel completer determines the relation
that is tested for.

0 Mnemonics for frel: eq for 2 =13, It for 2 < 3, le

for f2 < 13, gt for f2 > 13, ge for f2 > f3,and unord for
2 ? f3.

0 There is no signed/unsigned distinction but there
is a new possibility, (f2 ? f3): two values may be
unordered, since a NaN (Not a Number) compares
false with any floating-point value, even with itself

Q fctype is the comparison type — normal, or
unconditional

° WCAE 2003 06/15/03

Division and Square Root

0 Implemented in software, based on the reciprocal
approximation and reciprocal square root
approximation instructions

0 Given two floating-point numbers a and b, the
floating-point reciprocal approximation
instruction, frcpa, normally returns an
approximation of 1/b good to about 8 bits

(gp) frcpa.sfA, p2 = 12, 3

0 Given a floating-point number a, the floating-point
reciprocal square root approximation instruction
normally returns an approximation of 1/\a good to
about 8 bits:

(gp) frsqrta.sf A, p2 = 3

° WCAE 2003 06/15/03

Additional Features

0 Transferring values between floating-point and
integer registers by means of the getf and setf
instructions

0 Foating-point merging with fmerge, useful in
combining fields of multiple floating-point
numbers

0 Floating-point to integer and integer to floating-
point conversion using the fcvt instructions

a Integer multiplication and division - implemented
using the floating-point unit

0 Floating-point maximum and minimum, using the
fmax, famax, fmin and famin instructions

° WCAE 2003 06/15/03

Conclusion

a The Itanium floating-point architecture was
designed with high performance, accuracy, and
flexibility characteristics which make it ideal for
technical computing

0 All floating-point data types are mapped internally
to an 82-bit format, with 64 bits of accuracy and a
17-bit exponent - calculations are more accurate
and do not underflow or overflow as often as on
other processors

0 Highest current SPEC CFP2000 score for a single
processor system: 1431, for an Itanium 2 system
at 1GHz - the Hewlett-Packard HP Server RX2600

° WCAE 2003 06/15/03

References

a £1blnteI(R) Itanium(TM) Architecture Software Developer's Manual, Revision
.0, Vol 1-4, Intel Corporation, December 2001

0 [2] John Hennessy, David Patterson, “Computer Architecture - A
20uoazntitative Approach”, Morgan Kauffman Publishers, Inc., third edition,

0 [3] Peter Markstein, ‘‘1A-64 and Elementary Functions: Speed and
recision”, Hewlett-Packard/Prentice-Hall 2000

0 [4] Marius Cornea, John Harrison, Ping Tak Peter Tang “Scientific
omputing on Itanium-based Systems”, Intel Press 2 02

o [5] John Crawford, Jerry Huck, “Motivations and Desisqn Approach for the
/A-64 64-Bit Instruction Set Architecture”, Oct. 1997, San Jose,

0 [6] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point
rithmetic, IEEE, New York, 198
a [7]1 O. Moller, “Quasi double-grecision in floating-point addition”, BIT
Journal, Vol. 5, 1965, pages 37-50

a [8]T.J. Dekker, “A FIoatinﬁ-Point Technique for Extending the Available
recision”, Numerical Mathematics journal, Vol. 18, 1971, pages 224-242

0 [9] “Divide, Square Root, and Remainder Algorithms for the Itanium
rchitecture”, Intel Corporation, Nov. 2000,

° WCAE 2003 06/15/03

	Intel Itanium™ Floating-Point ArchitectureMarius Cornea, John Harrison, and Ping Tak Peter TangIntel Corporation
	Agenda
	Intel® Itanium® architecture
	Intel® Itanium® architecture
	Itanium Processor Floating-Point Architecture
	Itanium Processor Floating-Point Architecture
	Status Fields and Exceptions
	Status Fields and Exceptions
	The Floating-Point Multiply-Add
	The Floating-Point Multiply-Add
	Exact Arithmetic
	Accurate Remainders
	Accurate Range Reduction
	Comparison and Classification
	Division and Square Root
	Additional Features
	Conclusion
	References

