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Abstract 

The Intel® Itanium® architecture is increasingly 
becoming one of the major processor architectures 
present in the market today. Launched in 2001, the Intel 
Itanium processor was followed in 2002 by the Itanium 
2 processor, with increased integer and floating-point 
performance. Measured by the SPEC CINT2000 
benchmarks, the Itanium 2 processor still trails by about 
25% the Intel P4 processor in integer performance, 
albeit P4 runs at more than three times Itanium’s clock 
frequency. However, its floating-point performance 
clearly leads in the SPEC CFP2000 charts, and its 
rating is about 25% higher than that of the P4 
processor. While the general features of the Itanium 
architecture such as large register sets, predication, 
speculation, and support for explicit parallelism [1] 
have been presented in several papers, books, and 
mainstream college textbooks [2], its floating-point 
architecture has been less publicized. Two books, [3] 
and [4], cover well this area. The present paper focuses 
on the floating-point architecture of the Itanium 
processor family, and points out a few remarkable 
features suitable to be the focus of a lecture, lab session, 
or project in a computer architecture class. 

Introduction 

The performance of today’s processors continues to 
increase. But the physical limits for the manufacturing 
technology will eventually be reached, rendering 
Moore’s Law inapplicable. Substantial further advances 
can be attained only by allowing a processor to operate 
on more bits at a time, and to execute more instructions 
in parallel. This was the motivation that led to the 
design of the Itanium processor family. Based on the 
EPIC (Explicitly Parallel Instruction Computing) 
design philosophy [5], the Itanium architecture was co-
developed by Intel Corporation and Hewlett-Packard 
Company, combining the best in the RISC and VLIW 
architectures, while also adding several features 
originating from recent research studies in processor 
architecture. The result is a processor architecture that 
can handle a large amount of work based on its ability 
to feed instructions quickly to several execution units. 

To date, two implementations of the Itanium 
architecture have been introduced by Intel Corporation. 
The Itanium processor provided hardware man-
ufacturers and software writers with a first development 
vehicle. The second implementation, represented by the 

Itanium 2 processor, increased the performance level of 
the Itanium processor by a factor of 1.5 to 2 in several 
cases.  

Itanium processors target the most demanding 
enterprise and high-performance computing 
applications, addressing the growing needs for data 
communications, storage, analysis and security, while 
also providing performance, scalability and reliability 
advantages at significantly lower costs than before.  

Common desktop applications have no immediate need 
for the computing power or addressing capabilities of a 
64-bit processor, but an increasing number of mid-
range and high-end applications already do, or will 
soon, require such capabilities. These are mainly 
programs that demand a lot of memory space and/or 
perform a large amount of computation. Examples 
include applications accessing large databases or 
delivering Internet content, programs that use 64-bit 
long integers, and data-intensive applications solving 
scientific and engineering problems. Itanium processor 
features that benefit the latter category will be the focus 
of the present paper. 

Scientific and engineering applications that can take 
advantage of the increased floating-point performance 
of Itanium processors include among others quantum 
chromodynamics (QCD), quantum mechanics, 
molecular simulation, cell research, or new drug 
discovery applications, computer-aided design tools, 
and solvers for large equation systems used in a variety 
of scientific and technical problems. Digital content 
creation applications that require high bandwidth, large 
memory, and powerful floating-point performance are 
also going to benefit from running on Itanium 
processors. Such applications can run very slowly on 
workstations based on 32-bit processors because of the 
smaller data item size, and also because of the 
continuous data traffic between storage disks and the 
memory system. Reduced swapping between memory 
and disk on Itanium-based systems are likely to 
increase performance of some applications by up to two 
orders of magnitude. 

Itanium Floating-Point Architecture 

The Itanium floating-point architecture has been 
designed to combine high performance and good 
accuracy. A large floating-point register set of 128 
registers is provided, and almost all operations can read 
their arguments from, and write their results to, 



arbitrary registers. Together with register rotation for 
software-pipelined loops, this large number of registers 
allows the encoding of common algorithms without 
running short of registers or needing to move data 
between them in elaborate ways. Registers can store 
floating-point numbers in a variety of formats, and the 
rounding of results is determined by a flexible 
combination of several selectable defaults and 
additional instruction completers.  

The basic arithmetic operation, the floating-point 
multiply-add (fused multiply-add), allows higher 
accuracy and performance in many common 
algorithms. Several additional features are also present 
to support common programming idioms. The fused 
multiply-add operation combines two basic floating-
point operations in one, with only one rounding error. 
Besides the increased accuracy, this can effectively 
double the execution rate of certain floating-point 
calculations, as the fused multiply-add operation forms 
an efficient computation core that maps perfectly to 
several common algorithms used for technical and 
scientific purposes. The fused multiply-add operation 
creates the possibility of implementing new algorithms, 
such as software-based division and square root 
operations. As execution units are pipelined, a division 
or square root operation does not block the floating-
point unit for the entire duration of the computation, 
and several other operations can be initiated or carried 
out in parallel. 

The large number of floating-point registers available, 
of which some are static and some are rotating, allows 
for efficient implementation of complicated floating-
point calculations. An illustration of software and 
hardware interaction in the Itanium architecture, this is 
achieved on one side by avoiding frequent accesses to 
memory, and on the other through software pipelining 
of loops containing floating-point computations. For 
example, the throughput for division operations can be 
as high as one result for every 3.5 clock cycles on the 
Itanium and Itanium 2 processors. 

Floating-Point Formats 

The IEEE Standard 754-1985 for Binary Floating-Point 
Arithmetic [6] mandates precisely defined floating-
point formats referred to as single precision and double 
precision. As well as these IEEE-mandated formats, 
Intel architectures have traditionally supported a 
double-extended precision type, with 64 bits of 
precision and a 15-bit exponent field. In current IA-32 
implementations, results computed in the floating-point 
register stack may be rounded to 24, 53 or 64 bits of 
precision. Although the first two precisions coincide 
with the IEEE single and double precision, the 
precision control setting in IA-32 processors does not 

affect the exponent range, as the exponent uses a 15-bit 
field until the number is actually written back to 
memory. Although the greater exponent range is 
normally advantageous, it can lead to subtle variations 
in underflow and overflow behavior depending on 
exactly when a result is written to memory (which may 
be compiler-dependent and hard to predict). 

In order to maintain the useful extra exponent range but 
allow the user complete control over rounding, the 
Itanium architecture allows for both conventional single 
and double precision formats and formats with the same 
precision but a 15-bit exponent field. In addition, a still 
wider exponent field of 17 bits is provided in each case, 
a very useful feature for intermediate calculations with 
double-extended precision numbers. This means that 
there are actually eight floating-point formats directly 
supported by the Itanium architecture, shown in Table 
3-1. 

Table 3.1. Floating-Point Formats Available in the 
Itanium Architecture 

Format Precision Exponent 
Bits 

Exponent 
Range 

Single 24 8  –126 to 
127 

Double 53 11   –1022 to 
1023 

Double 
extended 

64 15  –16382 to 
16383 

IA-32 
stack 
single 

24 15  –16382 to 
16383 

IA-32 
stack 
double 

53 15  –16382 to 
16383 

Register 
single 

24 17  –65534 to 
65535 

Register 
double 

53 17  –65534 to 
65535 

Register 64 17  –65534 to 
65535 

 
Register and Memory Encodings 

The Itanium architecture specifies 128 floating-point 
registers f0, f1, ..., f127. Register f0 is hardwired to 
+0.0 and f1 to +1.0, and both are read-only, but all 
other registers are available for reading and writing. 
Each register is 82 bits long, with a 64-bit significand 
(using an explicit integer bit), a 17-bit exponent field 
and a 1-bit sign. The exponent bias has the value 65535, 
or 0xFFFF (hexadecimal).  



Certain values, such as NaNs, are neither negative nor 
positive. Special encodings, such as zeros, infinities, 
pseudo-zeros, pseudo-denormals, NaNs, pseudo-NaNs, 
pseudo-infinities, or NaTVal are all possible. Some of 
these special categories are explained below. 

The minimum (biased) exponent value of 0 is reserved 
for double-extended real denormalized numbers 
(denormals), and for pseudo-denormals. The maximum 
(biased) exponent value of 131071, or 0x1FFFF, is 
reserved for special numbers such as infinities and 
NaNs. 

Other exponent values, between 0 and 0x1FFFE in 
biased form, are used for finite numbers. The value in a 
floating-point register with sign s, biased exponent e 
and significand m0m1m2…m63 is determined by the 
following formula for biased 17-bit exponents between 
1 and 0x1FFFE: 

 (–1)s ⋅ 2 e–65535 ⋅ m0.m1m2…m63 

and the following for biased exponents that are zero: 

 (–1) s ⋅ 2 –16382 ⋅ m0.m1m2…m63 

The register encoding is redundant: the same real value 
can sometimes be represented in several different ways. 
This is a consequence of the presence of an explicit 
integer bit, and is true of all floating-point formats that 
support it. For example, one can have positive pseudo-
zeros with significand equal to zero but exponent from 
0x000001 to 0x1FFFD rather than zero. Most of these 
alternative representations of the same number are 
equally acceptable as inputs to floating-point 
operations, the only exceptions being the unsupported 
numbers with exponent 0x1FFFF and integer bit 0 
(pseudo-infinities and pseudo-NaNs). In particular, the 
user can freely operate on arguments of mixed format 
without any time-consuming format conversions. This 
is often useful, especially when: 

  • Using double-extended intermediate precision 
calculations to compute a double precision function. 
The double precision input argument can be freely 
combined with double-extended intermediate results. 

  • Computing functions involving constants with few 
significant digits. Whatever the precision of the 
computation, the short constants can be stored in single 
precision. 

However, results of floating-point operations, and 
floating-point values loaded from memory, are always 
mapped to fixed canonical representatives in the 
register.  

Note that the subsets of positive and negative register 
format numbers are almost symmetrical, with only two 
exceptions. First, NaTVal, the special Not a Thing 
Value quantity used to track floating-point 

computations that encounter failed speculative loads, 
has an encoding as an otherwise unused positive 
floating-point number: positive sign, biased exponent of 
0x1FFFE and significand of 0 (a pseudo-zero). Second, 
encodings with a positive sign and a biased exponent of 
0x1003E (corresponding to the unbiased decimal value 
of 64) are used also for canonical integers, and for 
SIMD1 floating-point numbers (pairs of 32-bit single 
precision numbers). These are stored in the significand 
portion of a floating-point register. 

The register encoding used differs from the encoding 
used when floating-point values are stored in memory. 
Single precision and double precision floating-point 
numbers are stored in the memory format specified by 
the IEEE Standard, with exponent biases of 127 (0x7F) 
and 1023 (0x3FF) respectively, and no explicit integer 
bit. Double-extended and register format numbers are 
stored in a more direct mapping of the register contents 
(the exponent bias for double-extended values is 
0x3FFF). 

For example, the value of a single precision floating-
point number with sign s, biased exponent e and 
significand m0m1m2…m23 stored in memory is 
determined by the following formula for biased 8-bit 
exponents between 0x1 and 0xFE: 

(–1)s ⋅ 2 e–127 ⋅ m0.m1m2…m23 

and the following for biased exponents that are zero: 

 (–1)s ⋅ 2 –126 ⋅ 0.m1m2…m23 

For double precision values, the exponent bias to 
subtract from the exponent e is 1023, and denormals 
have an exponent of –1022. For double-extended 
precision values, the exponent bias is 16383, and 
denormals have an exponent of –16382. 

Status Fields and Exceptions 

Given the number of floating-point formats available in 
the Itanium architecture, it is important to have a 
flexible means of specifying the desired floating-point 
format for a particular result to be rounded into, as well 
as the direction of rounding (e.g. rounding to nearest or 
truncation). Moreover, in accordance with the IEEE 
Standard, floating-point operations on the Itanium 
architecture not only produce results, but may 
optionally trigger exceptions or record exceptional 
conditions by setting sticky status flags. It would be 
impractical to encode all this information into the 

                                                 
1SIMD is an acronym for Single Instruction and 

Multiple Data, a form of parallel computing in 
which one operation is performed in parallel on 
multiple sets of operands. 

 



format of each instruction, so some global status and 
control word is necessary for specifying options as well 
as recording exception flags. On the other hand, having 
only a single record would be inconvenient where there 
are several parallel threads of control, or where 
exceptions in some intermediate instructions need to be 
ignored. Therefore, the Itanium architecture features 
four different status fields which can be specified by 
completers in most floating-point instructions. An 
instruction with a given status field completer is then 
controlled by, and records certain information in, that 
status field. 

A 64-bit Floating-Point Status Register (FPSR) 
controls floating-point operations and records 
exceptions that occur. The FPSR contains 6 trap dis-
able bits that control which floating-point exception 
conditions actually result in a trapped exception (where 
control passes to the OS and possibly to a user handler), 
and which are merely recorded in sticky status flags. 
These bits control the five IEEE Standard exceptions: 
invalid operation (vd), division by zero (zd), overflow 
(od), underflow (ud) and inexact result (id), as well as 
the additional denormal/unnormal operand exception 
(dd), which occurs if an input to a floating-point 
instruction is an unnormalized number. In addition to 
this field, the FPSR contains four 13-bit status fields, 
denoted in the assembly language syntax by s0, s1, s2 
and s3.  

Each status field can be divided into two parts: flags 
and controls. The six flags are bits that record the 
occurrence of each of the 6 exceptions mentioned 
above, when exceptions are masked, or, for the 
overflow, underflow or inexact result exceptions, also 
when they are enabled (unmasked).  These flags are 
sticky, meaning that later operations that do not cause 
exceptions will not set flags back to 0, so the 
occurrence of an exception anywhere in a computation 
sequence will be apparent at the end of that sequence. 
Of the control part, one bit (td) allows all exceptions to 
be disabled irrespective of the individual trap disable 
bits from the FPSR (often useful in intermediate 
calculations). The remaining 6 bits control the rounding 
mode, precision and exponent width, and the flushing to 
zero of tiny2 results. 

                                                 
2The IEEE Standard allows for two methods of 

determining whether a result is tiny. Intel 
architecture processors choose to define a result 
as being tiny if the exact value rounded to the 
destination precision while assuming an 
unbounded exponent is less than the smallest 
normal value that can be represented in the 
given floating-point format. 

The pc and wre fields together determine the floating-
point format into which the result will normally be 
rounded. The rounding control rc determines the IEEE 
rounding mode. 

Although the status fields determine the default 
rounding behavior of operations, it is often possible to 
override them by explicit completers. This applies, for 
example, to many of the instructions to be discussed 
below. If an instruction has an explicit .s or .d 
completer, then the destination format is single or 
double precision respectively, except if the wre flag is 
set, in which case register single or register double is 
used.  

Software conventions for the FPSR determine many of 
the appropriate applications for particular status fields. 
Typically, s0 is the main user status field used for most 
floating-point calculations. Status field s1, with wre 
enabled and all exceptions disabled, is used for 
intermediate calculations in many standard numerical 
software kernels such as those for division, square root, 
and transcendental functions. Status fields s2 and s3 are 
also commonly used for speculation. The default setting 
of the FPSR is such that all status fields use the 64-bit 
precision, the round-to-nearest rounding mode, and 
have floating-point exceptions and the flush-to-zero 
mode disabled. Only status field s1 uses the widest-
range exponent. 

The Floating-Point Multiply-Add 

In most existing computer architectures, there are 
separate instructions for floating-point multiplication 
and floating-point addition. In the Itanium architecture, 
these are subsumed by a more general instruction, the 
floating-point multiply-add or fused multiply-
accumulate, which takes three arguments, multiplies 
two of them and adds in the third. The basic assembly 
syntax is: 

 (qp) fma.pc.sf f1 = f3, f4, f2 

which sets f1 = f3 ⋅ f4 + f2. Note that no intermediate 
rounding is performed on the result of the 
multiplication, and the result is written to f1 as if it were 
first computed exactly and then rounded, in a natural 
extension of the way conventional arithmetic operations 
are specified to behave in the IEEE Standard. The 
rounding of the result and the triggering of exceptions 
is controlled by the status field specified by the sf 
completer and possibly by the FPSR trap disable bits, 
except that the rounding precision from sf may be 
overridden by an optional precision control completer 
pc. 

Since the floating-point registers f0 and f1 are 
hardwired to the values +0.0 and +1.0 respectively, 
addition and multiplication can easily be implemented 



as special cases of the fma: x + y = x⋅1 + y and x ⋅ y = 
x⋅y + 0.  In fact, the floating-point addition and 
multiplication assembly instructions 

 (qp) fadd.pc.sf f1 = f3, f2 
 (qp) fmpy.pc.sf f1 = f3, f4 

are simply pseudo-operations that expand into 

 (qp) fma.pc.sf f1 = f3, f1, f2 
 (qp) fma.pc.sf f1 = f3, f4, f0 

respectively. In order to change signs, there are two 
variants of the fma: the fms (floating-point multiply-
subtract) and fnma (floating-point negative multiply-
add). The instructions 

 (qp) fms.pc.sf f1 = f3, f4, f2 
 (qp) fnma.pc.sf f1 = f3, f4, f2 

 compute f1 = f3 ⋅ f4 – f2 and f1 = –f3 ⋅ f4 + f2 respectively. 
Floating-point subtraction 

 (qp) fsub.pc.sf f1 = f3, f2 

is likewise a pseudo-operation for 

 (qp) fms.pc.sf f1 = f3, f1, f2 

An even more degenerate instance of fma, called fnorm 
(floating-point normalize) can be used to round a result 
into a given floating-point format. This can be used as a 
‘lowering’ operation to convert a value to a smaller 
floating-point format, but the most common use is just 
to ensure that the number is normalized. (This is often 
useful, because processing unnormalized values is 
slower in most cases than performing an fnorm 
followed by the intended operation.) This rounding to a 
canonical value is accomplished by the standard fma 
behavior, and so fnorm.pc.sf  f1 = f3 is simply a pseudo-
operation for fma.pc.sf  f1 = f3,f1,f0. 

It was stated above that the fma behaves in accordance 
with the IEEE Standard. Strictly speaking, that standard 
does not cover the fma instruction, but all the 
stipulations are extended to it in a natural way. 
However, there is some subtlety over the signs of zero 
results. 

If the result of an fma without the final rounding would 
be nonzero, then should it round to zero, the sign of the 
final zero will reflect the sign of the exact result. This 
of course is the ‘correct’ decision, but is a non-trivial 
extrapolation of the IEEE Standard. Here, the sign rules 
for multiplications and divisions are obvious (the 
exclusive or of the input signs). And for addition and 
subtraction, when the rounded result is nonzero, the 
exact result must be too (in a fixed floating-point 
format), so only the special case of exactly zero results 
needs to be dealt with. 

Now consider the case when the result of an fma 
instruction without rounding is exactly zero. Normally, 
the sign of x ⋅ y + z is determined by multiplying the 
signs of x and y to give a sign for the intermediate 
result, then using the rules of the IEEE Standard, 
treating w + z as if it were an ordinary sum. However, 
this is not appropriate for considering the ordinary 
product a special case of the fma. For example, (+1.0) ⋅ 
(– 0.0) + (+0.0) would give +0.0, whereas the IEEE-
specified product is (–0.0). This difficulty is 
circumvented as follows: if the third argument to the 
fma is actually register zero (f0), then the sign of zero is 
determined by the IEEE rules for products. Otherwise, 
the sign of zero results is decided as specified above for 
fma, even if the third argument to fma is not the special 
register zero f0 but nevertheless contains the value zero. 
This applies equally to the variants fms and fnma. 

A floating-point multiply-add is a very valuable 
architectural feature, for reasons of both speed and 
accuracy. In typical implementations, the final addition 
can be combined into the floating-point multiplication 
operation without significantly increasing its latency. 
Thus, a single fma is faster than a multiplication and an 
addition executed successively. Since additions and 
multiplications are heavily interleaved in many 
important floating-point kernels (the evaluation of 
inner, or dot, products of vectors or the evaluation of 
polynomials for example), the use of an fma can lead to 
significant performance improvements. For example the 
vector dot product  x ⋅ y: 

 p = ∑i=0
N-1  xi ⋅ yi 

can be evaluated by a succession of fma operations of 
the form 

 p = p + xi ⋅ yi 

requiring only n floating-point operations, whereas with 
a separate multiplication and addition it would require 
2n operations, with a longer overall latency. 

Apart from its speed advantage, the fact that no 
intermediate rounding is performed on the product also 
tends to reduce overall rounding errors. In common 
cases this difference may be relatively unimportant, but 
in special situations, the lack of an intermediate 
rounding makes possible a number of techniques that 
are difficult or costly on a traditional architecture. The 
floating-point division and square root implementations 
provide ample illustration of this fact, but here are three 
other characteristic examples. 

Exact Arithmetic 

In certain applications it is important to perform 
arithmetic to very high precisions, perhaps hundreds of 
bits. A natural way of manipulating very precise 



numbers is as floating-point expansions; that is, sums of 
standard floating-point numbers of decreasing 
magnitude. In order to perform efficient computations 
on such expansions, the basic building blocks are 
operations that compute exact arithmetic operations on 
individual pairs of floating-point numbers. For 
example, it is known (Moller [7], and Dekker [8]) that 
if |x| ≥ |y| the exact sum x + y can be obtained as a 2-
piece expansion Hi + Lo by the following sequence of 
floating-point adds: 

 Hi = x + y 
 tmp = x – Hi 
 Lo = tmp + y 

This is straightforward to implement on traditional 
architectures, though features of the Itanium 
architecture make it significantly more efficient. 
However, on traditional architectures there is no 
similarly easy way of obtaining the exact product of 
floating-point numbers as an expansion; this requires 
fairly complicated and inefficient methods based on 
splitting the numbers into high and low parts by 
masking and performing numerous sub-computations. 
However, with the fms instruction, this computation is 
simple and efficient: 

 Hi = x ⋅ y 
 Lo = x ⋅ y - Hi 

This sequence always results in Hi + Lo = x ⋅ y exactly 
with Lo a rounding error in Hi ≈ x ⋅ y. 

Accurate Remainders 

It is often the case that given a floating-point number q 
approximately equal to the quotient a / b of two 
floating-point numbers, one wants to know the 
remainder r = a – b ⋅ q. This arises whenever evaluation 
of a quotient to higher precision is needed, for example, 
in floating-point expansions. Provided the 
approximation q is good enough, it can be shown that r 
is always representable exactly as a floating-point 
number. However, that does not mean it is always 
straightforward to obtain it on traditional architectures. 
In fact, if a – b ⋅ q is computed by a multiplication and a 
subsequent subtraction, the rounding error in the 
multiplication may be comparable in size to r itself, 
rendering the result essentially meaningless. Thus, 
complicated masking and multiple computations are 
necessary. But in the Itanium architecture, evaluating   

a – b ⋅ q by an fnma instruction will give an exact 
answer provided q is accurate enough.3 

Accurate Range Reduction 

A similar situation arises when one has an integer 
approximation to the exact quotient. Many algorithms 
for mathematical functions, in particular trigonometric 
functions such as sin, begin with an initial range 
reduction phase, subtracting an integer multiple of a 
constant such as π / 2. With the fma this can be done in 
a single instruction x – N ⋅ P yielding an accurate result. 
Without the fma however, the rounding error in the 
multiplication could severely distort the result, so it 
might be necessary to represent P as the sum of two 
numbers with fewer significant bits. (Each of these 
numbers can be multiplied by N without error, and after 
several operations the main result can be obtained.) The 
fma is also useful for obtaining the appropriate N rap-
idly in the first place. Typically, one wants to perform 
some operation such as 

 y = Q ⋅ x 
 N = rint (y) 
 r = x – N ⋅ P 

where rint (y) denotes the rounding of y to an integer, 
and Q ≈ 1 / P. Rather than using the special fcvt 
instructions to convert y to an integer, the integer 
conversion can be performed by adding and subtracting 
a large constant like S = 2p–1 + 2p–2 where p is the 
floating-point precision, for example p = 53 for double 
precision. (Adding such a constant fixes the most 
significant bit of the sum and hence performs integer 
rounding of y, provided |y| ≤ 2p–2; the use of 2p–2 makes 
the technique work for both positive and negative y.) 
Using the fma the multiplication by Q and the addition 
of S can be combined, and hence the reduced argument 
can be obtained by just three fma operations: 

 y = S + Q ⋅ x 
 N = y – S 
 r = x – N ⋅ P 

This approach has the additional advantage of avoiding 
some rare problems with the intermediate rounding of 
the product Q ⋅ x. 

Comparison and Classification 

Floating-point comparisons are similar to the integer 
comparisons. The basic instruction is 

                                                 
3 It suffices for q to be accurate to one unit in the 

last place (ulp). 
 



 (qp) fcmp.fcrel.fctype p1, p2 =  f2, f3 

Here the fcrel completer, which is compulsory, 
determines the relation that is tested for. The 
mnemonics differ slightly from those used in the integer 
comparison: eq for f2 = f3, lt for f2 < f3, le for f2 ≤ f3, gt 
for f2 > f3, ge for f2 ≥ f3,and unord for f2 ? f3. There is no 
signed/unsigned distinction but there is a new 
possibility, shown in the last case (f2 ? f3): two values 
may be unordered, since a NaN (Not a Number) 
compares false with any floating-point value, even with 
itself. Mnemonics are also provided for the 
complements of all these conditions, although in the 
actual instruction encoding these simply swap the 
predicate registers and/or the input floating-point 
registers.  

The fctype field has two possible values, none (i.e. the 
field is omitted in the assembly syntax), and unc. If 
omitted, the result of the comparison and its 
complement are written to the designated predicate 
registers in the usual way. If the completer unc is used, 
however, then the behavior is the same if the qualifying 
predicate qp of the instruction is true, but both the 
predicate registers p1 and p2 are cleared if qp is false.  

It is often desirable to classify a floating-point number, 
for example to abort a calculation if an input is infinite 
or NaN. A comprehensive instruction for classifying the 
floating-point value in a register is fclass: 

 (qp) fclass.fcrel.fctype p1, p2 =  f2, fclass 

The result of classifying the contents of f2 is written to 
the predicate registers p1 and p2, controlled by the 
optional fctype in the same way as for comparisons (i.e. 
its values can be none or unc). The fcrel field may be m 
(f2 is a member of the class specified by fclass) or nm 
(f2 is not a member of the class specified by fclass). The 
actual classification is encoded as a 9-bit field whose 
bits are interpreted to determine whether the floating-
point value is: positive or negative; zero, unnormalized, 
normalized or infinity; NaN or NaTVal. 

Division and Square Root 

There are no instructions specified in the Itanium 
architecture (except in IA-32 compatibility mode) for 
performing floating-point division or square root 
operations. Instead, the only instruction specifically 
intended to support division is the floating-point 
reciprocal approximation instruction, frcpa, which 
given floating-point numbers a and b, normally returns 
an approximation to 1 / b good to about 8 bits. The 
syntax of this instruction is as follows: 

 (qp) frcpa.sf f1, p2 =  f2, f3 

Similarly, the only instruction to support square root is 
the floating-point reciprocal square root approximation 

instruction frsqrta, which given a floating-point number 
a, normally returns an approximation to 1 /  √a good to 
about 8 bits. 

 (qp) frsqrta.sf f1, p2 =  f3 

In special cases such as b = 0 for frcpa or a = 0 for 
frsqrta, these instructions actually return the full IEEE-
correct result for the relevant operation (the full 
quotient in the case of frcpa), and indicate this by 
clearing the output predicate register p2. Usually, 
however, the initial approximations need to be refined 
to perfectly rounded quotients or square roots by 
software, and this is indicated by setting the predicate 
register p2. Consequently, one can simply predicate the 
software responsible for refining the initial approx-
imation by this predicate register. Thanks to the 
presence of the fma instruction, quite short straight-line 
sequences of code suffice to do this correction. There 
are several reasons for relegating division and square 
root to software. 

 • By implementing division and square root in 
software, they immediately inherit the high degree of 
pipelining in the basic fma operations. Even though 
these operations take several clock cycles, new ones 
can be started while others are in progress. Hence, 
many division or square root operations can proceed in 
parallel, leading to much higher throughput than is the 
case with typical hardware implementations. 

 • Greater flexibility is afforded because alternative 
algorithms can be substituted where it is advantageous. 
It is often the case that in a particular context a faster 
algorithm suffices, for example because the ambient 
IEEE rounding mode is known at compile time, or even 
because only a moderately accurate result is required 
(this might arise in some graphics applications). 

 • In typical applications, division is not an extremely 
frequent operation, and so it may be that the die area on 
the chip would be better devoted to something else. 

Intel Corporation distributes a number of recommended 
algorithms for various precisions and performance 
constraints, so the user will not ordinarily have to be 
concerned with the details of how to implement these 
operations. As an example, consider the single 
precision division algorithm, optimized for throughput 
(it has the smallest possible number of floating-point 
instructions, resulting in the minimum latency per result 
in software-pipelined loops): The algorithm calculates q 
= a/b in single precision, where a and b are single 
precision numbers,  rn  is the IEEE round to nearest 
mode, and rnd is any IEEE rounding mode. All other 
symbols used are 82-bit, register format numbers. The 
precision used for each step is shown below. 

 



  (1) y0 = 1 / b⋅ (1+ε0),  |ε0|<2-8.886 table lookup 
  (2) d = (1 - b ⋅ y0)rn  82-bit register format precision 
  (3) e = (d + d ⋅ d) rn  82-bit register format precision 
  (4) y1 = (y0 + e ⋅ y0) rn 82-bit register format precision 
  (5) q1 = (a ⋅ y1) rn  17-bit exponent, 24-bit mantissa  
  (6) r = (a - b ⋅ q1) rn  82-bit register format precision 
  (7) q = (q1 + r ⋅ y1) rnd single precision (IEEE) 

The assembly language implementation follows [9], 
assuming the input values are in floating-point registers 
f6 and f7, and the result in f8: 

         frcpa.s0 f8,p6=f6,f7;; // Step (1)  y0=1/b in f8 
 (p6) fnma.s1 f9=f7,f8,f1;;  // Step (2) d = 1-b*y0 in f9 
 (p6) fma.s1 f9=f9,f9,f9;;     // Step (3) e = d+d*d in f9 
 (p6) fma.s1 f8=f9,f8,f8;;  // Step (4) y1 = y0+e*y0 in f8 
 (p6) fma.s.s1 f9=f6,f8,f0;;   // Step (5) q1 = a*y1 in f9 
 (p6) fnma.s1 f6=f7,f9,f6;;   // Step (6) r = a-b*q1 in f6 
 (p6) fma.s.s0 f8=f6,f8,f9;; // Step (7) q = q1+r*y1 in f8 

Support for software pipelining on Itanium processors 
allows for this algorithm to be scheduled without any 
additional code, so that one result is generated every 3.5 
clock cycles (since there are 7 floating-point 
instructions to schedule on 2 floating-point units on 
Itanium and Itanium 2 processors). This is a lot more 
efficient than on most present-day processor 
architectures. 

Table 3.2 shows the Itanium 2 processor cycle times for 
the division root algorithms of various precisions (a 
similar table is available for square root [9]). For 
algorithms optimized for latency, the operation latency 
is given, in number of clock cycles. For operations 
optimized for throughput, the number of clock cycles 
required to generate one result is given. 

Table 3.2. Latency and Throughput for Floating-Point 
Division on the Itanium 2 Processor 

Division Single 
Precision 

Double 
Precision 

Double-
Extended 
Precision 

Optimized 
Latency 

24 28 32 

Optimized 
Throughput 

3.5 5 7 

The square root algorithms rely on loading constants, 
and the time taken to load these constants is not 
included in the overall latencies. If the function is 
inlined by an optimizing compiler, these loads should 
be issued early as part of normal operation reordering. 
For comparison, note that on the Itanium 2 processor, a 

floating-point add/subtract, multiply, or fused multiply-
add operation has a latency of 4 clock cycles, and a 
throughput of 0.5 clock cycles (meaning that two 
results can be generated every clock cycle, for example 
in a software-pipelined loop). 

Additional Features 

The Itanium architecture includes a number of other 
useful floating-point instructions that have not been 
mentioned, which are covered in detail in [4]. They 
include: 

•  transferring values between floating-point and integer 
registers by means of the getf and setf instructions 

• floating-point merging, useful in order to combine 
fields of multiple floating-point numbers to give a new 
number using the fmerge instruction 

•  floating-point to integer and integer to floating-point 
conversion using the fcvt instructions 

• integer multiplication and division - the Itanium 
architecture does not specify a full-length integer 
multiplication or division instruction; instead, such 
operations are intended to be implemented using the 
floating-point unit, by first transferring the arguments to 
floating-point registers, performing the multiplication 
or division there, and transferring the result back 

• floating-point maximum and minimum, using the 
fmax and fmin instructions 

Conclusion 
The Itanium floating-point architecture was designed so 
that its high performance, accuracy, and flexibility 
characteristics make it ideal for technical computing. 
Floating-point enhancements include a high precision 
and wide range basic floating-point data type, the fused 
floating-point multiply-add operation, software division 
and square root operations, and a large number of 
floating-point registers. Floating-point code can also 
draw on other generic Itanium architecture features 
such as predication, register rotation, high memory 
bandwidth, and speculation. 

All floating-point data types are mapped internally to an 
82-bit format, with 64 bits of accuracy and a 17-bit 
exponent. This affords calculations that are more 
accurate, and do not underflow or overflow as often as 
on other processors. The great flexibility in using and 
combining various floating-point formats and 
computation models makes it easy to implement 
complex numerical algorithms more efficiently than 
before. 



The fused multiply-add operation combines two basic 
floating-point operations in one, with only one rounding 
error. Besides the increased accuracy, this can 
effectively double the execution rate of certain floating-
point calculations, as the fused multiply-add operation 
forms an efficient computation core that maps perfectly 
to several common algorithms used for technical and 
scientific purposes. 

The large number of floating-point registers available, 
of which some are static and some are rotating, allows 
for efficient implementation of complicated floating-
point calculations. An illustration of software and 
hardware interaction in the Itanium architecture, this is 
achieved on one side by avoiding frequent accesses to 
memory, and on the other through software pipelining 
of loops containing floating-point computations.  

The highest SPEC CFP2000 score for a single 
processor system, of 1431, belongs currently to an 
Itanium 2 system running at 1GHz - the Hewlett-
Packard HP Server RX2600. The best performing P4 
system, running at 3.06 GHz, has a score of 1092. The 
SPEC CINT2000 scores are in reverse order though – 
810 and 1099 respectively. This gap will likely 
decrease and the advantage is expected to be on the 
Itanium processor family side as its core frequencies 
will get higher - today’s Itanium processors run at 
relatively low frequencies, and as the compiler 
technology on which Itanium processors depend so 
much continues to evolve. 
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