WCA
Workshop

E 2002

on Cornputer

Architecture Educailion

Anchorage, Alaska

May 26, 2002

Workshop

Proceedings



Welcome Message

Welcome to the Workshop on Computer Architecture Education! By my unofficial count, this is the

tenth such workshop since the series began at HPCA-1 in January 1995. | am pleased to announce that
this WCAE received the second largest number of submissions ever, and the overall quality of the

papers appears to meet or exceed that of all past workshops. This year’s keynote address will be given
by Fayé A. Briggs, who has a long and distinguished career as a researcher and textbook writer in acade-

mia, and now as director of chipset architecture for the world’s largest manufacturer of processor chips.

A new feature of the workshop is discussion periods in every session, giving participants a chance to
explore important aspects of teaching with the presenters. | hope that this will give you ideas you can
take back to use in your own teaching, and then report on them at future WCAEs. | look forward to
excellent presentations and excellent interactions with all of you.

Edward F. Gehringer, Workshop Organizer
Dept. of Electrical & Computer Engineering
Dept. of Computer Science

North Carolina State University
http://www4.ncsu.edu/~efg

efg@ncsu.edu

Table of Contents

Session 1.Welcome and Keynot@:30-9:20

8:30 WelcomeEdward F. Gehringer, workshop organizer

8:35 Keynote address‘Introducing new variables and constraints into computer architecture education,”
Fayé A. Briggs, INtel COrpPoration .. .......ouiuieiiii e e et e e e 3

Session 2.Teaching New Perspectives on Computer Architecta@-10:00

9:20 “Teaching processor architecture with a VLSI perspective," Mircea R. Stan and Kevin Skadron,
UNIVEISILY OF VIFGINIaL. ..o e e 4

9:35 “Teaching students computer architecture for new nanotechnologies," Michael T. Niemier and

Peter M. Kogge, University of NOIre Dame.........oiiiuiiiiiiiii i e e e 10

9:50 Discussion

Break 10:00-10:30

Session 3.Teaching with Custom Computer Architectures:30-11:15

10:30 “Using custom hardware and simulation to support computer systems teaching,” Murray Pearson,

Dean Armstrong, and Tony McGregor, University of Waikato...............ccooiiiiiiiiiiiinns 19
10:45 “On the design of a new CPU architecture for pedagogical purposes,” Daniel Ellard, David
Holland, Nicholas Murphy, and Margo Seltzer, Harvard University..............ccoooeviiiiiiiivneeene, 27

11:05 Discussion

Session 4.Active Learning 11:15-12:00

11:15 “Questions to enhance active learning in computer architecture,” Mark Fienup and J. Philip East,

University Of NOINEIN [OWa.........ouiii i et e e e aeaas 34

11:25 "An active learning environment for intermediate computer architecture courses,” Jayantha Herath,
Sarnath Ramnath, Ajantha Herath, and Susantha Herath, St. Cloud State University............... 41

11:35 Discussion

Lunch (on your own) 12:00-1:30



Session 5.Simulators and Tool$:30-3:30

1:30 “Effective support of simulation in computer architecture instruction,” Christopher T. Weaver,

Eric Larson, Todd Austin, University of Michigan ............cccoooiiiiiiiiiiin e, 48.....
1:50 “Web-based training on computer architecture: The case for JCachesim," Irina Branovic,

University of Siena, and Roberto Giorgi and Antonio Prete, University of Pisa...........ccc......... 56.......
2:10 “Digital LC-2: From bits & gates to a Little Computer,” Albert Cohen, INRIA, and Olivier

Temam, UNIVETSITE PariS-SUC.........c.iiiiiiiiii e 61...
2:30 “Mipslt—A simulation and development environment using animation for computer architecture

education,” Mats Brorsson, KTH, Royal Institute of Technology ..........cccccoviiiiiiiiinnnnn. 65......
2:50 “CoDeNios: A function-level co-design tool,” Yann Thoma and Eduardo Sanchez, Swiss Federal

Institute of TeChNOIOY, LAUSANNE. ... ..iu e 73....

3:10 Discussion

Break and Poster Session3:30-4:15

“How computers really work: A children's guide,” Shirley Crossley and Hugh Osborne, University

of Huddersfield, and William Yurcik, Illinois State UniVersity..............coovviiiiiiii e 79
“Update Plans: pointers in teaching computer architecture,” Hugh Osbornéidvidnliak,
University of HUAAErsFIEld. ... ... e 84....

“CASTLE: Computer Architecture Self-Testing and Learning System,” Aleksandar Milenkovic,
University of Alabama in Huntsville, Bosko Nikolic and Jovan Djordjevic, University of Belgrade. 89

“Development of a digital instrument as a motivational component in teaching embedded
computers,” Gracian Trivifio and Felipe Fernandez, Universidad Politécnica............................ 93

"ILP in the undergraduate curriculum,” Daniel Tabak, George Mason Univeristy.................... 98

Session 6.Resources for Architecture Coursasl5-6:00

4:15 "PECTOPAH: Promoting Education in Computer Technology Using an Open-Ended
Pedagogically Adaptable Hierarchy,” Hugh Osborne, Shirley Crossley amdedicak, University

of Huddersfield, William Yurcik, lllinois State UNIVErSity ...........ccccviiiiiiiiiiineiiiiiiiiie e 102..
4:35 “Read, use, simulate, experiment and build: An integrated approach for teaching computer

architecture,” loannis Papaefstathiou and Christos Sotiriou, University of Crete..................... 105
4:55 “Anintegrated laboratory for computer architecture and networking," Takamichi Tateoka, Mitsugu

Suzuki, Kenji Kono, Youichi Maeda and Koki Abe, University of Electro-Communications........ 110
5:10 “Alab course of computer organization,” J. Real, J. Sahuquillo, A. Pont, and A. Robles,

Technical University Of ValenCia....... ... 118..
5:30 “A survey of Web resources for teaching computer architecture,” William Yurcik, Illinois State

University and Edward F. Gehringer, North Carolina State University...............oooeviiiiinnns. 125

5:45 Discussion

Visit the workshop on the Web, http://www4.ncsu.edu/~efg/wcae2002.html. PDF of all the
proceedings, color screenshots, and more!



Introducing New Variables and Constraintsinto Computer
Ar chitecture Education

Keynote Address

Fayé A. Briggs
Director of Chipset Architecture, Intel Corporation

Abstract: Computer architecture education has evolved significantly over the last 30 years, especially in
academia. Businesses have often sought to provide their internal education on various aspects of computer
architecture. The goal of this talk is to provide an overview of many other variables and constraints that
could further enrich the education of computer architecture. The intent is to suggest some new aspects of

computer architecture education curriculum that will enrich the development of architecture & associated
evaluation criteria



TeachingProcessoArchitecturewith a VLS| Perspectie

MirceaR. Stan
ECEDepartment
Universityof Virginia
Charlottesville VA 22904
mrcea@irginia.edu

Abstract—This paper proposesa new approachto teach-
ing computer architecture by placing an explicit emphasis
on circuit and VLSI aspects.This approachhasthe poten-
tial to enhancethe teaching of both architecture and VLSI
classesto improve collaboration betweenCS and ECE de-
partments and to lead to a better understanding of the cur-
rent difficulties faced by microprocessordesignersin indus-

try.

Keywords: computerarchitecture microprocessode-
sign,VLSI design

I. INTRODUCTION

Theteachingof computerarchitecturdypically focuses
on theinteractionof instructionsetarchitecturgISA), in-
structionsper clock cycle (IPC), andprocessoclock rate.
Yet the circuit-designexigenciesthat profoundly impact
theimplementatiorof architecture-leel conceptoftenre-
ceive little consideration.For example,the popularHen-
nessyandPattersontextbooks[1], [2] andothers,despite
their mary strengthshave very limited informationabout
logic and circuit issues. On the other hand, the VLSI
anddigital integratedcircuit textbooks[3], [4] rarely con-
siderthe implicationsof their methodsfor microproces-
sor designat the architecturdevel. This division is often
perpetuatedy traditional academicboundaries.In this
paper we make the casethat a new courseis needed
that crossegheseboundariesand teachescomputer ar-
chitecture with an explicit VLSI perspective and vice-
versa.

A. Whyteadhing computerarchitectue with a VLSI per
spective

Teachingcomputerarchitectureasary otherdiscipline,
is differentfrom schoolto school,but therehave beenat-
temptsto unify it, eitherin aninformal, grassrootsvay,
e.g., by theincreasegbopularityof sometextbooksthatare
widely adoptedcanddominatethefield; or in aformal way
by the different accreditationmechanismse.g., ABET,

* This work was supportedin partby NSF CAREER grant CCR-

0133634 NSFCAREERgrantMIP-9703440 andby a researchgrant
from Intel MRL.

Kevin Skadron
CSDepartment
Universityof Virginia
Charlottesville VA 22904
skadron@s. virgi ni a. edu

CSAB, andthe creationandpublicationby IEEE/ACM of
genericcurriculafor ComputerScienceand Engineering
degrees.! In sucha proposecturriculum,the main com-
puterarchitectureconceptsare coveredin a “core” class,
CS 220- ComputerArchitecture,with more detailedmi-
croarchitectureand circuit issuesbeing left to the non-
core, “advanced”classesCS 320 - AdvancedComputer
Architectue and CS 323 - VLSI development We agree
that not all studentscan, or should, learn all the details
normallypresentedh thesethreeclasseshut we alsothink
thatit isimportantto teachthemicroarchitecturandVLSI
aspectgogetherfor thosestudentshat electto learnthe
advancedconceptsand preparefor careersas micropro-
cessomarchitectsor circuit designersin brief, we propose
the creationof a combinedclass,CS320/323- Advanced
ComputerArchitectue: a VLSIPerspectiveseefigure 1.

Sucha classwould be usefulfrom mary pointsof view.
First, it breaksthe artificial boundarybetweenmicroar
chitectsand circuit designers. Both in industry and in
academia,such differencesclearly exist but are mostly
detrimental. When architectsdo not have a good under
standingof VLSI/circuit issuesthey maytake unwisede-
cisionsthat penalizeoverall costand performancewhen
circuit designerslon't understandhe overall architecture,
they cannotfully take advantageof the degreesof freedom
in designor exploit synegistic designchoicesacrosamul-
tiple levels of abstractionA courselike CS320/323- Ad-
vancedComputerArchitectue: a VLSIPerspectivewould
preparestudentsvith acomple view of botharchitecture
andcircuit aspects.

Second the classwould also help asa bridge for aca-
demic programsin ComputerScience,ComputerEngi-
neeringandElectricalEngineering A quick searchof dif-
ferentexisting classesand programsat differentuniversi-
ties revealsthat ComputerArchitectureclassesare mary
timestaughtin both CSandECE departmentsyith more
of themon the CS side, while VLSI classesare mostly
taughtin ECE and EE departmentswith few CS depart-
mentsofferingthem. Thisis exactlythecaseatthe Univer

Thttp://www.computerorg/educatio/cc2001



sity of Virginia, wheretherearetwo classesn Computer
Architecture,onein the CS, the otherin the ECE depart-
ment, but only one VLSI class,in the ECE department.
A courselike CS 320/323- AdvancedComputerArchi-
tectue: a VLSIPerspectivewould be equallyattractve to
both CSandECE studentsanddepartments.

The third and final point is that such a classwould
bring new ideasand excitementinto teachingboth Com-
puter Architectureand VLSI. While in industry the em-
phasison circuit designaspectss clearly requiredfor the
high-performancenicroprocessorsf todayandtomorrav
(assupportedby the mary publicationsat ISSCCandin
JSSC)thistrendis notyetfully reflectedin the computer
architectureclassedeingofferedin academiaThe situa-
tion with the VLSI classess evenmoreseriousasvery lit-
tle progresshasbeenmadein theteachingVLSI sincethe
seminalextbookby MeadandConnway. Eventhe nevest
VLSI textbooksstill usethe samebottom-upapproactof
first presentingdevice physics,followed by simplelogic
circuit design,combinationalaindsequentialfollowed by
layoutandfinally a few casestudieq[3], [4]. Suchanap-
proach,quite successfuin the past,hasbecomeslightly
datedasit clearlytamgets“hard-core”ElectricalandCom-
puter Engineeringstudentsandis not interestingto most
ComputerSciencestudents Eventhe VLSI textbooksfo-
cusingon ASIC designare not appropriatefor micropro-
cessodesignerswho needabalancedpproactthatcom-
bines both customand semicustondesignmethods. A
courselike CS 320/323- AdvancedComputerArchitec-
ture: a VLSI Perspectivewould make both ComputerAr-
chitecture andespeciallyWLSI design,moreattractve to
awider spectrunof studentsandgivethemgreatebreadth
of training.

Il. COMPUTER ARCHITECTURE WITH A VLSI
PERSPECTIVE: A BIRD’S EYE VIEW

The goal of the classis to give equalweight to both
computemicroarchitecturendcircuit designaspectsin
order to do this effectively the topics will be presented
in parallel,with architectureconceptsbeingusedto pro-
vide a“natural” way to introduceVLSI andcircuit design
concepts. Accommodatingboth architectureand VLSI
will necessarilgntailsacrificingsomematerialfrom tradi-
tionaladwanced-architecterandVLSI syllabi. Ourphilos-
ophyis thatwith asoundtrainingin fundamentalsthe de-
tails are easilylearnedindependently For example,once
thefundamental®f branchpredictionandcachingareun-
derstoodstudentsanasneededeachthemselesthevar-
ious advancedbranch-predictiomndcachingschemesas
well asvariationslike value predictionand prefetching.
As anotherexample,oncethefundamentalef [MIRCEA:

VLSI].

To minimize the needfor pre-requisitesthe classwill
assumenly asophomore-hel assembly-languagendin-
troductorycomputeforganizaton courseas pre-requisite.
CS320/323will startwith a quick overview of Architec-
ture(“ComputerArchitecturel01”) andVLSI (“VLSI De-
sign101”) to introducethemainideas.

A. Overviav: ProcessorlArchitectue

The overview of processoarchitecturagopicswill start
with a classic,single-issugscalar)processorWe planto
usea modernembeddegbrocessoexample like the Digi-
tal StrongArm,or its successoithe Intel XScale.Thiswill
includethe basicoperationsof instructionfetch, instruc-
tion decoderegisterfile accessintegerandfloating-point
execution,andresultwriteback. In a genericfashion,we
will alsointroducethe notionsof pipelining and pipeline
control, result forwarding, instruction and data caches,
control and datahazardsexceptions,etc. The quantita-
tive evaluationof performancehroughbenchmarkingnd
simulationwill alsobeintroducedhere.

B. Overviav: VLSIdesign

The overview of basicVLSI designconceptswill start
with abrief introductionof active device behaior andcir-
cuits, first at the switchlevel andonly laterwith morede-
tailed analysisandcircuit-level modelingandsimulation.
Next we will touchon combinationals. sequentialogic
andcircuits, staticvs. dynamiccircuit conceptsandbasic
ideasof possibledesignflows, includingcustom,semicus-
tom,andfully automatedWealsobriefly touchontheidea
of alayout,andthecorrespondingAD stepsof floorplan-
ning, placemenandrouting.

Following this quick introductionthe coursewill get
into more detaileddiscussiorof eachprocessomrchitec-
turetopic andits “associated’VLSI circuit concept.There
will beaclearattemptto presenbotharchitectureandcir-
cuitissuesn alogicalmannerin generaby following the
typical order of a processompipeline for the architecture
conceptsandassociatinghe mostimportantand natural
circuit issueto the architecturesuchthattherearefew or
no repetitionsandall theimportantaspectsarecovered.

I11. INSTRUCTION FETCH AND DECODE:

COMBINATIONAL LoOGIC DESIGN

The classicalprocessopipeline startswith instruction
fetchanddecodesoit is naturalto startour detailedtreat-
menthereaswell. Sincecachesareusedbothfor instruc-
tion and data,and sincememorystructuresare not natu-
rally bestsuitedasa first introductionto circuit concepts,



{ 4y y
Y ¥
FETCH [pci-ICACHE ?
Y
| ‘ |
RER,
DECODE REGFILE
Y ' ‘
' [ —
EXECUTE [;ﬂ
—
MEMORY LCACH
— ~ o
| | !
WRITEBACK "classical" "classical"
A VLS
NEW
A. B. COURSE C.

Fig. 1. New classon ComputerArchitecturewith a VLSI perspectiewill combineelementdrom “classical’ ComputerArchitec-

tureclassesndfrom “classical’VLSI designclassesA. typical 5-

C.typical VLSI conceptsatthelogic andcircuit levels.

we postponethe actualdiscussionof VLSI conceptsfor
memoriedo alatersection.

A. Architectue: InstructionFetch and Decode

Herewe startwith a quick discussiorof instructionfor-
mats, the CISC vs. RISC debate,and how decodinga
RISC instructionsetis “easy” comparedto a CISC. We
will useMIPS asanexampleRISCarchitecturgwe would
have usedAlpha, but now it is a“defunct” processotine)
and x86 as an example of CISC, thus covering both ex-
tremes.

B. VLSI: BasicCombinational.ogic

We can use decodingas a typical example of combi-
national logic circuits, and useit to illustrate the most
importantcircuit designconcepts. We startwith simple
static circuit techniquesjncluding complementarystatic
CMOS, pass-transistaandpass-gatéogic, andshav how
they applyto simplelogic gateswith muxesanddecoders

stageprocessopipeline,B. typical simplifiedmicroarchitecture,

as a typical example. We then explain the adwantages
of complementargtaticCMOS (generalapplicability ro-
bustnessregeneratiorof logic levels) aswell asits disad-
vantagegsize, suboptimalperformance).We then shav
that other particularlogic stylescan outperformcomple-
mentaryCMOSin specialcasesandexemplify with pass-
transistorlogic and pseudo-NMOSfor muxes and de-
coders.We postponghe issueof dynamiccombinational
circuit designto a future section.

C. VLSI: Layout

Herewe introducelayouttechniquesandthe main fig-
uresof meritfor VLSI circuits: performancegpropagation
delay), area(cost), power dissipation,reliability, robust-
nessto noise,etc. We also introducethe notion of dig-
ital designas a trade-of amongthe possiblefigures of
merit. We shav simplebottom-up“polygon pushing”de-
signsteps.



V. PIPELINING: SEQUENTIAL LOGIC DESIGN

One of the most effective ways to increaseprocessor
performances to usepipelining of the variousoperations.
This providesthe perfectmotivationfor looking at the cir-
cuit designof sequentiatircuits.

A. Architectue: Pipelining

We first presentthe “classical” 4-stageand 5-stage
pipelines, demonstratethe increased throughput that
pipelining achieves,andexplore the tradeofs betweenra-
teng/ andthroughputfor a pipelinedprocessor We fol-
low up with moreadwancedconceptdik e superpipelining,
andshaw thetrade-ofs dueto anincreaséan thework per
pipelinestagevs. overheaddueto latchoverhead.

B. VLSI: Floorplanning

Thesimpleexistenceof a pipelinegivesalevel of regu-
larity to thedesignthatcanbeusedfor top-davn floorplan-
ning. Herewe explaintheimportanceof blockadjacencies
for reducedarea(lessrouting) andincreasegerformance
(shorterwires).

C. VLSI: SyntironousSequentialCircuits

A pipelineis basedon the overlap (in time) of the dif-
ferentfunctions;this overlap canbe achieved with either
synchronousr with asynchronousnethods.Virtually all
current processorsare synchronousso we start by ex-
plaining simple synchronouslesignconceptsuchasset-
up and hold timesand propagatiordelay edge-triggered
flip-flop vs. transparentatchvs. pulsedregister etc. We
presensimplestaticCMOSimplementation®f suchflip-
flops, registersandlatches thenintroducedynamiclogic,
followed by dynamicversionsof thesestateelementsor
higher performancebut also higher powver andlessnoise
immunity. We exemplify with a few of themostimportant
typesof flip-flops usedin seseralmicroprocessorsnclud-
ing TSPC,theEarlelatch,etc.

D. VLSI: Clocking

The issuesof clock generationclock distribution and
their influenceon clock skew are explained. We explain
the trade-ofs for clock-spinesclock-planes,H-tree and
X-tree clock distribution schemesaswell asthe notions
of centralizedand distributed clocking schemes. Here
we alsodiscussheissueof optimally driving large loads
throughthe placementindsizing of buffers.

E. VLSI: Low-PowerDesign

We explain the differencesbetweendynamicandstatic
power, power consumptionand power dissipation, etc.

More advancedconceptdik e time-borraving anddynamic
voltage/frequengc scalingarealsopresentedere,aswell
asclock-gatingandotherlow-power methods We alsoin-
troducethe enegy-delayproduct.

F. VLSI: Asyn@ironousDesign

In orderto provide a balancedview, we also present
asynchronougdesign conceptssuch as micro-pipelines,
wave pipelining, and“hybrid” methodssuchasglobally-
asynchronouslocally-synchronas approachesWe also
give the (few) exampleswhere suchmethodshave actu-
ally madeit into real commercialmicroprocessorge.g.,
wave-pipeliningfor addresslecoders).

V. EXECUTION UNITS: DATAPATH STRUCTURES

After instructionfetch and decode,the next stepin a
simple,scalay processois registerreadandexecution.We
postponaliscussingegisterfile issuego the next section
anddiscussexecutionunitshere.

A. Architectue: Integer Execution

Herewe discussoriefly differentissuesrelatedto inte-
gerdatapathsespeciallymicroarchitectureandlogic level
computerarithmeticalgorithms,including addition, sub-
traction, multiplication, division andtranscendentabper
ations.Two’s complemenhotationis introducedaspartof
thistopic. We alsobriefly explain MMX andothersignal-
processingenhancementechniquesfor general-purpose
processors.

B. Architectue: Floating-Roint Execution

We follow the integer datapathissueswith the more
compl issuegelatedo FParithmetic,includingdatafor-
matslike IEEE.

C. VLSI: Datapathand ComputerArithmetic

Herewe explorein moredepththe differencesetween
staticand dynamiccombinationalogic circuits, with the
higher performanceof dynamiclogic beingwidely used
for datapattcircuits. We thenpresentdifferentaddercir-
cuit styles (e.g. Kogge-Stone) multiplier circuit styles,
shifterstyles,etc.

D. VLSI: Placement

TheVLSI structurepresentedh previoussectionsvere
more or less“random” logic. For datapathcircuits there
is an obvious one-dimensionategularity (the numberof
“bits”) that can, and should, be exploited as bit-sliced
design. Bit-slices are an example of regular placement
of logic along one dimension. Here we also discuss



aboutcustomand semicustondesignmethodologiesand
give examplesof customdatapattdesignandsemicustom
standard-cell-baserandomlogic.

V1. CACHES AND REGISTER FILES: MEMORY DESIGN

Finally we presentcachesand data-arraystructures.
Cachesare usedfor instructionsand data,while dataar
raysareusedfor registerfiles, queuesetc.

A. Architectue: Cades

We startby presentindssuegelatedto cacheassociati-
ity, first the two extremes direct-mappeaacheandfully-
associatie cachefollowedby “in-between’casedik e set-
associatie cacheandCAM-RAM structuresWe consider
the issuesof write-throughvs. write-back,fills andwrite
buffers. TLBs andgenericbuffersareothertypesof mem-
ory structureghatarepresentedhere. As advancedtopics
we presentnon-blockingcachesand multi-level cachehi-
erarchies.

B. Architectue: RagisterFiles

For registerfileswe startby presentingrchitecturateg-
istersandtheirimplementation.\& considemulti-porting
aswell assplit-phaseegisteraccess.

C. VLSI: Memoriesand Data Arrays

In order to implementmemoriesand data arrayswe
presentthe main circuit building blocks. We start with
the row and column decodersfollowed by memory-cell
design. Static/6Tvs. dynamic/1Tor 4T aswell asword-
linesandbitlines, prechaging, for readandwrite arethen
discussedSenseampdesignandissuegelatedto leakage
andthresholdwrap-upthe designaspectsWe follow by a
brief discussiorof defectsyield, andredundang methods
(sparerows andcolumnswith reconfigurationjor increas-
ing yield for memorystructures.

D. VLSI: Routing

Physicaldesignissuesfor memoriesare extremelyim-
portant,in particularthe issueof pitch-matchingfor the
various subsections. This is an example of self-routing
by alutmentwhich shavs theimportanceof regularity for
VLSI design. Generalrouting for “random” logic is a
muchmoredifficult problem.

VII. PIPELINE CONTROL: STATE MACHINES

A. Architectue: PipelineContrmol

We first shav how forwarding works and how the PC
getsupdated. We thenintroducebranchpredictionand
shav how instructionsget “squashed”. As an adwanced

topic we introduce multiple (in-order) issue-superscalar
and the associatedscoreboardingand contrastthis with
VLIW techniques.

B. VLSI: StateMachines

Herewe discusdifficulties of longerpipelinesin terms
of forwardingcompleity and mispredictionpenalty We
introducePLAs asan alternatve for combinationalogic
implementation.

VIIl. VLSI: INTERCONNECT, BUSSES AND |/O

We presentmajor difficulties relatedto long intercon-
nect,RCandRLC delayissuesandrevisit buffer-insertion
to reducequadraticdelay We alsoshav 1/0 designand
system-interconnedssues,ncluding the needfor multi-
voltagedesign.

IX. WHEN THINGS GO WRONG: EXCEPTIONS,
VERIFICATION, TESTING

A. Architectue: Exceptions

An essentiapart of architecturas exceptionhandling.
We discussprecisevs. impreciseexceptions,explore the
challengeof exceptionhandlingfrom the ISA level, and
thenproceedo describeherequisitehardwarestructures.
We first preseninterrupt/traphardware, supervisomode,
exceptionsandtrap vectors. We thentracethe sequence
of stepsfor syscalltrap, I/O interrupt. For dealingwith
exceptionswhile alreadyhandlinganexceptionwe explain
the needfor interrupt masks,processoistatusword, etc.
As an adwancedtopic we presentthe BIOS and describe
the procesf bootstrappinghe computer

B. VLSI: Verification, Testing and Padkaging

We explain the issuesrelatedto verification and vali-
dation (making surethat the designis correct)aswell as
to testingandhbuilt-in self test(BIST—makingsurethata
correctdesignis correctlyfabricated).The notionsof de-
fects,faultsanderrorsis exploredin moredetail. A brief
overvien of manufcturing packagingbinningis alsopre-
sentedchere.

C. VLSI: Powerdistribution

With reducedvoltagesand increasingpower, the cur
rentsthat needto be distributed on chip areincreasingat
an alarmingrate. Here we discussissuesrelatedto IR-
drop,electromigrationandtheirinfluenceon performance
andreliability. We briefly mentionaluminumandcopper
interconnecandSOl.



X. OuT-OF-ORDER EXECUTION: VLSI
METHODOLOGY

A. Architectue: Out-of-Oder Execution, Register Re-
naming

Herewe explain the benefitsof out-of-orderexecution
(OOE)andthe needfor renaming.We briefly describeba-
sic OOE structureqregisterupdateunit vs. issuequeues,
etc.) aswell aswakeup and selectlogic and renaming
logic.

B. VLSI: QueuesandVLSIMethodolgy

The issuequeuehasbecomeone of the mostcomple
structuresn a modernout-of-ordersuperscalamicropro-
cessar We choosetheissuequeueto do anin-depthanal-
ysis and exemplify with multiple casestudiesof real de-
signs. We usethis asa motivation for a look at different
designmethodolog\alternatveswith theiradvantagesand
disadwantages.

X1. CONCLUSION

We have madethe casefor a classthatteachegproces-
sorarchitecturewith a VLSI perspectie. We believe that
sucha classwould have a strongimpactin academiaand
will also betterpreparestudentsfor jobs as either archi-
tectsor circuit designers.We expectthe classto be quite
popularwith a wide spectrumof studentsn CSandECE
departmentsSinceno currenttextbook useshis approach
we alsobelieve thattherearesignificantopportunitiesfor
filling this void with a“new andimproved” textbook that
could be used,eitherfor teachingComputerArchitecture
with a VLSI perspectie, or, alternatvely, for teaching
VLSI for ComputerSciencestudents.

REFERENCES

[1] J.L. HennessyandD. A. Patterson, ComputerArchitectue: A
QuantitativeAppmoad, SeconcdEdition, MorganKaufmannPub-
lishers,1995,I1SBN 1-55860-329-8.

[2] D. A. PattersonandJ. L. Hennessy ComputerOrganization&
Design: The Hardware/Softwae Interface Morgan Kaufmann,
SanMateo0,1993.

[3] JanM. Rabag and MassoudPedram, Eds., Low Power Design
Methodolgies Kluwer AcademicPublishersBoston,MA, 1996.

[4] Neil Westeand KamranEshraghianEds., Principles of CMOS
VLSIDesign AddisonWeslegy, ReadingMA, 1993.



Teaching Students Computer Architecturefor New, Nanotechnologies

Michael Thaddeus Niemier
University of Notre Dame
Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46545
mniemier@nd.edu

Abstract:

Given the potential limitations facing CMOS, there has
been an influx of work and research in various nano-
scale devices. Most of the work related to
nanotechnology has been done strictly with devices,
with little attention given to circuits or architectures of
them—the desired end result. In the past, these studies
have usually lagged device development by many years.
However, we propose a curriculumto help integrate the
communities — device physicists and computer
architects — earlier. One goal of such a curriculum
would be to teach students how to generate a
“ Mead/Conway” methodology for a given
nanotechnology. This would teach students not only
how to help technology change and evolve, but
eventually teach students how to adapt to changes after
a technology evolution. Another goal would be to
facilitate more (and earlier) interaction between device
physicists and computer architects to prevent these two
groups from developing diverging views of what is
physically and computationally possible in a system of
nano-scale devices.

1. Introduction:
Consider the following “quote” from the preface of a
future book on nano-scale design:

“Until recently the design of integrated circuitry for
nano-scal e devices has been the province of circuit and
logic designers working within nanotechnology firm
research laboratories and select “ pockets” of academia.
Computer architects have traditionally composed
systems from standard self-assembled nano-circuits
designed and manufactured by these entities but have
seldom participated in the specification and design of
these circuits. Nano-engineering and Computer
Science (NE/CS) curriculareflect thistradition with
courses in nano-scal e device physics and integrated
circuit design (if any at all) aimed at a different group
of studentsthan those interested in digital system
architecture and computer science. Thistext iswritten
to fill acurrent gap in the literature and to introduce all
NE/CS students to integrated system architecture and
design for emerging nano-technologies. Combined
with individual study in related research areas and
participation in large system design projects, thistext

Peter M. Kogge
University of Notre Dame
Dept. of Comp. Sci. and Eng.
Notre Dame, IN 46545
kogge@wizard.cse.nd.edu

provides the basis for a course-sequence in integrated
nano-systems.” (Mead/Conway V)

With the potential physical and economic
limitations facing CMOS, there has been a recent
proliferation in research related to nano-scale devices —
particularly those targeted toward computational
systems. Much of this early work has been relegated to
the development of the physical devices themselves,
and while circuits and systems have probably been
envisioned within each specific nanotechnology being
considered, their development has usually not
progressed beyond the conceptual stage. Furthermore,
historically, computer architects have been disjoint
from the process of actual circuit designs, and in the
case of CMOS, comprehensive and integrated
architectural and circuit design methodologies were not
published until the late 1970s when Carver Mead and
Lynn Conway's groundbreaking work appeared [1].

Interestingly, the above paragraph of this work is
essentially verbatim from the preface of Mead and
Conway's VLSl text. While written almost 25 years
ago, it illustrates a problem that they faced — computer
architects, who might be the “lowest common
denominator” in designing a system to perform useful
and efficient computation, did not take part in the
development of the devices and basic circuits with
which they were required to design. We are beginning
to face this same problem now with regard to nano-
scale devices, and this paper will propose the
beginnings of a curriculum to help aleviate it.

At arecent NSF sponsored workshop on molecular
scale devices and architectures [2], Lynn Conway
reiterated that during the early years of CMOS
development, while architects would sometimes work
with MOS technologists, as a“group”, most individuals
did not span the whole range of knowledge required to
design a complete computer system. Likewise, the
scope required to do complex designsis large and it is
not completely feasible for a device physicist to
understand all of the issues a computer architect must
consider. In the pre-Mead/Conway era, the
development flow was for system architects to express
adesign at a high level, such as Boolean equations, and
then turn it over to logic designers who converted the
designs into “netlists” of basic circuits. Fab experts
would then lay out implementations of the individual



logic blocks, and “just wire them together.” Interaction
between the architects and fab experts was limited. In
terms of technology, MOS FETS were considered
“slow and sloppy,” and real design was in sophisticated
bipolar devices.

The invention of the self-aligning FET gate
alowed Mead and Conway to bridge this gap by
changing the focus of fab from considering chips “in
cross section” to an “overhead view” where it is the
interconnect that is most visible. They did this by
developing a set of design rules and abstractions that a
computer architect could use to involve himself or
herself in the circuit design process. They reduced the
physics-dependent device descriptions to a scale-
independent set of parameters based largely on area and
shape, with some simple rules for first order modeling
of how such devices would interact in combination with
each other. They also introduced some simple but
useful circuit primitives that changed the discussion
from isolated logic gate performance to interconnect.
This alows architects, who are experts in hierarchical
designs, to extend their hierarchies one level down—to
potentially new basic structures, and then take
advantage of these structures in implementing larger
and larger systems. The introduction and use of clever
circuits using pass transistors is just one example of
such an insight.

When coupled with the ability to cheaply fabricate
real chips through MOSIS, this revolutionized the
academic computer architecture community. Now,
inexpensive, but adventuresome, prototyping could be
carried on in an academic setting, by students (and
faculty) whose growing expertise was in expressing and
analyzing novel regular and hierarchical designs.

Before proposing any new and targeted curriculum
for nanotechnologies, we will first revisit the existing
core of the computer architecture curriculum at the
University of Notre Dame — a representative subset of
courses that would be taken by a student wishing to
specialize in computer architecture. Also, because we
propose that in the future there should be greater
integration  between communities of computer
engineers/architects and those actually working on nano
device development, we will include an overlay of
relevant electrical engineering curriculum — especialy
that which is targeted toward electrical engineers
interested in computer systems. This will be used to
show how electrical and computer engineering curricula
currently interact and will help define a base for an
integrated curriculum targeted toward nano-scale
architectures.

Fig. 1 illustrates the existing curriculum. It also
includes a listing of goals and topics relevant to each
course, shows any overlap between the two curricula,
documents popular course sequences, and highlights
available course sequences. By examining this figure

one can clearly see that all of the pieces are in place to
facilitate interaction and understanding between
electrical and computer engineers (or device physicists
and architects!). A set curriculum is aready in place
for electrical engineers who have an interest in
computer systems and several course seguences are
available for computer engineers interested in the
“physics” of logic. (Note: an interesting side project
might be to integrate this “roadmap” into the first
course, Logic Design (CSE 221), of this sequence to
help students see and understand the “bigger picture”
earlier.)

At the same workshop mentioned above, when
speaking of nano-scale devices, Conway also posed the
question of when will there be some emerging areas
where designers will be able to compile enough basic
information to start generating interesting circuits. At
the University of Notre Dame, we believe that one
promising “emerging area’ is the Quantumdot Cellular
Automata (QCA). QCA stores information within
“cells” consisting of multiple quantum dots via the
positions of single electrons, and performs logic
functions not by electron flow, but by Coulombic
interactions between electrons in neighboring QCA
cells. Rea QCA cells have been fabricated by Notre
Dame device physicists that demonstrate the key
properties of computation, information transfer, and
storage. Also, researchers are on the verge of creating
QCA cells consisting of single molecules which may be
“self-assembled” into larger structures via attachment to
DNA tilings. Truly, QCA is in the nano-scale ream
and a subset of actual devices — both theoretical and
experimentally proven— exists.

Prior to the beginning of the authors' research on
design with QCA, little work had been done in
considering systems of, circuits for, or an architecture
for QCA devices. Ironicaly (and rather
unintentionally), our initial work mimicked the
experiences of Mead and Conway in more ways than
one. First, our interactions with technologists were not
as successful as they could have been — because “as a
group, most individuals did not span the range of
knowledge required to design a complete computer
system.” As a particular example, recently we
discovered that a QCA circuit characteristic that we (as
architects) deemed essential for useful and efficient
circuits, was not a priority for device physicists.
Clearly, this illustrates the need for better
communication and understanding between the two
communities.  Second, when examining our design
process, it has by in large mirrored the path proposed
by Mead and Conway to help circuit designers
understand the architectural possibilities of a
technology.

Now, with many other nanotechnologies consisting
of at least a subset of experimental devices, we propose



Spring Semester, Fall Semester, Spring Semester, Fall Semester, Spring Semester,
Sophomore Year Junior Year Junior Year Senior Year Senior Year
CSE 422 CSE 443
CSE 341 Comp. Sys. Design Compilers
Operating Systems Providesview of Help students
CUEEECIEEEL || integrated HW/SW | | | develgp complete
processor talkswith tradeoffsfor und ding of
syste software systems(i.e. space, relationshipsb/t
/\ power, speed...) ISA & arch.
) CsE3n CSE 322 CSE 462 CSE/EE 4988
Some typical Comp. Arch. | Comg. Arca. || VLSl Desian “Front. & mBys”
computer Design/evaluate Understand arch. Learn design Developgrelations
engineering arch.vs. org.vs. features of moderrs methodologies of B/t integrat
sequences NI CSE 221 implementation: i B computer systems: M N IRVE (o T B i W e o Te 1o
UL;J Ich_m--- understand basic @l compieie large build CSE 321 device téch., sys.
. --Undexstapd infa. P dedign oroied I+l - cireuits in EM @S - -} -| - - arehs,-and-
_ /?n Idﬁal On bipéry logic/ e AN : o>
“integration” building blocks e " CSE 498A :
of device ipplementablein WEE242 ¢ : Adv*Comp. Arch.
background CMOS Electgonics i | [ Onder&and cur fent
and Under stgrd : hioh o&f . Arch
: actual #f ansistor : gn pett. rcr!,
ar chitecture / : H system-level condp.
wor kg, learn basics H H
for computer VLS circuit "‘. archs., & I_earrg
ar chitects K R&D kills
EE 347 EE 357 4 EE 446 v Requi y
Semiconductors | Semiconductors 1 ICFab. Lab & CSE
Learn physical Apply transport Introduce students
phenomena phenomena to to principles of
fundamental to explain terminal ICFab. (i.e only CSE
transistors, S IC behavior of FETS photolithography,
technology MOS devices, etc. impurities...) Required by
L only EE
Available
EE “Bitsto-Chips’

Concentration

Fig. 1. Existing “core” of “conventional” computer architecture curriculum.

developing a curriculum to teach students how to
develop a set of guidelines for computer architects and
circuit designers for a specific nanotechnology. The
context will include our experiences with QCA and the
proven methodologies proposed by Mead and Conway
for one of the most commercially successful
computational mediums -- CMOS. Eventually an end
result might be a “Mead/Conway” study for a specific
nanotechnology. However, another (and earlier) goal
of the curriculum is to teach students how to actually
develop a “Mead/Conway” study for any
nanotechnology. We also propose an extension of their
work — namely, preparing computer architects and
circuit designers to work with device physicists during
actual device development. The end result envisioned
is as a group, individuals who span the range of
knowledge required to design better devices and
complete computer systems.

With these thoughts in mind, Fig. 1 has been
augmented in Fig. 2 to show a parallel curriculum that

will end with a“Frontiers of Nano-Systems course” and
accomplish one of the first goals stated above — namely
educate students on how to develop a*“Mead/Conway”
for any nanotechnology. Interestingly, the second goal
(preparing computer architects and circuit designers to
work with device physicists during actual device
development) should be accomplished by the course
sequence itself as a) it (like a VLS| or logic design
course) would be targeted toward both electrical and
computer engineers and b.) “the big picture” detailed in
the figure below will be explained to students at the
beginning of the sequence and act as aroadmap to help
the students understand what they are working toward.
Finally, Fig. 2illustrates an approximate time sequence
as to where these courses would fit into existing
electrical and computer engineering curriculum. They
could easily occur simultaneously with or after an
appropriate course in “conventiona” electronics and
architectures. However, they could also be taught
before the similar “conventional” course. Thisis based



on the idea that someone who is trying to develop an
architecture for a specific nanotechnology might have
better success with less knowledge of previous design
evolutions and/or design methodologies. Would a
potential computer architect be better off with just a
sound basis of knowledge in the nanotechnol ogy that he
or she is trying to develop a “Mead/Conway” for?
Would this lead to the best possible design
methodology and architecture for that particular nano-
scale device? Arguments will be made for both cases
based on our experienceswith QCA.

The rest of this paper will discuss the “CMOS
independent” parts of our current curriculum, and what
needs to be kept intact from it — largely the hierarchical
design approach. We will also detail how we propose to
educate students to accomplish the above goals. We
will first discuss our proposed curriculum in detail and
discuss what background students should bring to it and

learn from it. The next section will discuss why we
should — and how to — encourage students to think
"outside the box" with regard to circuits and
architectures for nanotechnologies. Next, we will
consider mechanisms, examples, etc. for introducing
students to the actual development of circuit design
rules, techniques, and architectures. Finaly, we will
conclude and discuss future work. Interestingly, each
of these sections will be introduced with an excerpt
from the text of the Mead/Conway preface indicative of
the fact that architects studying nanotechnology will
have to face and solve many of the same problems that
were first experienced during the last technology
evolution.

2. (Student) Background:
“We have chosen to provide and assume that
students will bring with them just enough essential

Spring Semester, Fall Semester, Spring Semester, Fall Semester, Spring Semester,
Sophomore Y ear Junior Year Junior Year Senior Year Senior Year
CSE 422 CSE 443
CSE 341 Comp. Sys. Design Compilers
Operating Systems Provides view of Help students
Under stand how integrated HW/SW develqp complete
processor tal:swith il Il EGES Coii T'[""inderSAnding of
syste.. software systems(i.e. space, relationghipshb/t
K\ power, speed...) 1SA & arch.
] CSE 321 CSE 462 CSE/EE 498B
Some typical Comp. Arch. | Comp _Arca. |l VLS| Design Front. of mBys”
computer Design/evaluate Understand arch. Learndesign Develop:{elallons
engineering arch.vs.org. vs. features of modern methodologies of B/t mtegrat
sequences RNCE =2kl I implemontation; [ compuiter Sytems: | I I VE=2lc /ol 1TV B I ooVl
** - oot Des| Bl understand basic M cornpide large 8 build CSE 321 device téch., ws
An ideal --Understapd.info..|.... wii s o eI ert e T B .:drouit-sinQVl-QS- --e!-chs-,-ahd-apb
= On bipery logic/ H =
integration buijding blocks ., CSE 498A i
of device iprplementablein E_ 2 ; Advs.Comp. Aréh. ;
HEETELId e £l L Under$t@nd current Ayajlable .
—_ Understgnd high p&f. Arch EE “Bitsto-Chips’
architecture " cnsistor i || sysem-tevel cornp. Concentration
wor k%, learn basics : .
for computer VLS circuit archs., & learn
ar chitects “ R&D skills
EE 347 EE 357 4 EE a6 ¢ Required by
Semiconductors | Semiconductors | 1C Fab. Lab’ Labv & CSE
Learn physical Apply transport Introduce students
phenomena phenomena to to principles of Required by
fundamental to explain terminal IC Fab. (i.e. only CSE
transistors, S IC behavior of FETS, photolithography,
technology MOS devices, etc. impurities...) Required by
only EE
Biochemistry for !
engineer)é Frontiers of
Nano-systems
Quantum M ech.
for engineers

Fig. 2: Existing “core” of computer architecture curriculum augmented with proposed * nano” -curriculum.



information about devices, circuits, fabrication
technology, logic design techniques, and system
architecture to enable them to fully span the entire
range of abstractions from the underlying physicsto
complete VLS digital computer systems.”
(Mead/Conway Vi)

As stated in the introduction, an initial end goal of
our curriculum is to teach students how to design a
Mead/Conway study for any nanotechnology. The
above excerpt from the actua Mead/Conway preface
describes what knowledge the authors expected
students (including computer architects!) to have in
order to understand the design rules provided for VLS
systems.  While the existing and *“conventional”
computer architecture course sequences will provide
some needed background for a concentration in nano-
scale design, clearly, preparing students for a
technological evolution will require additiona and
different fundamental information aswell.

It should be reemphasized that Mead and Conway
were proposing a “capstone” class in VLS| design,
while we are proposing a curriculum to teach the
development of their methodologies as an end goal
(which will hopefully, eventually lead to an analogous
“capstone” course for a specific nanotechnology).
Consequently, we must also define what background —
devices, logic design methods, fabrication techniques,
etc. — students will need to meet this goal. This
“background” must be provided in two different ways.
First, an entirely new subset of courses must be
developed to teach students the fundamentals of nano-
scale devices and nano-scale fabrication techniques.
What should such a sequence entail? This question can
best be answered by looking at the different disciplines
that are part of various nano-scale device developments.
For example, in addition to electrica engineers,
physicists, and computer architects, chemists are an
integral part of the development of QCA. Additionaly,
other emerging nanotechnologies — DNA-based
computing, carbon nanotubes, etc. — all have roots in
chemistry. With this in mind we believe that any
curriculum designed to teach students how to develop
systems of nano-scale devices should include a course
in biochemistry — but targeted toward engineers.

Other background information can most likely be
derived from existing courses, abeit retargeted for
different ends. For example, many emerging
nanotechnol ogies are al so rooted in quantum mechanics
— Q-bits, QCA, etc. — and at the University of Notre
Dame a course in quantum mechanics is available as
part of the electrical engineering graduate curriculum
(and available to interested undergraduates as well).
Part of this existing course could easily be
augmented/spun-off and should be targeted toward

engineering students who are interested in circuit and
system design.

Together, these two courses — biochemistry for
engineers and quantum mechanics for engineers —
would provide the foundation for a course in nano-scale
devices which would eventually segway into a course
intended to teach the development of Mead/Conway-
esq design rules and methodologies. This specific
course sequence is highlighted in Fig. 3 and each course
is paired with its “conventional equivalent”. By
examining Fig. 3, one can conclude that the sequence of
biochemistry for engineers and quantum mechanics for
engineers would provide the same functionality for
students desiring to study systems of nano-scale devices
that the electrical engineering semiconductors course
currently provides for students desiring to study
systems of MOS devices. Namely, both teach students
about the materials from which computational devices
and their substrates can be built.

In the existing curriculum at the University of
Notre Dame a course in electronics, which teaches
students how computational devices constructed with
various semiconductors actually function, occurs in
parallel with the semiconductors course. Our proposed
and parallel course in nano-scale devices fills the same
role as a course in MOS electronics but occurs only
after students have studied the fundamentals of how
various nano-scal e devices can actually be constructed.
We believe that sequencing these course sets will
provide engineering students with the greatest level of
understanding about the computational devices.

Our course sequence concludes with a*“ Frontiers of
Nano-Systems” course. The particular classis currently
“paired” with the existing VLSI course (which employs
and teaches the Mead/Conway design rules and
methodologies for MOS) as well as the Frontiers of
Microsystems course (which seeks to help students
understand the relationships between integrated circuit
design, device technology, system architecture, and
applications for MOS devices) [3]. However, because
there are many promising nano-scale devices and no
heir-apparent to CMOS, our proposed “Frontiers of
Nano-Systems” currently exists essentiadly as a
combination of its two MOS equivalents. While it
might involve case studies of architectures and design
rules for existing and promising computational devices,
it is more targeted toward helping students understand
how such design rules were actualy developed.
Essentially, the goal of this course is to teach students
how to help technol ogy evolve.

Idedly, work completed and skills learned in a
Frontiers of Nano-Systems course will someday lead to
a specific Mead/Conway-esq course for a specific
nanotechnology. Such a course might be offered when
a nanotechnology has evolved enough that a MOSIS-
like conglomerate exists for it. For MOS devices,



Quantum mechanics
for engineers

Biochemistry

for engineers

Frontiers of
Nano-systems

EE 347
Semiconductors | EE 242
Learn physical S
pny Understgnd how
phenomena

actualff ansistor
wor k£, learn basics
VLS circuit

fundamental to
transistors, S IC
technology

CSE/EE 462 CSE/EE 498B
VLS| Design “Front. of mBys”
Learndesign Develop relations

methodologies of B/t integrated
M ead/Conway; elec. sys. design,
build CSE 321 device tech., sys.
circuitsin CMOS archs, and apps

Fig. 3: The core of the “nano” -curriculum with “conventional” curriculum equivalents.

MOSIS (Metal Oxide Semiconductor Implementation
Service) provides system designers with a single
interface to the constantly changing technologies of the
semiconductor industry and allows for the fabrication
of their circuits. Were an “NIS’ (“Nanotechnology
Implementation Service) to exist, a set of design rules
(or single interface) for a specific nanotechnology
would also exist. It is these design rules that would
form the core of a course that would not teach students
how to help technology evolve. Instead, such a course
would not only allow computer architects to prototype
and analyze novel and regular devices for a
nanotechnology, it would aso help a community adapt
to a new computational medium. Essentially Frontiers
of Nano-Systems would become two courses — one to
teach students how to adapt, the other to teach students
how to keep evolving. (Also, even those who do not
participate in an eventual “NIS-targeted” course will
have at least seen and experienced what is required to
adapt to anew technology).

Finally, there are three important generalizations to
make about our proposed curriculum for designing with
nano-scale devices. First, when examining its
“conventional equivalent” one can seethat it consists of
a mix of electrical engineering and computer
engineering courses — gpecifically one electrica
engineering elective, one electrical engineering and
computer engineering requirement, and one computer
engineering elective. Note that it contains no explicit or
existing computer architecture courses (more on this
next). However, it does contain a significant
“deviation” from the “conventional” curriculum.
Namely, previously, a semiconductors course was not a
requirement or even a common elective for computer
engineers (i.e. computer architects). However, because
we want to facilitate closer interactions between
electrical and computer engineers (device physicists
and computer architects) who are trying to develop
nano-scale devices, we believe a semiconductors-like
course should be part of the core curriculum. Here this
takes the form of biochemistry and quantum mechanics

for engineers which will help ensure that computer
architects understand the limits and constraints of what
can be built, constructed, or designed with a specific
nano-scale device.

Second, as mentioned above, there are no explicit
logic design or computer architecture courses that are
part of our proposed curriculum. New or retargeted
courses are not proposed because in order to understand
a simple CPU or build simple computational logic
circuitry students still must learn basic logic design
techniques and hierarchical design methodologies that
“conventional” classes like logic design and computer
architecture provide. Now, if a semiconductors-like
background should be a requirement for any computer
architect working on developing nano-scale devices,
then similarly a background in logic design/computer
architecture would be ideal for device physicists.
While a bits-to-chips sequence for electrical engineers
is highlighted in Fig. 1, the front-end of that sequence —
logic design and computer architecture — is most
essential for cementing a close working relationship.

Third, and finaly, in the introduction we posed the
question of whether it would be best for a student to
take part in this curriculum with either a through or a
minimal background in logic design, device physics,
and principle of VLSl design methodologies. Until
now, we have left our proposed course sequences vague
with regard to where they would fit into an academic
timeline. One could make the argument that it would
be best to teach students how to design for anano-scale
device before little or any of the “conventional
curriculum” is taught (where “conventiona curriculum”
refers to MOS equivalent courses as well as courses in
computer architecture or VLS| design). This way a
student would have no preconceived notions of what a
circuit or system must look like or has looked like and
might develop the best set of system design rules for a
particular nano-scale device. However, an argument
against this approach would obviously be that a student
would have little if any knowledge about basic design
or even how a simple CPU works, severely limiting



what he or she might design. One could also argue that
it would be best to prepare students for a technology
change only after they have experienced all of the
“conventional curriculum”. Then, they would will have
not only learned basic principles of logic and CPU
design, but also will have learned advanced architecture
techniques and studied design rules and methodol ogies
for a proven computationa medium - CMOS.
However, this approach does not separate the process of
technology from the process of design and may cloud
students’ thinking by teaching them one way to design
and study large systems of integrated circuits. Would
this result in the best, original set of design rules for a
particular nano-scale device?

A better answer might actually be a mix of the two
arguments. A nano-engineering course in quantum
mechanics and/or biochemistry should take place
concurrently with a “conventional” semiconductors or
electronics class. This way, students will learn the
fundamentals of each technology in parallel and will be
lessinclined to “think” in terms of one technology over
another. Similarly, a nano-scale device course should
take place concurrently with a computer architecture
course sequence and after a “conventional” electronics
class. This will alow students to consider how basic
CPU  requirements and  hierarchical  design
methodologies learned in computer architecture might
apply to nano-scale devices. Also, the “conventional”
electronics course will provide a student with a good
foundation of what a computational device has to do,
but not necessarily how it must do it. Finaly, the
Frontiers of Nano-Systems class could take place in
conjunction with a “conventional” VLS| class (so
students thinking is left “unclouded”) or after it (for a
better foundation in what designing a Mead/Conway set
of design rules is al about). However, we would
suggest that students take it before some of the more
advanced computer architecture classes. Why?
Students will have a generic idea of what a CPU must
do but will not be tied to more complex architectural
techniques — hopefully leading to a set of original,
targeted, and unclouded set of design rules for a
particular nano-scale device. Additionally, one could
always take advanced architecture courses later and
apply techniques learned in them to an existing nano-
scale system.

3. Out of the Box:

“VLSI electronics presents a challenge, not only to
those involved in the devel opment of fabrication
technology, but also to computer scientists and
computer architects. Thewaysinwhich digital systems
are structured, the procedures used to design them, the
trade-offs between hardware and software, and the
design of computational algorithms will al be greatly

affected by the coming changes in integrated
electronics.” (Mead/Conway V)

This Mead/Conway excerpt essentially describes
what biochemistry for engineers, quantum mechanics
for engineers, and nano-scale devices must teach
students to do in our new and parald curriculum.
Obviously amajor purpose of these classes and the case
studies that will be analyzed in them will be to help
students learn “the basics’ of the promising
nanotechnologies and initialize a close working
relationship between device physicists and computer
architects. This relationship is critical to prevent these
two groups/entities from devel oping diverging views of
what is physically and computationally possible in a
system of nano-scale devices. It is best illustrated and
explained here (and eventually to students in a class)
with a short case study from our experiences with QCA.

Earlier, we aluded to the fact that a QCA circuit
characteristic that we (as architects) deemed essential
for useful and efficient circuits was not a priority for
device physicists.  Specifically, an idedlized QCA
device (or cell) can be viewed as a set of four charge
containers or “dots’ positioned at the corners of a
square. The cells contain two extra mobile electrons
which can quantum mechanically tunnel between dots
but, by design, cannot tunnel between cells. The
configuration of charge within the cell is quantified by
cell polarization, which can vary between P=-1,
representing a binary “0”, and P=+1, representing a
binary “1”. Unlike CMOS (in which multiple layers
of metal can facilitate data routing), there really is no
“third dimension” in which to route wire in QCA.
However, a wire formed by QCA cells rotated by 45
degrees can cross a wire formed by 90-degree
(unrotated) QCA cells in the plane with no interference
of ether value on either wire. Early in our
architectural/circuit design study of QCA, this property
was considered to be of the utmost importance as it
provided our only other “dimension” of routing.
However, when discussing our designs with chemists
(who are working on DNA substrates on which QCA
molecules could be attached) we realized that they had
not yet even considered the interaction of 45-degree
cells with 90-degree cells (as for them, this was a very
complex design problem). This early collaboration has
resulted in some relatively minor changes in the way
our circuit and system designs will be structured and
has led the device physicists and chemists to reconsider
this problem. The result should be a more feasible
design with potential for earlier implementation.

Now, we also mentioned in the previous section
that the coursesin our sequence discussed above would
and should take place in parallel with “conventional”
logic design and computer architecture curriculum.
This should allow and facilitate student thinking about



how the fundamental computational and CPU
requirements detailed in these courses could best be
mapped to systems of nano-scale devices. This brings
us to the second purpose of this course sequence and
one that was alluded to when detailing the nano-scale
devices course. Namely, by now students will have
realized that computational devices have to do certain
things. However, with nanotechnology, how they do
them is very much “up in the air’. Students must be
taught to embrace this and how to think outside of the
box. Again, this is best presented with a short case
study.

An important feature of MOS electronics is a pass
transistor that essentially allows current (i.e. binary
information) to flow between a and b in either
direction. However, in QCA information is not moved
by electron flow but rather by Coulombic interaction
between electrons in quantum dots. Because nearness
between QCA cells is required to move information
from a to b there is no obvious way to create the
equivalent of a pass transistor (either bi- or uni-
directional) using only QCA devices. (For example,
this would make generating the equivalent of a
switching matrix — i.e. for a smple FPGA — in QCA
much more difficult — although not impossible). Also,
unlike the standard CMOS clock, the QCA clock is not
a signal with a high or low phase. Rather, the clock
changes phases when potential barriers that affect a
group of QCA cells (a clocking zone) pass through four
clock phases: switch (unpolarized QCA cells are driven
by some input and change state), hold (QCA cells are
held in some definite polarization -- i.e. some binary
state), release (QCA cells lose their polarization), and
relax (QCA cells remain unpolarized). One clock cycle
occurs when a given clocking zone has cycled through
al four clock phases. To understand how the
equivalent of at least a uni-directiona QCA pass
transistor or switch might be implemented, its
worthwhile to consider the exact purpose of the relax
clock phase. Without it, QCA cellsin the switch phase
could be driven from two different directions (i.e. from
cells with a definite polarization in the adjacent hold
phase and cells with an initial polarization in the
adjacent release phase). The relax phase ats as a
buffer to ensure that this does not occur. Thus, the
relax phase has the effect of “removing” a group of
QCA cells from a given design. Using this idea,
routing could be accomplished by using the clock to
selectively “turn off” groups of QCA cells to create
switches.

The timeline of this integrated, “conventional”
curriculum and “nano” curriculum is ideal because
students will have acquired some knowledge about the
fundamental requirements for a CPU and logic as well
as what devices are commonly used to implement them
in their “conventional”  courses. However,

simultaneously, courses such as nano-scale devices will
teach students what is and what is not physically
possible in the “nano”-ream. One lesson might show
how some functionality and logic will certainly map
from a standard technology to an evolved technology
(i.,e. CMOS -> QCA). However, another lesson might
best be summarized as follows: “You understand
device X, you’'ve used X alot, well, now X is no longer
physically possible and you’ll need to find a new way
to either recreate its functionality or a completely
different way to do task Y.”

4. Frontiers:

“In any given technology, form follows functionin
aparticular way. The most efficient first step towards
understanding the architectural possibilities of a
technology isthe study of carefully selected existing
designs. However, system architecture and design, like
any art, can only belearned by doing. Carrying a
small design from conception through to successful
completion provides the confidence necessary to
undertake larger designs.” (Mead/Conway vii)

The above quotation from the Mead/Conway
preface actually describes both courses which could
eventually result from the seguence
biochemistry/quantum mechanics for engineers and
nano-scale devices. In the nearer term, a Frontiers of
Nano-Systems course will teach students how to
develop a set of design rules and system architecture
using the methods described in the above excerpt.
Explaining how this will be done will best be
accomplished (and illustrated) via a series of case
studies and comparisons between them.

For example, let's revisit our work with QCA.
Prior to our research, little work had been done in
considering systems of, circuits for, or an architecture
for QCA devices. Consequently, as with other
technologies that preceded it, and like Mead and
Conway proposed above, initial studies of QCA started
off by designing basic circuit elements that would be
needed for a processor. Next, it was determined that a
simple microprocessor should be constructed QCA cell-
by-QCA cell (essentially in the same manner in which
many of the early Intel microprocessors were designed).
The processor of choice was simple enough to be
designed by hand, yet it still contained the basic
elements that are part of any microprocessor (i.e.
arithmetic and logic units, registers, latches, etc.).
Hence, solutions to the difficulties encountered and
overcome in this design would be applicable to even
more complex systems and processors.  Problems
encountered during this design process were largely
related to floorplanning — which in turn arose from the
interdependence of layout and timing with QCA. As
we saw above, the nature of the QCA “clock” leads to



an inherent self-latching of the QCA device. Given this
constraint, and before making any further attempts at a
large scale design, we felt the need to develop methods
to successfully factor the constraints generated by the
inherent self-latching of QCA out of the “equation” of a
design and furthermore find a means to exploit it.
Thus, an extensive study of floorplanning was
conducted and several viable floorplans for QCA
circuits were developed. After the floorplanning study
was conducted, a complete layout of the dataflow for
our microprocessor was finished. During this design
process, register designs, feedback mechanisms,
interconnect problems, etc. were developed and/or
identified. Design rules were compiled and formed the
engine of a simulator written to test circuits for logical
correctness. These design tools were then used to
simulate and reanalyze existing design schematics.

Work then proceeded to studying control flow.
Interesting results from this work include the lack of a
need for an explicit flip-flop to hold a bit of state
information in a QCA state machine (the inherent
latching in wire stores the bit), more intelligent
floorplans to ensure that QCA cells representing bits of
state actually change clock phases and polarizations at
the proper time, an algorithm for intelligent state
placement, and a one-hot state machine that could
properly control a QCA dataflow and yet not maintain
the “classical” properties of a “true” one-hot (i.e. al
bits of state switch at a time relative to a set of inputs
that determine state). While physically unrealizable in
the short-term, when this work is finished the first
complete  QCA microprocessor will have been
designed. Most importantly, this effort will provide the
first real insight into how an architecture for a (self-
latching) nanotechnology should be organized.
Furthermore, as discussed in the third section of this
paper, work with hand-crafted designs resulted in the
opportunities to review them and collaborate with
device physicists which in turn led to a more physically
realizable near-term implementation target.

A next logical step will be to examine similar
design rule evolutions and compare and contrast them —
particularly determining and teaching the characteristics
and needs for common threads between existing
“Mead/Conway”s (i.e. floorplanning). Finaly, as
mentioned in the second section of this paper, when an
NIS conglomerate exists for a specific technology, this
class can itself evolve into a course that specifically
teaches that set of system design rules — and helps
students adapt to a new computational medium.

5. Wrap-up:

“The general availabhility of coursesin VLS
system design at major universities marks the beginning
of anew erain electronics. Therate of system
innovation using this remarkable technology need no

longer be limited by the perceptions of a handful of
semiconductor companies and large computer
manufacturers. New metaphors for computation, new
design methodol ogies, and an abundance of new
application areas are already arising within the
universities, within many system firms, and within a
multitude of new small enterprises. There many never
have been a greater opportunity for free enterprise than
that presented by these circumstances.”

After changing “VLSI” to “nanotechnology” in the
above Mead/Conway excerpt, nothing else need be
said.

Acknowledgements:

The authors would like to emphasize the depth of
insight we owe to Lynn Conway, whose comments at
the MAW workshop and in email exchanges during the
preparation of this paper wereinvaluable.

Refer ences:

[1] Carver Mead and Lynn Conway. Introduction to
VLS Systems. Addison-Wesley Publishing
Company, Inc., Philippines, 1980.

[2] Molecular Architecture Workshop, Univ. of Notre
Dame, Nov 12-13, 2001,
www.cse.nd.edu/cse_proj/maw

[3] G.H.Bernstein, and J.B. Brockman, and G.L.
Snider, and P.M. Kogge and B.E. Walvoord.
“From Bitsto Chips: A Multidisciplinary
Curriculum for Microelectronics System Design
Education”, American Society for Engineering
Education IL/IN Sectional Conference, April 12,
2002 — Illinois Institute of Technology, Chicago, IL
2002.




Using Custom Hardware and Simulation to Support Computer Systems
Teaching

Murray Pearson, Dean Armstrong and Tony McGregor
Department of Computer Science
University of Waikato
Hamilton
New Zealand
{mpearson,daal,tonym} @cs.waikato.nz

Abstract

Teading computersystemsjncluding computerar-
chitecture, assemblyanguage programmingandoperat-
ing systemémplementationis a challengingoccupation.
AttheUniversity of Waikatowerequire all computersci-
enceand information systemsstudentsstudythis mate-
rial at secondyear Thechallengesof teacting difficult
material to a wide range of studentshavedriven us to
find waysof makingthe material more accessible The
cornerstoneof our strategy for deliveringthis material
is the designand implementatiorof a customCPU that
meetsthe needsof teadhing. In addition to the custom
CPU we have developedsereral simulatos that allow
specifictopicsto bestudiedin detail.

This paperdescribesour motivationfor devioping a
customCPU and supportingtools. We presentour CPU
andtheteadingboard and describetheimplementation
of the CPU in an FPGA. The simulatoss that that have
beendevelopedo supportthe teacing of the courseare
thendescribed.

Thepaperconcludeswith a descriptionof the current
statusof the project.

1 Introduction

Teaching computer systems is a challenging but vi-
tal part of the computer science curriculum. In 1997
the Department of Computer Science at the University
of Waikato decided that computer systems was important
to all computer science and information science students
and made its computer systems course compulsory for
all second year students. Like most computer systems
courses Waikato’s uses assembly language programming
as a vehicle to understanding the inter-relationships and
interactions between the different components of a com-
puter system. The brief of the course is quite differ-

ent to an introductory computer architecture course, even
though it contains many of the same components. The
difference lies in the audience and motivation. Our
course is intended to be useful to all computer profes-
sionals, not just those who specialise in computer archi-
tecture. Our use of assembly language programming is
an example of the impact of this difference. Very few of
the students will continue to program in assembly lan-
guage after the course, however, we believe that it is im-
portant that they have an understanding of computer op-
eration at this level of abstraction. While we want to
teach a coherent and realistic architecture we have no
fundamental interest in details such as delay slots, ad-
dressing modes and word alignments. These are impor-
tant topics for a specialist, but do not significantly add
to the understanding of the operation of a computer sys-
tem as a whole, which is the goal of our course. Assem-
bly language is essential to this goal but many students
find assembly language programming difficult and this
detracts from the main thrust of the course, which is not
to teach assembly language per say.

We wish to focus on the role of the machine and the
interactions between the hardware and software compo-
nents including compilers, libraries and the operating
system, rather than spending a lot of time describing a
partticular manufactures performance oriented features.
This has led us to develop our own instruction set archi-
tecture called WRAMP. As described later the course has
a practical component; practical exercises reinforce the
content of the lecture material. To support the practi-
cal component of the course using the WRAMP instruc-
tion set has required the development of a platform to
allow students to assemble and execute WRAMP pro-
grams. The two choices considered were the develop-
ment a WRAMP simulator or a custom hardware plat-
form.

Using a simulator is easier and cheaper however we
believe that the lack of real hardware distorts the learning



environment by adding an extra, unnecessary, abstraction
when many students are struggling to come to grips with
the essential content of the course. A simulator it is itself
a program running on a computer. This makes it difficult
for students to readily identify the target system and they
tend to confuse the role of components of the system.
When this happens there is a risk that students will focus
on the most obvious difference between practical work in
this area and others: the programming language. When
real hardware is used, the real focus is more likely to be
on the target system.

For this reason, we believe that students should have
the benefit of real hardware when they first learning as-
sembly language programming. Until recently this would
have excluded a custom CPU design, however it has been
made possible by advances in reconfigurable logic. We
have used FPGA technology to develop a single board
computer (called REX) with with our own custom de-
signed CPU and 10 devices.

Once the students have developed a clear mental
model of the components of a computer system, simu-
lation can be used to enhance their understanding of the
more complex topics in the course. To this end we have
developed simulators for use in the course, two of which
are presented here. The first of these, called RTLsim, is
used to simulate a simple non-pipelined MIPS proces-
sor to demonstrate how instructions can be fetched from
memory and executed. The second of the simulators is
a multi-tasking simulator that introduces students to the
ideas behind task swapping in a multitasking kernel.

The next section gives an outline of our computer sys-
tems course. Section 3 then describes, in more detail, the
motivation for developing a processor and board to sup-
port the teaching this course. Sections 4 and 5 describe
the design of the CPU and board. Section 6 then describe
the simulators that that are used in the course followed
by Section 7 which briefly describes the exercises carried
out by students on the course.

A brief description is then given of how we intend to
use the board in the third and fourth year computer archi-
tecture courses.

2 CourseQutline

When the Department decided to make the second
year computer systems course compulsory, its curricu-
lum committee established a set of key topics that should
be covered by the course. These included: data repre-
sentation, machine architecture (including assembly lan-
guage programming), memory and 10, operating systems
and data communications.

Figure 1 shows the order of the topics that make up
the course and the relative levels of abstraction used to
describe them. The main content of the course can be

broken into two parts. The first part illustrates what hap-
pens to a high level program when it is compiled and ex-
ecuted on a computer system. This serves two purposes.
First, it demonstrates some of the major issues which de-
termine the performance of a computer system. Second,
it shows the likely consequences of writing a particular
construct in a high level programming language in terms
of speed and size of the code generated.

The aim of the second part of the course is to pro-
duce an understanding of operating system principles and
components, their role in supporting the user, and in the
execution of programs written in high level languages
such as C (the starting point of the course). The focus is
on achieving an understanding with the operating system
and the implications of hardware and software choices,
rather than an ability to write a new one.

There is a strong theme of interactions and relation-
ships between the components of a computer system. To
support this we base the whole course around a single
processor architecture so that the students could more
easily see the way the individual components of the sys-
tem contribute to the complete computer system.

3 Background

Because the goal of the course is to explain the role
and interaction of the components of a computer system,
not to teach assembly language programming for its own
sake, there are two main requirements for a architecture:

1. asimple, easy to learn instruction set

2. an architecture that can easily demonstrate the rela-
tionship between high and low level languages, and
user and kernel space.

These goals are at odds with most modern CPU ar-
chitectures which have been optimised to maximise per-
formance and not simplicity. To help achieve high perfor-
mance modern CPUs contain many performance oriented
techniques including the use of reorder buffers, regis-
ter renaming and reservation stations[6]. Because of the
complexity of these architectures it would not be possible
to fully describe the structure and functionality of one of
them in an introductory course.

While most architectures are optimised for perfor-
mance some (such as the 8-bit processors -e.g. the Mo-
torola HC11) are designed to be very cheap and simple.
However, this very simplicity often raises the complexity
required to program the CPU. For example, performing
16-bit indexed address access on an 8-bit processor that
only has an 8-bit ALU requires a series of instructions to
support the 16 bit addition rather than the single instruc-
tion available on larger word sized machine. Because of
the way CPUs developed through the late ’80s and early
’90s, processors with a large enough word size to make



A
C [ T e
Compilation Operating
0S [ T Sygems Data
T pay f,:'bfafs't&‘ Comms
"""""""""""""""""""""""""""""" e sysiem
E Assembly memory /
s Introduction Language Inout Processes
= Programming npu
= Output
S RTL I S ——— P / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
B Machine
< Architecture
L S
N N —/Time
~ ~ "
Part 1 Part 2

Figure 1. Topics Covered in the Course

those aspects of programming easy have other complex-
ities, such as many addressing modes, that are not avail-
able across all instructions or complex interrupt process-
ing. Although many modern CPUs are simpler, because
of the influence of the RISC philosophy, they have other
disadvantages, including branch and load delays as de-
scribed below.

In the past, we have used the MIPS R3000 family as a
compromise between the needs of our course and avail-
able CPU designs [4]. The MIPS CPUs have a relatively
simple programmer’s abstraction. The teaching process
is also supported by a number of very popular text books
including those written by Hennessey and Patterson [3]
[2] and Goodman and Millar [1]. For this reason our
computer systems course has been based around this pro-
cessor for the last six years. While we have found this
processor reasonably well suited to our needs, we have
identified a number of aspects of the architecture that
many students find difficult to understand and which are
not central to our teaching goals. These include:

o the presence of load delayslotswhich mean that the
instruction directly after a load instruction cannot
use the result of the load as it isn’t available yet.

o the presence of branch delayslotswhich mean that
the instruction directly after a branch instruction is
always executed regardless of whether the branch is
taken or not.

e the use of an intelligent assemblemvhich is capa-
ble of reordering instructions and breaking some as-
sembler instructions in two so that they can all be
encoded using a single 32-bit word.

o the requirement that all memoryaccesseso word
valuesare word aligned

¢ the parametemassingconventionghat are designed

to minimise the number of stack manipulations in a
MIPS program.

While we do not believe that the complexities de-
scribed above are insurmountable, they do detract from
the goal of the course, that is to give a complete cover-
age of the computer systems area at an introductory level
without being distracted by the complexities associated
with describing a particular manufacturers quirks. This
is in keeping with the introductory level and broad audi-
ence that this course is intended for. Other courses at the
University are intended for students who will specialise
in computer architecture, and these do cover commercial
architectures, including exposure to many of these issues.

We have been unable to find a suitable commercial
CPU architecture to support the teaching of our computer
systems course so we developed our own.

Before discussing the architecture of the CPU we have
designed we consider the question of whether to use a
real CPU or a simulator. Most courses that teach com-
puter architecture or assembly language teaching make
use of CPU simulators. Using a simulated system offers
two main advantages. Firstly, it is possible to develop
a simulator for any CPU. This allows a CPU that is tai-
lored to the goals of the course to be used rather than be-
ing limited to those that are available commercially. The
second advantage of using a simulator is that simulators
normally offer better debugging facilities and visualisa-
tions of a program. These can be used to help reinforce
important concepts.

As noted in Section 1, using a simulator also intro-
duces difficulties for students. It is more likely that stu-
dents will confuse the boundries between the host sys-
tem and the simulated system. Our experience suggests
there is a tendency for students to focus on the program-
ming language when a course introduces a new language,
rather than conceptual material in the course. The use of
real hardware makes the distinctions between the target



system and the development tools concrete. The work
presented in this paper largely removes the disadvantages
of using a real CPU and enables both a simpler working
model and a CPU designed to meet the needs of teaching.
This includes good debugging facilites such as the ability
to single step and observe register and memory values as
the system executes.

4 Processor Design

In designing the processor a great deal of care has
been taken to keep the design as simple and regular as
possible while still being able support the complete range
of practical experiences we wish the students to be ex-
posed to. These experiences start with the writing of
simple assembly language programs and build up to the
development of a very simple multi-tasking kernel.

The resulting CPU design uses a 32 bit word, and is
based around a register-register load-store architecture,
very similar to the MIPS and DLX [5] processors. Most
computational instructions have a three operand format,
where the target and first source are general purpose reg-
isters, and the second source is either a register or an im-
mediate value. Regularity of the instruction set was a key
factor in maintaining the simplicity. Immediate flavours
of all computational instructions are provided, as well as
unsigned versions of all arithmetic instructions.

Care was taken to keep the correspondence between
assembly language instructions and actual machine in-
structions as a one-to-one relationship. To this end a ma-
jor feature of this CPU is the reduction of the address
width to 20 bits, and the number of registers to 16. This
allows an address, along with two register identifiers and
an opcode to fit into a single instruction word, removing
the need for assembler translation when a program label
is referenced.

The other main differences from MIPS and DLX are
the removal of the branch and load delay slots, and the
fact that the CPU is 32 bit word addressable rather than
byte addressable. Making the machine word addressable
only, greatly simplifies the operation of the CPU, and al-
lows us to present students with an easily understandable
model of it. Another advantage of a word addressable
machine is that it removes the possibility of word access
alignment problems which new students frequently en-
counter on a byte addressable machine.

The CPU only supports three instruction formats as
shown in Figure 2. It can also be seen from this figure
that the instructions have been encoded to allow for easy
manual disassembly from a hexadecimal number, with
all fields aligned on 4 bit boundaries.

While the CPU has been made as simple as possible
for the tasks we require it does include external and soft-
ware interrupts and has supervisor and user modes with
protection. These mechanisms are accessed through a

[-Typeinstruction

| OPcode | Ry | Rs | Func | | medi at e

R-Typeinstruction
| OPcode | Ry | Rs | Func | oooooooooooo | Ry |

J-Typeinstruction
| OPcode | Ry | Rs |

Addr ess |

OPCode 4 hit operation code

Rg 4 hit destination register specifier
Rg 4 hit source register specifier

Rt 4 bit source register specifier
Func 4 bit function specifier

| mredi at e 16 bit immediate field

Addr ess 20 bit address field

Figure 2. Instruction encoding formats

&

<)

£ o)

> gl | B2

% E §LL 8
=

Figure 3. Processor Block Diagram

special register file, similar to the MIPS’ coprocessor 0.
This means that these concepts need not be discussed for
students to begin programming in assembler, and when
desired, they can be introduced by describing the special
register file, and the two instructions needed to access its
contents.

The data-path of the processor is based around a three-
bus structure (as shown in Figure 3) and instructions take
multiple clock cycles to execute. As can be seen from
Figure 3 the CPU’s data-path is very simple making it
possible to completely explain the operation of the data-
path to second year students. In particular it is possible
to explain in detail how machine code instructions stored
in memory can be fetched, decoded, and executed on the
data-path.

The CPU has been represented in VHDL so that it can
be targeted to a reconfigurable logic device. The CPU
design when synthesised consumes a large portion of a
200 thousand gate Xilinx Spartan Il FPGA device.



Data Bus

Address Bus

Figure 4. The Teaching Kit

5 Board Design

Figure 4 shows the REX board designed to support the
CPU described in the previous section. As can be seen
from the picture we have been careful to layout the board
so that the main components that make up a computer
system can be clearly identified. The main data-paths that
connect these components are also visible on the board.

Reconfigurable logic is used wherever possible on the
board to allow it to be as flexible as possible. In addi-
tion to making the design of our own CPU and 10 de-
vices possible, this allows the architecture of these com-
ponents that students are presented with to be fine tuned
as the course develops. As explained later, it also allows
the board to be used for multiple teaching functions, in-
cluding FPGA and CPU design.

While it would have been possible to place most or
all of the reconfigurable designs into a single chip the
decision was made to use a separate chip for each 10 de-
vice and the CPU, making it possible for the students to
physically identify each of these devices on the board.
The choice to use multiple RAM and ROM chips to pro-
vide the 32 bits of data rather than employing multiple
accesses to a single chip was also made with the inten-
tion of clarifying the operation for the students. Effort
was made, however to keep the number of non-essential
support components to a minimum.

The boards are intended to be connected to a work-
station where students can write and assemble programs,

which can then be loaded and run on the board. Because
we wanted to build a laboratory for a large class it was
important to make reconfiguration easy. In particular we
designed the board to support remote reconfiguration of
all programmable devices and the stored bootstrap pro-
gram code. Scripts have been developed that enable all of
the REX boards in a laboratory environment to be com-
pletely reconfigured from a single command. Cost has
also been kept to a reasonable level.

Although there are a number of features that support
teaching, one that had a large impact on both the board
and CPU design is support for cycle-by-cycle stepping of
the processor with an LCD display to indicate bus con-
tents, and LEDs to show device selection and exceptions.
We believe this feature will be a major asset for students
struggling with the many new abstractions and concepts
presented by the course.

6 Smulators

In the course we use a number of simulators to re-
inforce some of the more complex conceptual material.
The first simulator (RTLsim) has been developed to rein-
force the ideas associated with the execution of machine
code instructions on a data-path. The second simulator is
a multi-tasking simulator that introduces students to the
ideas behind task swapping in a multitasking kernel.



[rentes i
[$0]=Dx[000D000D  [$1]=Dx|000000SE  [§2]=0x[00000023  [83]=0x|00000033 =l01x]
000 0x0003001c00
($4]=0x[00000042  [$5]=0=[00000079  [$6]=0x[00000000  [$7]=0x[00000000 301, Daicodec1800 =
[68]=0x[00000000  [§9)=Dx|00000000  [§10]=0x[00000000  [§11)=Dx 00000000
,,,,,, Tt £ =181
T ey
Signals 24Z%clcla00 S ¢ Bus al010000: O03bcitde ;I
k20010004 103d6fc2
W Beut sel a4 A Bus k2010008 0562420
c iy kal01000c: cfl4adlb
W Bout sel BJS kaD010010: 43371476
r iy terecr
C1 Sel €|3 e ; -
e i e[ [ Seat: ben
. M -&§31 &l >
| vt Tin [ B $0-§ ka0010024 - afbESIEE o |
™ PCout PCin [ B Modify Memory
™ IRin  PCHIout [ = . B Bus Address Dx[20010000
[T Cl6out C26out [ - - Walue Ox|03bcifde
___ Machine Status. Vievs. Perform Operation
¥ ALUout  Func |—1 ® ALU Zero © ALU_GTZero W Registers !_enane|
™ shftRt shamt[) O Invalid b S |
W Trace Reset Machine Get SRec from file
; IR] = 0x00000000
[~ 4out MEMop |U— Clear Sigs '['q] " W Help sk
Figure 5. Screendump showing RTLsim in operation
6.1 RTLsim tive in the current control step. For example consider the

In the first part of the course the students learn the re-
lationships between a program written in a high level lan-
guage such as “C” and its representation in assembler and
machine code. Following on from this we show the stu-
dents how a machine code instructions can be executed
on a simple processor data-path. In previous years a sim-
ulator called RTLsim which simulates the data-path of a
simple non-pipelined MIPS like processor has been used
to support the teaching of this component of the course.
Currently we are in the process of developinga WRAMP
version of the simulator. The rest of this section describes
the MIPS version of RTLsim.

RTLsim is written in C for a UNIX system running
X-windows. When the simulator is run the student (user)
acts as the control unit for the data path by selecting the
control signals that will be active in each control step.

Figure 5 shows the main window for the simulator
that comprises of two main components, a visual repre-
sentation of the data-path and a control signals window.
The data-path is made up of a 32-register register file,
ALU, Memory interface and a number of other registers
to store values such as the program counter and the cur-
rent instruction being executed. Three internal buses are
used to connect to connect these components together.
This combination of components and buses is sufficient
to fetch and execute most of the instructions in the MIPS
R3000 instruction set. The control signals section of at
the left hand end the main window is used by the student
to set the values of control signals that are going to be ac-

execution of the MIPS instruction add $3, $4, $5
that adds the contents of register 4 to register 5 and store
the result into register 3. Assuming the instruction has
been fetched into the instruction register during earlier
control steps then the settings shown in the controls sig-
nals window of 5 would cause the necessary actions to
occur to execute this instruction. As the student sets the
control signals for a control step they are given visual
feedback on the data-path of what will occur when the
control step is executed. For example if the PCout sig-
nal is selected the colours of the PC register and the B
Bus would change to show that the PC register is going
to output a value onto the Bbus. If two components try
to output to the same bus at the same time the bus would
turn red to indicate an illegal operation.

From the main window, other windows may be
opened that show the contents of memory and the regis-
ter file. In the case of the memory window it is possibly
to preload memory image from an file in s-record format
before starting a simulation. This is the same file format
used to upload programs to the MIPS board. This enables
the students to upload and execute the same program on
both a MIPS board and RTLsim, allowing the executions
to be compared.

The simulator can also record a trace of the operations
that are performed in each control step. This trace can be
used by the student to playback the operations in the sim-
ulator or used as input to an automated marking system.

Before RTLsim was introduced to the course the stu-
dents where given a paper-based exercise where they had



[Save ] CPU_vait_8

file: logfile

tine_slice_counter ujl

92 I3 if { tsc ==tz } D1

93 I4 return from interrupt time_slice
3

94 BS #1 = #1 +

95 B6 goto B3 2

9 B3 #2 = 42 + $2 current_job [p ]
97 B4 if { $2 > 30 ) goto B7
98 B7 two_sum = §1 ansuer :l
99 B8 call signal{tuo_sum_sen)

100 51 disable timer interrupts t

101 52 sem,counter=— - E

104 56 return

106 D5 PCB,time_used +2 tine_slice_counter
107 D& set time_slice_counter to O .

108 D7 get current_job fron CPU_wait_Queue int_sum :I
109 D8 load CPU registers from PCB

111 D10 load EPC fron PCB

102 53 if { sem,counter < 0 )} gote 55
103 55 enahle tiner interrupts tus sum_sen. ent El Int_type tine_used |2

105 B9 terninate Job tuo_sun_sen, queue pending

110 09 load the ints_vere from PCB int_sun_sen,cnt Steps

112 D11 return fron interrupt int_sun_sen,queue |ni Broakpoint
113 C1 call wait{tuo_sum_sen} i - :l

Interrupts interrupts

Ints_were L EPC LBE |

— .
erc [r1 | B (R |[Stee |

114 M1 disable timer interrupts

Figure 6. Multi-tasking simulator

to define the sequence of control steps necessary to ex-
ecute a set of MIPS instructions they were given. If the
students had not grasped the main concepts they com-
pleted the entire exercise incorrectly and were not given
any feedback until the assignments were marked and re-
turned to them several weeks later. However with the
introduction of RTLsim the students are given immedi-
ate feedback at several levels. Firstly as the students set
the control signals they are given visual feedback on the
data-path. Once they believe they have the necessary sig-
nals to execute the control step they can try it and ob-
serve the outcome in the registers and memory. If the
outcome is incorrect the simulator provides undo opera-
tions so they can try again. Lastly, an automated marking
system is used. If the exercise is not completed correctly
the marking system generates a set of comments that tells
the students where they went wrong so they can try again.

6.2 The Multi-tasking Simulator

One of the assignments undertaken by students in the
second year course using the boards is the development
of a very simple multi-tasking kernel. The kernel does
not include memory management, task creation or termi-
nation but it does share the CPU between three tasks, in-
cluding the saving and restoring of state and changing of
stacks between tasks. The tasks are designed to use dif-
ferent parts of the hardware. One reads the switches and
writes the value read to the seven segment display, an-
other reads characters from the secondary terminal and
writes the uppercase values to the terminal. The third
task displays the time on the primary serial port. Students
have already written these tasks in a single task environ-
ment, in earlier assignments.

Although the multi-tasking kernel does not require

very many lines of code, there are conceptual and coding
barriers to its implementation. We address these issues
in classes but have found it useful to re-enforce the ideas
using a multi-tasking simulator, before students attempt
their own implementation. The simulator is written in C
for X-windows and creates a number of windows. An ex-
ample of the windows is shown in figure 6. Each task has
two windows associated with it, the first is the stack and
the second is the saved state of the task (its process de-
scriptor). An example for one task is shown in the right
most two windows in figure 6. When the students use
the simulator there are three tasks; two have been omit-
ted here to save space. The | i nk field is used to form a
linked list of tasks waiting for the CPU or waiting on a
semaphore for an event.

Moving to the left in figure 6 the middle window
shows the CPU registers. The simulated machine has
only two general purpose registers, a stack pointer, a
program counter, a status register and a saved program
counter which shows the value of the program counter
as it was at the last interrupt. The status register is di-
vided into the interrupt status (masked or enabled), the
interrupt status before the last interrupt (software inter-
rupts are taken even if interrupts are masked), the type
of interrupt (e.g. timer interrupt) and whether there is an
interrupt pending (when interrupts are disabled).

The window second to the left shows the values of
some shared memory variables. These include the head
of the CPU wait queue, the number of interrupts left in
this time slice, the job currently using the CPU the out-
put of two of the tasks (answer and t wo_sun), and
semaphores that hold task 3 until these two tasks are
completed.

The left hand window, which gives a trace of the in-



structions that have been executed. The simulator exe-
cutes pseudo-code which has been designed to be close
enough to WRAMP assembly code that it is easy to imag-
ine the assembly code that matches a pseudo-code in-
struction, but without some of the confusing detail of
assembly code. The number at the left of the log win-
dow indicates the sequence number of the instructions
that have been executed. The letter/number code next
to the sequence number is the address of the instruction.
The letter in the address indicates what part of the code
(A =task A, F =first level interrupt handler, W = wait, S
=signal, etc.) the instruction belongs to.

As each step of the simulation is executed the values
that change are hilighted in red in the appropriate win-
dow. Students are able to change the values at any time
to alter the course of the simulation. The assignment en-
courages them to do this, including altering the time-slice
length.

Readers interested in obtaining the simulator should
contact the author at t onym@s. wai kat 0. ac. nz.

7 Assignments

The assignments that make up the practical compo-
nent of the course are shown in Table 7. Of particular
note is the implementation of a multitasking kernel by
the students. Given that most students are not computer
technology students and that most successfully complete
this exercise we belief this is a major indication of the
success of the course.

Z
o

QO OWO~NOUILPA WN -

Name

Introduction to Unix

Data Representation
Introduction to REX

C and WRAMP assembly
RTL Design Exercise
Parallel and Serial 10
Interrupts

Multitasking Kernel Simulator
Multitasking Kernel Coding
Error Detection

[y

Table 1. Assignments

8 Useof theBoard by 3rd and 4th year Stu-
dents

We are currently teaching students in a third year com-
puter architecture course about design using VHDL. By
the end of the course the students will be able to de-
sign the main components (ALU, registers, finite state
machines, etc) that make up a CPU. In future years we
plan to use the REX boards to support the teaching of
this course.

In our fourth year computer architecture course, stu-
dents design and implement their own CPU. Last year
the students used a prototype version of the REX board
to implement their CPUs. With the introduction of the
new board and the experience gained using the board in
the second and third year courses, we hope to extend the
complexity of the project undertaken in this course.

9 Conclusions

This paper described the range of hardware and soft-
ware tools that have been developed to support the teach-
ing of the introductory Computer Systems course at the
University of Waikato.

There is much merit in the design of custom CPU and
10 devices for teaching purposes. Current reconfigurable
hardware devices have made it possible to build a single
board computer, with a custom CPU and 10 devices, to
support the teaching of computer systems courses. Us-
ing this approach we have removed some of the ‘sharp
edges’ of assembly language programming, like branch
delay slots and complex CPU status control, that add
complexity to introductory teaching but do not add sig-
nificant value.

An additional advantage is that the board will provide
a consistent teaching platform across a range of courses.
We expect that this will considerably enhance the stu-
dents learning experience.

We have just installed 25 REX boards in one of the
Departments Computer Labs. Supporting tools such as
a monitor program for the board, a C compiler, an as-
sembler and linker are now largely complete. Over the
past couple of weeks students have been using the REX
boards to complete their assignments. All of the feed-
back we have had from the students todate has been very
positive and encouraging.

References

[1] J. Goodman and K. Millar. A Programmer’s View of Com-
puter Architecture with Assembly Language examples from
the MIPSRISC Architecture. Oxford Press, 1992.

[2] J. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach, Second Edition. Morgan-

Kaufman, 1995.

[3] D. A. Patterson and J. Hennessy. Computer Organisation
and Design: The Hardware/Software interface. Morgan-
Kaufman, 1994.

[4] M. Pearson, A. McGregor, and G. Holmes. Teaching com-
puter systems to majors: A MIPS based approach. |EEE
Computer Society Computer Architecture Technical Com-
mittee News Letter, pages 22-24, Feb. 1999.

[5]1 P. M. Sailer and D. R. Kaeli. The DLX Instruction Set
Architecture Handbook. Morgan-Kaufmann, 1996.

[6] R. M. Tomasulo. An efficient algorithm for exploiting mul-

tiple arithmetic units. In 1BM Journal of Research and De-
velopment, volume 11, pages 25-33. 1967.



On the Design of a New CPU Architecture
for Pedagogical Purposes

Daniel Ellard, David Holland, Nicholas Murphy, Margo Seltzer
{ellard,dholland,nmurphy,marg@eecs.harvard.edu

Abstract course used a different architecture.
A negative result of using a multitude of archi-

Ant-32 is a new processor architecture designedectures was that each course had to spend time and
specifically to address the pedagogical needs Ofnergy teaching the particular details of the archi-
teaching many subjects, including assembly lantectures used by that course. This forced the profes-
guage programming, machine architecture, compilsor to make an unpleasant choice between remov-
ers, operating systems, and VLSI design. This papehg other material from the course, or adding to the
discusses our motivation for creating Ant-32 and theyorkload of the course (which is already a problem
philosophy we used to guide our design decisiongt our institution, where Computer Science has an
and gives a high-level description of the resultingynfortunate reputation as one of the most arduous
design. majors).

In order to minimize this problem in our
introductory-level courses, several years ago we de-
signed a simple eight-bit architecture named Ant-

The Ant-32 architecture is a 32-bit RISC architec-S" which is now used in both of our introductory

ture designed specifically for pedagogical purposesprogrgmmlng_courses as well as the mtroductory
It is intended to be useful for teaching a broad Va_machlne architecture course. This architecture has

riety of topics, including machine architecture, as_!oee_n s_uccessful and 'S Now h use _at se_veral other
institutions. Its utter simplicity and tiny size make

sembly language programming, compiler code gen:

eration, operating systems, and VLSI circuit designf: easy to learn, while providing a realistic illustra-

and implementation. iL()tgrz;?nmzch:irlczt?(:(r:]r;ltecture, capable of running
This paper gives our motivation for creating Ant- gapp i _
32, lists our design goals and how these goals influ- Unfortunately, Ant-8 is too small and simple to

enced our design decisions, discusses some of ti used for higher-level courses, such as compil-

more important details of the resulting architecture &> operating systems, and advanced machine ar-

and describes our future plans for continuing develchitecture.  Therefore, we decided to create a 32-
opment of the architecture and integrating it into ex-2it architecture, using the lessons we learned from
isting curricula. our eight-bit processor, but with the goal of creating

a single processor that can be used across a much
wider range of courses.

2 The Motivation for Ant-32 We felt that it was worth the effort to create a new
architecture, rather than using one of the myriad ex-
Before describing the process by which we createdsting architectures, because we could not find any
Ant-32, it is important to sawhywe feltit was use- that were truly suitable. The “real” architectures
ful to create Ant-32 at all. The courses at our uni-(such as x86, alpha, and MIPS) are, in our opinion,
versity have frequently used several different architoo complicated and require mastery of too many
tectures to illustrate different points, and often eacharcane details in order to accomplish anything inter-

1 Introduction



esting. The many architectures created for purelytive feedback from professors and students who
pedagogical purposes offer more hope, but the sydiave used it, both at our institution and elsewhere.
tems of which we are aware are too finely tuned for The first draft of Ant-32 was a direct extension
illustrating or experimenting with a small number of Ant-8 to thirty-two bits. It contained approxi-
of concepts, and were never meant to be used asraately twenty instructions, and was designed with
general framework. the intention that all of our second-year students
(who were familiar with the eight-bit architecture
) from their introductory classes) would feel familiar
3 Goals and Requirements with the architecture and be able to read and write
Ant-32 assembly language programs almost imme-
The core philosophy of the Ant-32 architecture isgjately. Like Ant-8, there was no support for virtual
that it must be clean, elegant, and easy to U”dermemory or any form of protection, and the excep-
stand, while at the same time it must support all oftjon architecture consisted of having the machine

the important functionality of a real processor. Inpajt and dump core whenever any error occurs.
short, it must maximize the number of concepts it

can be used to teach, while minimizing the com- 5 Code G f
plexity and number of unrelated details the studentg' ode Leneration

must struggle through in order to absorb those conThere are two aspects of the orignal Ant-32 de-
cepts. sign that made it unsatisfactory as the target of a
The functional requirements of the Ant-32 ar- code generator: the absence of relative jumps and
chitecture can be described in terms of the differpranches and an overly simplified instruction set.
ent curricula that Ant-32 is designed to augment: Qur original Ant-8 architecture used absolute
simple assembly language programming, compilejumps and branches, because our students found ab-
code generation, operating system implementationsolute addressing more intuitive and easier to de-
and VLSI design and implementation. bug than relative addressing. However, automated
Addressing all of these different needs required aode generators see the world in a different way than
number of trade-offs and difficult design decisions,their human counterparts, and in many contexts rel-
which are described in the remainder of this sectionative addresses are easier to generate. The ability to
use relative addresses also greatly simplifies sepa-
rate compilation and linking (which has never been
an issue for Ant-8, but which we expect will be im-
portant for Ant-32).
In an introductory assembly language programming The original Ant-32 architecture also did not in-
unit, we believe that it is desirable to use an architecelude any immediate arithmetic instructions. As a
ture that has a small number of instructions and simresult, simple and commonplace operations such as
ple memory and exception architectures. We alsancrementing the value in a register required at least
believe that it is important that the architecture betwo instructions. Adding a rich set of immediate
based on RISC design principles, because we bearithmetic instructions make it possible to investi-
lieve that RISC principles will be the dominant in- gate a number of useful code optimizations.
fluences on future processor designs. In addition, In addition, we found it useful to extend the orig-
we have found that RISC architectures are generalljhal Ant-32 programming model by adding basic
easier for students to understand and implement. register usage conventions, in order to provide a
In an earlier project, several members of the Ant-common framework for function calling and link-
32 team were involved in the development of Ant-age conventions. These conventions rasepart of
8, an eight-bit RISC architecture designed for in-the architectural specification, however, and there is
troductory programming and introductory machinenothing implicit in the architecture that limits how
architecture courses. This architecture is extremelyhe processor is programmed. For example, there
small, simple and easy to learn. We have had poss no register dedicated to be the stack pointer in

3.1 Assembly Language and Machine Ar-
chitecture



the Ant-32 architecture, although programmers canually present in our design until late in the review
choose to adopt a register usage convention thgirocess, when we decided to omit them.

creates that impression. Programmers are free to
choose or experiment with different conventions.

3.3 Operating Systems

Operating systems courses require a more complex
view of the processor, including an exception and

virtual memory architecture, mechanisms to access
memory and processor state, and an interface to an

external bus to support devices separate from the ®

CPU.

It was a challenge to add the functionality re-
quired to support a full-featured operating system
without losing the ability to program Ant-3®ith-
out writing at least a bare-bones boot-strap OS. To
achieve this goal, we designed the processor so that
in its initial state, most of the higher-level function-
ality is disabled. This means that the programmer
only needs to understand the parts of the architec-
ture that they actually employ in their program.

3.4 Advanced VLSI Implementation

Considering the architecture from the perspective of
an actual VLSI implementation was an extremely
important influence on the design. It was often quite
tempting to add powerful but unrealistic features to
the architecture, in order to add “convenience” in-
structions, such as instructions to simplify the as-
sembly language glue required for exception han-
dlers, context switching, and related routines. Con-
sidering whether or not it would be realistic to ac-
tually implement these instructions in hardware was
an essential sanity check to make sure that we were
creating a plausible and realistic architecture.

3.5 Omitted Features

It is worth mentioning that there are a number of
features present in many architectures that we felt
comfortable omitting entirely from Ant-32, because
we felt that they added unnecessary complexity. If
necessary, the specification can be augmented to in-
clude these features. We have made an effort to
make our design flexible, and in fact several fea-
tures (such as support for floating point) were ac-

e Ant-32 does not contain any floating point in-

structions: for our intended audience we be-
lieve that these instructions are rarely neces-
sary, and they lengthen the specification of the
architecture (and increase the complexity of
implementing the architecture) to such an ex-
tent that we decided to drop them entirely.

The Ant-32 architecture does not include a
specification for an external bus; the only re-
quirements are the ability to read and write
memory external to the CPU. The bus can
cause an interrupt to occur via a single IRQ
channel.

The separation of bus and processor architec-
tures, as well as the simplicity of the inter-
face to the bus, allows Ant-32 to integrate eas-
ily with many bus architectures. In our cur-
rent implementation, we use a simple (but full-
featured) bus architecture that was originally
designed for use with the MIPS processor ar-
chitecture, which allows us to use simulators
for devices already written for this bus.

The Ant-32 memory interface is extremely
simple and does not include a specification of a
cache. However, it does not preclude the pres-
ence of a cache, and is designed to allow the
easy incorporation of nearly any caching archi-
tecture. In fact, our reference simulator for the
architecture is designed to allow easy experi-
mentation with different caching strategies.

Ant-32 has a simple instruction execution
model. Our main focus has been on the
instruction-set architecture of Ant-32, and not
on the actual implementation details. We have
tried to avoid making any design decisions that
would prevent the implementation of an Ant-
32 processor with such contemporary features
as pipelining, super-scalar execution, etc. The
specification is written in such a way as to al-
low extension in this area. It is our belief that
the Ant-32 instruction set architecture can be
implemented in a number of interesting ways.



4 A Description of the Ant-32 Ar-  high-level support for virtual memory we should
chitecture provide in hardware. In real applications, TLB op-
erations (such as TLB miss exceptions, TLB inval-
The core of our architecture is a straight-forwardidation during context switching, etc) are expensive
three-address RISC design, influenced heavily bynd it is more than worthwhile to provide architec-
the MIPS design philosophy and architecture. Sincdural support for them. For the purpose of pedagogy,
RISC architectures (and variants of MIPS) are ubighowever, providing this support makes the design
uitous, we will not describe the genera| Character.and SpeCiﬁca.tion of the architecture Considerably
istics of the architecture in detail, but will focus on more complex. We feel that the architecture must be
where our architecture differs. clear and elegant in order for the students to under-

In a nutshell, Ant-32 is a 32-bit processor, Sup_stand it well, and we are more concerned with how
porting 32-bit words and addresses and 8-bit bytesduickly students can implement their operating sys-
All instructions are one word wide and must betems than how quickly their operating systems run.
aligned on word boundaries. For all instructions,At the same time, however, we were still guided by
the high-order 8 bits of an instruction represent thethe principle that our architecture must be realistic
opcode. There are a total of 62 instructions, includ-2nd full-featured.
ing four optional instructions. There are 64 general- Ant-32 is a paged architecture, with a fixed 4K
purpose registers. All register fields in the instruc-Page size. A software-managed translation look-
tions are 8 bits wide, however, allowing for future aside buffer (TLB) maps virtual addresses to physi-
expansion_ Virtual memory is made possib|e Viacal addresses. The TLB contains at least 16 entries,
a TLB-based MMU, which is discussed in section@nd may contain more. There are only three instruc-
4.1. The processor has supervisor and user modeons that interact directly with the TLBdbpi
and there are instructions and registers that can oniyhich probes the TLB to find whether a virtual ad-
be used when the processor is in supervisor mode.dress has a valid mappintible , which loads a

The architecture also defines 8 special-purposépPecific TLB entry into a register pair, atidse
registers that are used for exception handling. Theswhich stores a register pair into a specific TLB en-
are described in section 4.2. try.

A somewhat unusual addition to the architecture In addition to the virtual to physical page map-
is 8 cycle and event counters. These include a cumdRings, each TLB entry contains information about
lative CPU cycle counter, a CPU cycle counter forthe mapping, including access control (to limit ac-
supervisor mode only, and counters for TLB missesCess to any subset of read, write, and fetch), and
IRQs, exceptions, memory loads and stores. We bevhether the TLB entry is valid.
lieve that these will be useful for instrumenting and Ant-32 has a one gigabyte physical address space.
measuring the performance of software written forPhysical memory begins at address 0, but need not
the processor. be contiguous. Memory-mapped devices are typi-
cally located at the highest physical addresses, and
the last page is typically used for a bootstrap ROM,
but the implementor is free to organize RAM, ROM,
The VM architecture was the focus of far more and devices in virtually any way they deem appro-
philosophical debate (and contention) than anypriate. The only constraint placed on the arrange-
other area of the architecture. Perhaps because aient of memory is that the last word of the physi-
the energy and passion we put into airing our di-cal address space must exist; this location is used to
vergent views, and the fact that we eventually con-store the address of the power-up or reset code.
verged on a design that satisfied everyone, we feel Virtual addresses are 32 bits in length. The top
that the resulting architecture is perhaps the mostwo bits of a virtual address determine the segment
important contribution of the overall Ant-32 archi- that the address maps to. When the processor is in
tecture. user mode, only segment 0 is accessible, but all the

The main focus of the debate was how muchsegments are accessible in supervisor mode. Ad-

4.1 The Virtual Memory Architecture



dresses in segments 0 and 1 are mapped to physiadler. The other four registers contain information

addresses via the TLB, while addresses in segmentbout the state the processor was in when the ex-
2 and 3 are mapped directly to physical addresseseption occurred. These four registers are read-only,
Accesses to memory locations in segment 2 may band their values are only updated when exceptions
cached (if the implementation contains a cache) buare enabled. When an exception occurs, further ex-
accesses to memory locations in segment 3 may naeptions are immediately disabled, and these regis-

be cached. ters contain all the information necessary to deter-
mine the cause of the exception, and if appropriate
4.2 The Exception Architecture reconstruct the state of the processor before the ex-

ception occurred and restart the instruction:
A realistic but tractable exception architecture is es-
sential to any processor used by an operating syste@ When exceptions are enabled, this register is
course. Exception handlers, and particularly their ~ updated every cycle with the address of the cur-
entry/exit code, are among the most difficult parts ~ rently executing instruction.

of the operating system to code, test and debug. For  When an exception occurg0 contains the

most real 32-bit processors, searching the documen-  address of the instruction that was being exe-
tation to learn how to save and restore all the neces-  cuted. Depending on the exception, after the
sary aspects of the CPU state is a daunting task. exception handler is finished, this instruction

For Ant-32, our goal was to design an exception may be re-executed.
architecture that is realistic and complete, but alsq
easy to understand and allows a simple impleme When exceptions are enabled, this register is
tation of the necessary glue routines for handling ~ Updated every cycle to indicate whether inter-
exceptions and saving and restoring processor state.  Fupts are enabled.

In Ant-32, interrupts and exceptions are enabled  When an exception occurs, interrupts are dis-
and disabled via special instructions. Interrupts abled, butel tells whether or not interrupts
from external devices are treated as a special kind of  were enabled before the exception occurred.
exception. Interrupts can be disabled independently  This allows the exception handler to easily re-
of exceptions. store this part of the CPU state.

When exceptions are enabled, any exceptio
causes the processor to enter supervisor mode, di
able exceptions and interrupts, and jump to the ex-
ception handler. If an exception other than an inter-
rupt occurs when exceptions are disabled, the pro-
cessor resets. If an interrupt occurs while exceptions

or interrupts are disabled, it is not delivered until in- This register contains the exception number

When exceptions are enabled, this register is
updated with every address sent to the memory
system. If any memory exception occurs, this
register will contain the memory address that
caused the problem.

terrupts and exceptions are enabled. . and whether the processor was in user or super-
System calls are made via thp  instruction, visor mode when the exception occurred. For

pervi_sor mode to user mode is accomplished viathe  of thjs register also indicates whether the ex-

rfe instruction. . . . ception was caused by a read, write, or instruc-
The Ant-32 exception-handling mechanism con-  tign fetch.

sists of eight special registers. These registers are

part of the normal register set (and therefore can be Disabling interrupts automatically whenever any
addressed by any ordinary instruction), but they carexception occurs provides a way to prevent nested
only be accessed when the processor is in supervexceptions and an unrecoverable loss of data: if an
sor mode. Four of the registers are scratch registerimterrupt is permitted to occur before the state of the
with no predefined semantics. They are intended tprocessor has been preserved, then the state of the
be used as temporary storage by the exception haprocessor when the first exception occurred may be



lost forever. By disabling interrupts until they are way to contact the Ant-32 team.
explicitly re-enabled, we can prevent this from hap-
pening.

The benefit of this arrangement is that the only6  Related Work
way to fatally crash the processor is to have a mis-
take which causes an exception to occur in théMany simplified or artificial architectures have been
exception entry/exit code. The drawback of thiscreated for the purposes of pedagogy or separating
scheme is that the exception handler entry/exit codéonceptual points from the details of implementa-
(and all the memory addresses referenced by thiion, beginning at the foundation of computer sci-
code) must generally be located in an unmappeé&nce with the the Turing machine [6] and continuing
memory segment, because otherwise a TLB mis#0 the present day. Attempting to survey this field in

could occur during execution of the exception han-the related work section of a five page paper is futile;
dler. in the last ten years SIGCSE has published at least

25 papers directly related to this topic, and we sus-

pect that for every architecture documented in the
5 Future Directions literature there are at least a dozen toy architectures

that are never publicized outside of the course they
Although completing the specification of our archi- were created for.
tecture was an important step towards our goal of The continued and vigorous activity in the devel-
making Ant-32 a widely valuable educational tool, opment of simplified architectures, simulators for
we acknowledge that there is much more to doexisting architectures, or extended metaphors for
From our experiences with Ant-8, we know that ed-computation such d€arel the Robof5] or theLittle
ucators will not use Ant-32 in their curricula unless Man [7] computer simulators strengthens our belief
the benefits of using Ant-32 are obvious, and thethat these are powerful pedagogical tools, and that
cost of transition to Ant-32 is very low. they are worth further development.

To minimize the transition costs, we have already All of the pedagogical systems of which we are
implemented a reference assembler, simulator, angware focus on a single conceptual domain, instead
debugger for the Ant-32 architecture, an assemblyof trying to work well across a spectrum of top-
language tutorial and hardware specification. Thigcs. One standout has been the MIPS architecture,
software and documentation has already been usegihich has served as a useful tool in the domains
with positive results, by a compiler course at Bostonof both operating systems and machine architecture
College. We are currently working on extending thispedagogy. This is demonstrated by the number of
material into full suite of educational materials for educational projects based on MIPS, such as SPIM
the Ant-32 architecture, including extended tutorial[3], MPS [2], Nachos [1], and descendants of MIPS
and reference texts, example code, lecture matersuch as DLX [4]. Once again, however, the sheer
als, problem sets and exercises with detailed soluaumber and diversity of tools based on this archi-
tions, and pre-compiled distributions for easy instal-tecture seems to imply that the situation could be
lation on popular platforms, in the same manner agmproved. With Ant-32, we plan to combine the ed-
we have done with our earlier eight-bit architecture.ycational features of most of these tools into a sin-
All of this material will be freely available from our gle, coherent framework that can easily be adapted
web site http://www.ant.harvard.edu/ . to a broad range of educational purposes.

We are also planning a project to build a complete
GNU tool-chain ¢cc, gas, gdb, and complete li-
braries) for Ant-32 so that it can be used to write a7  Conclusions
complete operating system for Ant-32 with only a
small amount of assembly language programmingWe believe that Ant-32 will allow educators to
This is a huge undertaking, and we invite anyonestreamline their courses by using the same archi-
interested in helping to develop this material in anytecture (and tools) in several courses, because Ant-



32 is well-suited to many different different educa-
tional purposes.

We recognize that educators will disagree in
whole or in part with some of our assumptions,
opinions, and conclusions, but when this happens,
we hope that sharing our experiences in designing a
32-bit architecture for pedagogical purposes will be
helpful to them as they develop or refine their own
designs.

References

[1] W. A. Christopher, S. J. Procter, and T. E. An-
derson. The nachos instructional operating sys-
tem. Proceedings of the USENIX Winter 1993
Conferencel1993.

[2] M. Morsiani and R. Davoli. Learning operating
systems structure and implementation through
the mps computer system simulatidProceed-
ings of SIGCSE 19931(1), 1999.

[3] D. A. Patterson and J. L. HennessyCom-
puter Organization & Design: The Hard-
ware/Software Interface Morgan Kaufmann
Publishers, 1994.

[4] D. A. Patterson and J. L. Hennessgomputer
Architecture: A Quantitative Approach, 2nd
edition Morgan Kaufmann Publishers, 1996.

[5] R. Pattis. Karel the Robat John Wiley and
Sons, Inc, 1981, 1995.

[6] A. M. Turing. On computable numbers, with an
application to the entscheidungsprobleRro-
ceedings of the London Mathematical Sogiety
42(2):230-265, 1936.

[7] W. Yurcik and L. Brumbaugh. A web-based
little man computer simulatorProceedings of
SIGCSE 200133(1), 2001.



I mproving Computer Architecture Education
Through the Use of Questioning

Mark Fienup and J. Philip East
Computer Science Department
University of Northern lowa
Cedar Falls, IA 50614-0507
fienup@cs.uni.edu
east@cs.uni.edu

Abstract

Learning is not a spectator sport! Yet, the
majority of classroom time is spent lecturing.
While traditional lecture might be useful for
disseminating information, textbooks and web
pages already do that. Why spend valuable class
time telling students what the book says.
Students need to be more engaged than listening
and note taking alow! In-class questioning can
be very effective at actively engaging students.
This paper provides some background
information about questioning, supplies some
process suggestions for those wishing to enhance
their use of questions, and provides some
Computer Architecture specific examples of
guestions.

1. Introduction

For severa years we have realized that
traditional lecture istoo passive and probably is
not the best use of in-classtime. Studies have
shown that after 10-15 minutes of lecturing
students essentialy stop learning, but their
attention-span clock isreset by interjecting
activities to break up the lecture. (Stuart &
Rutherford 1978) Additionaly, Students retain
only asmadl fraction of the material covered,
attendance only has a marginal effect on
performance, and learning vialectureis
independent of the lecturer's qudity. (Stuart &
Rutherford 1978) The bottom lineis that lecture
is not very effectivel

We accept as fundamenta that it is desirable to
have "engaged” students who "actively" process
the content we attempt to teach them. Active
learning (rather than passive memorization of
content) should be the goa of instruction.
Achieving active learning is, however, not
necessarily easy. Our goa became to better
understand the art and science of asking
questions in class so that our students would
learn more or better by being actively engaged in
the content of our courses. At WCAE 2000,
Fienup (2000) explored the use o active and
group learning in Computer Architecture. This
paper is an extension of that work by providing
some background information about questioning,
supplying some process suggestions for those
wishing to enhance their use of questions, and
providing some Computer Architecture specific
examples of questions.

We discovered that there are a variety of goals
that one might have when asking questions. The
next part of the paper will discuss various gods
for questions and other insights we gained from
the literature and our conversations. The bulk of
the paper will include exemplar questions and
attendant goal's. We hope they will be useful to
readers who wish to include more questioning in
their Computer Architecture teaching (and alow
some to skip the step where you say "duh” and
hit yourself on the forehead for not realizing that
there is more to questioning for active learning
than just blithely asking questions).



2. Background RE Questioning

We used severa techniques for gathering
information about questioning. We examined
reaedily available literature, reflected on our prior
experiences with questioning, and talked about
our experiences. From these activities, we
identified severa goals of questioning in the
Computer Science classroom:
= to have students practice a skill
=  to grade student performance
=  to provide students with practice on
applying knowledge
to motivate a topic
to motivate students
to gauge student understanding
to engage students in active learning
to develop students meta-knowledge
=  toregain/reset student attention spans
In examining the literature (e.g., Dantonio &
Beisenherz, 2001, Chuska, 1995, Wasserman,
1992; Wilen, 1991), we encountered smilar ligs.
For example, Wilen (1991) indicates that
Although the two magjor enduring purposes of
teacher questions are to determine student
understanding of basic facts associated with
specific content and to have students apply
facts using critical thinking skills, educators
have suggested other related purposes:
= to stimulate student participation
=  toconduct areview of materials
previously read or studied
= to stimulate discussion of atopic, issue,
or problem
to involve students in cregtive thinking
to diagnose students abilities
to assess student progress
to determine the extent to which
student objectives have been achieved
=  to arouse student interest
= to control student behavior
= to personalize subject matter to support
student contributionsin class (p. 8-9)

Both these lists can probably be condensed.
They do, however, suggest rather strongly that a
variety of goals may be achieved via questioning

and that the questioning activity is not smple.
Additiondly, we aso note that the results of
guestioning activity can probably be classified as
recdl of knowledge and application of
knowledge (understanding).

From our perspective, recall of knowledge is
important but probably does not congtitute active
learning (which is our goal). We might, however,
legitimately use arecall question to achieve a
goal such as ng student knowledge and
understanding, or as a motivational lead-in to
stimulate student interest in or attention to
upcoming topics.

The goal in which we are most interested is that

of engaging students minds on the current

lecture topic in arelatively restricted way. We

see the role of in class questions to be one of

initiating intellectua activity in student minds. In

genera, such activity might involve:

= practice of some specific intellectual
activity, e.g., designing, testing, debugging,
interpreting specifications, etc.

= goplying specific knowledge

=  having students examine their own
knowledge and understanding

While we have approached this goal from the

point of view of questioning, we assume we are

not restricted to oral questions or even to

questions. Asking students to engage in an

intellectua activity can be construed as asking a

question.

3. Process Suggestions

Obvioudy, we suggest that questioning (and
other activity) be used to engage students more
actively in the content of Computer Architecture.
But that is not as smple as asking questions. It
must be planned. The planning may need to
involve avariety of issues and occur at various
times and levelsin a course.

Before the course begins, we recommend
familiarizing yoursdf with the various goals and
types of questionsthat can be asked and



consdering the impact on course planning. For
example, we believe that there are benefits to
having smadl (4-5 students) groups working
together on questions. Group formation can be
left to students or dictated by the instructor. We
prefer the latter. If the "better” students are
spread throughout the groups, there is potentialy
ateacher per group. Weaker students are more
likely to ask questions of their peers. Because
students mental contexts have more in common
with students than the professor, the student
"teacher" in the group may be in a better position
to communicate effectively. We believe that the
better students also benefit by trying to explain
concepts to weaker students. Think about how
much you learned about the material of a course
the first time that you taught it.

Y ou should aso consider addressing your goals
for the in-class questioning activity in your
syllabus and, occasiondly, in class. If students
understand why you are asking so many
guestions and not just ‘telling” them what they
are supposed to know, they may well participate
more fully and learn more. Y ou may aso wish to
incorporate some aspect of grading (e.g., class
participation) to reflect your opinion of the
importance of active learning. Wewould
suggest about 10% of the course grade be based
on in-class participation of the questions. We
base this portion of their grade on student
evauations from peers within their in-class

groups.

Before each class or unit, plan your questions.
Questions should be used to enhance the learning
of the most important topics of each class.
Identify the most important content goals or
ideas in the lesson. Then proceed to planning
your lesson (and the questioning you will usein
it). It is asimportant to consider what you are
going to ask asit isto consider what you are
going to tell. Do not trest your questions lightly.
Consider the goal(s) you wish to achieve with
each question. Think carefully about how
students will respond to the question.
= Arethey likely to just turn off and wait until
the "read" classwork starts back up? If so,

can you ask the question differently or do
something in class that short-circuits that
reaction?

=  How much timeis necessary for them to
formulate a reasonable response?

= |sthequestion clear and unambiguous?

= |sthe question too easy or difficult?

= Will students be adequately prepared when
the question is asked?

Additiondly, consder using non-oral questions.
Placing questions on a transparency or handout
will demondtrate that you consider them
important. Doing so may aso communicate to
students that you expect them to spend some
time on the question while at the same time
encouraging you to wait until students have had
time to process it. Many students have
commented that revisiting questions asked in
class an effective way to prepare for
examinations since they focus on the important
skills and concepts of the course.

What you do during class can affect the success
of your plans. When you ask questions, alow
students a chance to respond. If students don't
respond, wait. If students still don't respond,
wait! Eventually, they will respond (if not in
today's class, then in tomorrow's). Also, after a
student response, wait and think. We find that
our first impulse is often less useful than we
would have liked. Consider what the student
might have been thinking and whether and how
you might follow up on the response to enhance
the learning of both that individua and other
students. If nothing else, when you pause, the
students will think you are taking the response
serioudly.

Be careful how you respond to student answers.
Y ou want to foster an atmosphere where
students do not feel threatened by answering the
guestions. Even comments like "that's not quite
on the mark, Bob" can be enough to make
students hesitant to respond to questions. Since
we tend to have groups answering a question,
we might smply ask what another group thought.



However, it isimportant that the correct answer
isidentified as such.

Findly, it isimportart to spend time after class
reflecting on what happened. (Schon, 1983) We
often find this hard to do. But, it is necessary, we
believe, in order to achieve success at changing
our teaching behavior. The up-front planning is
quite important, but will be mostly wasted if we
do not take time to analyze how well the plans
worked. In essence, the reflection assesses how
well reality matched the plans and, if so, whether
the desired outcomes were achieved. Did we
actudly follow our plans? If not, isthat good or
bad? Did the students behave or respond as
anticipated? Does the planned questioning
appear to achieve the desired results? If not,
what other questioning or activity might be
better? The goa of the reflection is to make us
aware of what we do. We suggest a brief
reflection time, perhaps keeping a journa or
annotating the lesson plan. Of course this data
will need to be fed back into the planning process
of the next iteration of the course and indirectly
for future lessons in the current and other
COUrses.

4. Sample Computer Architecture
Questions

In the discussion below, we provide some
examples of questions or class activities. Along
with the examples we provide some discussion
of our intended gods and of the processes we
experienced or expected with the questions. We
do not limit ourselves to positive examples. It
seems useful to supply some examples of not so
good questions so that others might learn from
our mistakes.

4.1 Knowledge Recall Questions

Knowledge recall questions are relatively easy to
ask. Often, however, they do little to enhance
ingtruction. The following questions are probably
not particularly helpful, even though they exactly
address what we want to know.

=  What did you learn in this chapter?

=  What are the main points in the reading?

= Do you have questions over the
chapter/section?

A small set of quick-check kinds of questions,

however, might be useful. They could provide

examples of some types of test questions as well

as areview of important points in the content.

For example:

=  What isacache?

=  What isthe purpose of the (shift left logical)
"SHL" assembly language ingtruction?

=  What isan operating system?

=  How isbus skew handled in the PCI
protocol ?

Even though these questions do have some

utility, we are inclined to believe they should

probably be subsumed into the next category of

question in which skills are practiced.

4.2 Skill Demonstration Questions

Many relaively smple skills such as converting
from a decima number to binary, or using a
newly introduced assembly language instruction
are often just demonstrated by professors with
the assumption that students have mastered the
skill since they did not ask any questions abot it.
Worse yet, students might fool themselvesinto
thinking they have mastered the skill too. Life
would be much easier if we could learn to swim
by watching someone swim. Demonstrations of
even the smplest skills by the professor should
be followed up by practice questions for the
students. The development of skill requires
practice, and feedback as to the correctness of
practice. Some examples here are:
= Converting between base 10, 2, and 16.
= Addition of two binary numbers
=  Trace the assembly language program
containing the newly introduced (shift left
logical) "SHL" to showing the resulting
register values.
=  Usethe newly introduced (shift Ieft logical)
"SHL" assemble language instruction to
caculate....
=  Draw the timing diagram for the code
segment on the given pipelined processor.



= |f the given cache is direct-mapped, what
would be the format (tag bits, cache line
bits, block offset bits) of the address?

=  What does the given assembly language
code "do"? Similar in nature to tracing, this
question requires students to abstract from
code to agenerd statement of code
purpose. Tracing is necessary for
undergtlanding a program and, we believe,
kill at abstraction is necessary for coding
skill to progress to design skill.

= Using the given hit ratio and access times
for the cache and memory, calculate the
effective memory access time.

Other courses have similar examples of

relatively low-level skills necessary for

competence in the subject—various proof

techniques in discrete structures, using syntax

diagramsto seeif ablock of codeis syntactically

correct, and counting statements in algorithms.

4.3 Questions Drawing on Personal
Experience

Questions asking students to draw on their past
experiences can often be used instead of asking
amore direct, but too complex or abstract,
guestion. For example in Computer Architecture,
when discussing immediate-addressing modes
with respect to instruction-set-design issues, you
might be tempted to ask the question: "How
many bits should be used for an immediate
operand?’ It is more constructive to make the
guestion more concrete by asking students to
draw on past experiences by asking questions
like the following:
=  From your programming experience, what
range of integer values would cover 90% of
the constant integer values used in al the
programs you have ever written?
=  How many binary bits would you need to
represent this range of values?
The sequence of questions focuses the
discussion on the sought after answer.

Questions requiring students to examine their
own knowledge and understanding can often be

used to motivate a deeper understanding of a
topic, but the instructor must be careful that the
intended point is made by the activity. To
motivate hardware support for operating systems
in a Computer Architecture course, | often ask
the following sequence of questions:
=  What isan operating system
(hardware/software, gods, functiondity)?
=  How does OS/hardware protect against a
user program that is stuck in an infinite
loop?
The first question motivates the students to think
about operating systems and their role. They
usually decide that an operating system is
software used to provide services such as
security, file access, printer access, etc. On the
second question, students typicaly answer that
the system allows users to break/interrupt a
program after awhile. Having good ora
guestions to follow up on student answers is
important. Asking about "what happensin a
batch system?' steers the discussion back
toward the desired answer of a"CPU timer".
Other times students respond to the second
question with answers like "the operating system
will be watching for infinite loops." The instructor
might follow up with a question like, "In asingle
CPU system, how many programs can be
executing at once?' If the students answers
"one", then you might ask, "If the user program
with the infinite loop is running, then how can the
operating system (which we decided was a
program) be running too?"' This gets the
discussion back to the need for the CPU-timer
hardware support.

4.4 Questionsto Create Cognitive
Dissonance

An Earth Science colleague once told me that
students in his crystallography course did not
have preconceptions about the content in his
course. He was wrong. Students may come to
us with little knowledge and incorrect
assumptions about word usage and meaning, but
they will always have some preconceptions
about our content. Often the preconceptions will
be inaccurate and hard to replace. Identifying



and attempting to fix them and to short-circuit
the establishment of new misconceptions are
critical aspects of teaching. The strongest
learning occurs when we are able to produce
cognitive dissonance in student minds. We need
this kind of learning to ater misconceptions—
weaker techniques will not work. Additionally, it
would be nice if we were able to generate such
amindset at will. Probably we cannot, but we
can try.

The last example from the previous subsection is
agood example of creating cognitive dissonance
is student minds. By asking the question "If the
user program with the infinite loop is running,
then how can the operating system (which we
decided was a program) be running too?'

Along the same lines, other questions that can

create cognitive dissonance when teaching about

hardware support for operating systems would

be:

=  Sinceauser's program needs to be allowed
to perform disk 1/0O, how does the
OS/hardware prevent a user program from
accessing files of other user?

=  Sinceauser program needs to be able to
perform memory accesses, how does the
OS/hardware prevent a user program from
accessing (RAM) memory of other user
programs or the OS?

4.5 Questionsto Motivate a Topic

Before discussing a new topic it is often useful to
ask a question related to the topic to get students
curious. Alternatively, it is sometime useful to
ask a question about atopic's prerequisite
knowledge. Thiskind of question is an advance
organizer and should serve to establish cognitive
hooks into students past experience. For
example, before taking about parameter passing
in assembly-language ask questions about how
students view the run-time stack it their most
familiar high-level language.

Clearly, our lists of questions are incomplete.
Space concerns make that necessary. So too

does our leve of progress. Frankly, we have only
begun the work necessary to become better
questioners (and, thus, better teachers). Many
more examples of Computer Architecture
questions can be found on-line at Fienup (2001).

5. Conclusions

Our most significant insight is that asking good
questions takes work. We had to (and may ill
need to) read about questioning and apply what
we read to teaching Computer Architecture.
Additiondly, rdlatively sgnificant planning is
necessary. In essence, we need to plan for
guestions, much as we plan for lecture.

We are till convinced that doing the extra work
pays off. We think student learning has
improved, i.e., more students are learning more
of the materid at alevel we think is good.
Additionaly, we believe the "extra" work in
planning will lessen, and perhaps disappear. As
we learn more and practice questioning (and
planning for it), the time requirements will be
less. Also, as questioning becomes a bigger part
of our teaching, the planning of telling is replaced
by planning for questioning.

Should you decide to include more questioning in
your teaching, we have some advice beyond that
of reading and planning. Reflect on your
guestioning behavior. Explicate your goals and
plans before teaching. After teaching, reflect on
how well you implemented your plans and on
how well the questioning worked. Then introduce
those conclusions into your future planning. (This
may require some record keeping.) Findly, do
not expect perfection. Like al other human
endeavors, you will get better with practice,
particularly with good (reflective) practice.

6. References

Chuska, K. R. (1995) Improving classroom
questions. Bloomington, IN: Phi Delta

Kappa.



Dantonio, M & Beisenherz, P.C. (2001)

L earning to question, Questioning to learn.
Boston: Allyn and Bacon.

East, J. P. (2001) Experience with In-person
Grading. Proceedings of the 34nd Midwest
Instruction and Computing Symposium, April
5-7, 2001. Cedar Fdls, 1A.

Felder, R. & Brent, R. (1996). Navigating the
bumpy road to student-centered instruction.
College Teaching, 44, 43-47.

Fienup, M. (2000) Active and group learning in
the Computer Architecture classroom,
Proceedings of the Workshop on Computer
Architecture Education, June 2000,
Vancouver, B.C., Canada.

Fienup, M. (2001) Fal 2001 Computer
Architecture course home page.
http://www.cs.uni.edu/~fienup/cs142f0Ll/in-
class-materias.

Frederick, P. (1986). The lively lecture - 8
variations. College Teaching, 34, 43-50.

McConndll, J. (1996). Active learning and its use
in Computer Science. SIGCSE Bulletin, 28,
52-H4.

Schon, D. A. (1983). The reflective practitioner:
How professiond think in action. New Y ork:
Basic Books.

Silberman, M. (1996). Active learning: 101
strategies to teach any subject. Boston: Allyn
& Bacon.

Stuart, J. & Rutherford, R. J. (1978, September
2). Medical student concentration during
lectures. The Lancet, 514-516.

Wasserman, S. (1993) Asking the right question:
The essence of Teaching. Bloomington, IN:
Phi Delta Kappa.

Wilen, W. W. (1991) Quedtioning Skills, for
Teachers. Washington, D.C.: National
Education Association.




An Active Learning Environment for

Intermediate Computer Architecture Courses

Jayantha Herath, Sarnath Ramnath, Ajantha Herath*, Susantha Herath
St. Cloud State University, St. Cloud, MN 56301

*Marycrest International University, Davenport, 1A 52807

herath@stcloudstate.edu

http://web.stcloudstate.edu/jherath/CompArch-2

Abstract
Most computer science, information systems and
engineering programs have two or more computer
architecture courses but lack suitable active learning
and design experience in the classroom. Computer
architecture at the intermediate level should focus on
the implementation of basic programming constructs in
different instruction set architectures. To accommodate
such features we developed an undergraduate computer
architecture course with hands-on classroom activities,
laboratories and web based assignments. To assess the
course we distributed the course modules among 200
computer architecture instructors. This paper describes
our experience in developing active learning course
modules.

1. Introduction

During last fifteen years, we have been experimenting
with methods to improve the quality and efficiency of
teaching architecture for

computer courses

undergraduate computer science and engineering
students. Our goal has been and continues to be to help
them become good computer scientists in a relatively
short period of time with both theoretical understanding
and practical skills so that they can enter and make an
effective contribution to the profession. Traditionally,
computer architecture subject matter has been presented
to a less than enthusiastic student body in a relatively

passive classroom environment. In general, this chalk-

talk instructional process consists of multiple copying
stages: the instructor first copies notes from a textbook
to his note book, then the instructor copies those notes
onto the blackboard, thereafter the students copy notes
into their note books. Moreover, each instructor
allocates considerable chunk of his/her time to prepare
or update the same course material in each offering. In
addition, there is both local and national need for high-
quality trained labor with the ability to stay current with
the technological advances in the computer architecture

field .

Growth of any undergraduate computer science or
engineering program will largely depend on the strength
of the computer architecture curriculum. To address the
deficiencies in traditional curriculum [4-10] and to

satisfy the current needs, we redesigned our computer
architecture course sequence with fundamentals to
incorporate rapidly changing computer related

technologies so that our graduates will be current with
the technologies before they graduate. It is hypothesized
that the learning rate can be increased if both the
instructor and the student are active at the same time.
Thus the performance of the students can be improved
dramatically by converting the traditional passive

classroom into an active hands-on learning

environment. Designing a course with learning-by-

doing modules and making it available for all the



instructors on-line [1] reduces the course preparation
time for instructors, reduces multiple copying steps in
the learning process, strengthen the abilities and
the both

undergraduate students as well as the adult learners.

increase enthusiasm  of traditional

Goals and Objectives

The main objective of this project was to develop

computer architecture course modules for intermediate

level undergraduate students and the faculty. These
active learning modules are central to achieve the
following goals:
e To provide the students an efficient,
rigorous and  engaging learning
environment with necessary tools and
training to become proficient in the
computer architecture subject matter in a
relatively short period of time.

e To provide architectural details necessary
to implement basic programming
constructs learned in CS-1 and CS-2 with
hands-on skills, integration, team-work
and hence to enhance the quality of the
graduates.

e To use performance focused learning at all
levels of curriculum to illustrate the
principles of computer architecture.

e To provide the faculty and students
modifiable on-line courseware with state-

of-the-art hardware and software practice.

Following sections outline the details of course plan,
goals achieved, difficulties encountered, assessment

plan future work and summary.

2. Detailed Course Plan
The course, outlined below, will address the ways of
reducing the deficiencies in the existing curriculum [4-
10].

architecture subject matter for computer science majors,

When developing and delivering the computer

we believe that the prime factor to be focused on in any

step is processor performance in implementing
programming language constructs. Our curriculum
consists of three semester courses to help master the
computer architecture subject matter in a technology
integrated classroom laboratory. First course of this
sequence will cover fundamentals of architectural
design [11-13]. The laboratories for this course consist
of hardware and software simulations of combinational
and sequential digital circuits. This foundation will
help to develop the skills from gate level to register
transfer level component integration in design. The
intermediate level course that we designed introduce
both complex instruction set and reduced instruction set
processor architectures, instruction set manipulations
with 1/0, memory, registers, control and procedures [1-
2][14-16] to the students. The laboratories for this
course consist of hardware and software simulations of
CIsC RISC

architectures. After completion of intermediate course

programming constructs in and
the students will be able to learn architectural details of
any other processor. The third course is focusing on the
advanced concepts in  architecture involving

parallel/distributed computations and special purpose
architectures to provide both depth and breadth to the
subject matter. Parallel processing and special purpose
processing concepts in the undergraduate curriculum
has been the focus of several curriculum improvement
efforts for some time [3][17-18]. The students should be

able to understand the importance of parallelism in

enhancing performance and its benefits as an

application programmer, a systems programmer, an



algorithm designer, and a computer architect. A course
sequence with the features outlined above could help
our students develop design skills in several different
architectures before their graduation. The undergraduate
curriculum, graduate programs and industry will
definitely appreciate the graduates with such design

skills.

Topics for Computer Architecture Il

At the intermediate level we introduced processor
design and focused on the implementation techniques
of basic programming constructs such as I/O, arithmetic
expressions, memory operations, register operations, if-
else-for-while control and functions in several different
instruction set processor architectures. Two complex
instruction sets and one reduced instruction set
processor architectures were introduced in our course.
Students learned that proper instruction set design,
memory management and I/O management techniques
will also lead to the performance enhancement.
Increasing performance of the processor by reducing the
program execution time is considered at each design
and implementation. Focusing on the importance of
performance when designing the processor helped to
maintain the momentum and enthusiasm in the
classroom. Often the students were excited to observe
the register level manipulations in the processors. They
also enjoyed discovering the processor and controller
designs in an active classroom. Comparing different
architectures including pipeline techniques and
abstracting the essentials of the processor architectures
at this level generated the required enthusiasm to the
learning and teaching. The required textbook for this
course is Paterson and Hennessey [2]. We are looking
for ways to integrate rapid prototyping of the systems to

the course using web based tools.

Hardware/Software Laboratories

To provide architectural concepts with hands-on skills,

integration, team-work and hence to enhance the quality
of the graduates, we added pre-lab, in-lab and post-lab
assignments to complement the classroom activities.
Table 2 summarizes the educational experience gained
from these laboratories.

Table 2. Educational experience

Experienct Level Application

Prelab Analysis, Design circuits
synthesis and programs to

perform a specific
simple task

Closed Application, Design,

Labs analysis, implement and
synthesis, test circuits and
evaluation programs to

perform a specific
task within a
given period of
time

Open Application, Design circuits

Labs Analysis, and programs to
synthesis, perform a
evaluation difficult task

In-class Application, Cost reduction,

activities ~ Analysis, performance
synthesis improvement,

integration

Tests Analysis, Architecture
synthesis design related

guestions

To reflect student-centered design and analysis

processes, classroom activities were modified to

accommodate skills in performance improvement and

cost reduction when designing processors. In general,
pre laboratory assignments helped the students explore
and create on their own. They synthesized the

classroom instructions with other resources to produce
hardware and software and then to test and to debug. In
the classroom, each student provided with a computer
and tool kit to extend the concepts they learned in the

pre lab assignment. Less challenging design problems



that can be solved within a given period of time were
assigned as in-class closed-laboratory assignments. A
post-lab assignment helped the students to analyze the
use of in-class activities. More challenging and time
consuming problems were assigned as post laboratories.
Students were active in both laboratory and in the
classroom while thinking and experimenting on a
machine with the architectural concepts introduced in
the classroom. After completing each project, students
submitted a report discussing their experience. First,
each student worked alone as the sole developer of the
hardware and software. Towards the end of the semester
two to four students were allowed to work in a team to
design, construct and complete the projects. The group
was responsible for developing definitions and
specification of a larger hardware/software product to
solve a problem as their final project. The course helped
students become proficient in the subject matter in a

relatively short period of time.

3. Goals Achieved
We created the active learning course material that will
enhance students' high level skills: teamwork, analysis,
synthesis, performance comparison and active
participation in the classroom. To reflect the inclusion
of several different instruction set architectures we
created hands-on hardware and software laboratory
assignments. Our computer science students received
the instructions based on the course material developed

in Spring 2002 and Fall 2001.

Our active learning course modules enabled students to
learn architectural concepts more effectively and
efficiently thus providing students an opportunity to
function well in an increasingly competitive technical
society. The classroom activities provided the students
with  opportunities for and

analysis, synthesis,

verification of correctness in building larger systems all

during traditional class time. Such modifications
increased the enthusiasm in the classroom, addressed
the needs of both traditional undergraduates and adult
students, the needs of the industry and provided
necessary tools and training for the student to become
proficient in the computer architecture subject matter in
a relatively short period of time. To our knowledge, no
other computer architecture course used our approach.
Therefore, our course modules and experimental results
will be very useful for the other computer science and
engineering programs nationally. Table 3 depicts the
Indicators/Measurements of goal attainment of all three

courses.

Table 3. Indicators/Measurements of goal

attainment

Entry level Intermediate leve = Goal Attainmen

Gate level Design, analysis = Parallel

designand  and performance | processing,

analysis improvement of | system design,
architectural analysis and
components, performance
processors, improvements
controllers

Exams Exams Exams

Architecture Symposium

A computer architecture symposium [21-22][24] was
organized at the end of the Spring'02 semester to
stimulate our undergraduate and graduate students,
computer science and engineering faculty in tri-state
and the local industry. We invited five excellent
speakers from MIT, University of Minnesota, IBM T.J.
Watson center and Oracle to deliver lectures based on
their work. The symposium was well attended by the
students, faculty and industry. Spring'02 semester
started with introduction seven trillion FLOPS machine,
then the students learned about 35 trillion FLOPS
machine. At the end of the semester in the symposium

students learned about the 185 trillion FLOPS machine



under development at IBM. This conference also helped
our efforts to develop a core curriculum for Computer
Science that presents an integrated view of hardware

and software to the undergraduate students.

Difficulties

Incorporating several architectures into one course
seemed overloading the students and faculty at the
beginning. However, making our course modules
available for the students at the beginning of the
semester via web helped to eliminate this difficulty.
Selecting a series of projects that increases enthusiasm
in a diverse body of students was also a difficulty we
encountered. Observing, helping and verifying the
correctness of weekly work focusing on the analysis
and synthesis of components was a time-consuming
task. Trained student assistants helped in scheduling the
laboratories and reduced the burden. However,
attracting suitable student assistants and paying them
sufficiently to keep them was also another difficulty we
faced. ldentifying suitable modern educational circuit
boards for our experiments was another difficulty we

faced.

St. Cloud State University, with six colleges, is the
second largest university in Minnesota. The university
enrollment is approximately 15,000 students drawn
from MN, rest of the USA and foreign countries. The
the 10

departments of College of Science and Engineering, is

computer science department, among
one of the two CSAB accredited departments in MN.

The department consists of 180 undergraduate major
students, 30 graduate students and 10 full time faculty
members. We have two departmental laboratories with
50 PCs

architecture and operating systems.

for introductory programming classes,
Most of the
graduates enter industry or graduate school after

graduation. Computer science department offered the

computer architecture | course twice during the
academic year 2002/03 for about ninety students.
Computer architecture Il course is offered twice a year
during the academic year 2002/03 for about sixty
students. Computer architecture Ill course is offered
once during the academic year 2002/03 for about forty

students. We graduated 25 students this year.

4. Course Assessment
The course material developed was evaluated by
soliciting the criticism from the faculty and students.
Student learning was evaluated using many different
ways. The background knowledge and preconception
checks were performed in the form of a simple
questionnaire/worksheet that the students will fill in
prior to working on the lab assignments. The students
were asked to explain the concepts they have learned
so that the instructor can measure student learning.
Faculty and teaching assistants regularly observed the
team work. Recording experiences from laboratory
assignments was an essential part of the student work.
Student groups submitted weekly project reports.
Group-work evaluations were also used to assess the
course. In the larger lab projects, students worked
together in groups. Each member turned in an
evaluation of his/her own learning experiences gained
by being part of a team. To reinforce the learning, a test
was scheduled after the completion of each module.
Excellent students performed well in all levels and had
complete understanding of the subject matter. Very
good students were strong in many areas but weak in
some. Average students showed weaknesses in some
levels. Poor students could not perform well in many
areas. Classroom opinion polls and course-related self
confidence surveys were also performed to receive the
feedback. In the future, comments from the industrial

advisory committee and accreditation board member's



site visit and reviews from other instructors will be

used to evaluate the project performance. Within our
large university system we will have opportunities to
test our designs which could possibly extend to other
faculty and students. We are currently in contact with
many computer architecture instructors to find ways to

improve the courses we teach.

Dissemination of Course Modules Among Instructors

To disseminate the findings of this project, laboratory
manuals, course notes and other related information,
the web is heavily used. Before the start of Spring'02
semester, we contacted approximately 600 computer
science departments using our distribution list and
informed the availability of our course modules for their
classroom use and review with no charge. More than
200 computer architecture instructors requested the
course modules. We distributed our lecture notes among
them via e-mail. A better version of our course material
is now available to others for classroom use [19-20]. It
is important to note that we have successfully
completed the introduction to computer architecture
project earlier and distributed the course material to
more than 200 instructors. We will continue assessing
the course material through faculty and student
feedback for next few semesters. We will continue to
share the experience gained from this experiment with
the rest of the computer architecture community.
Progress of this project will be reported to the MnSCU
Center for Teaching and Learning.

5. Summary and Future Work

Traditionally, computer architecture courses are
presented, with complexity and confusion, to a less than
enthusiastic student body and often delivered in a
relatively passive classroom environment. In general,

learning takes place if both the instructor and the

student are active at the same time. To promote this in
the classroom and to overcome the above mentioned
deficiency, we developed an intermediate computer
architecture course with hands-on classroom activities,
laboratories and web based tools and distributed among
Other

deficiencies encountered in the traditional learning

many computer architecture instructors.
environment such as instructor's preparation time and
multiple copying stages involved in the learning process
were also addressed. Availability of properly designed
and developed on-line course materials, with a series of
hands-on laboratories as well as classroom activities
will definitely reduce both instructors' preparation time

and multiple copying stages, and increase student
learning rate. Such on-line courses could help both
traditional students and adult learners to explore the
computer architecture area while developing their
design and analysis skills. Modifiability and flexibility

of course material at the instructor's end will contribute
very much to the faculty development. Often, the

students are confused because of not having a well-
defined focus in the classroom activities. This computer
architecture course is designed to complement the
CS-1, CS-2 and computer

architecture-1 courses. The subject matter provides the

activities performed in

gateway for advanced studies in computer architecture
and other areas. The course helped to understand the
implementation details of basic programming constructs

in CISC and RISC architectures.

considered in all alternative designs. This courseware

Performance issue is

helped students to be active in the classroom and

increased the enthusiasm in learning  computer

architectures. Hardware description programming

experience allows description of the structure,
specification using a familiar programming language
and simulation before being manufactured. As a result,

students as designers can quickly compare alternatives



for high performance and test for correctness. We are

planning to wuse a industry-standard hardware
description programming language [23] in both first and

second level courses. Developing a clustered computing
environment will be useful for the laboratories in the

third course of the sequence. Educational circuit boards
with several processors that communicate with each
other through dedicated channels will be a good
alternative for the advanced course. Virtual
environments with variety of visualization systems are
matured enough to aid students' understanding of
miniaturized complex processor architecture. Through
such platforms students will learn to appreciate the
instruction set architecture. In the future revisions we
will explore the feasibility of incorporating such virtual

environments in the computer architecture classroom
[71[8] and then improving upon them in successive

iterations.
Acknowledgments

This project has been supported by the MnSCU Center
for Teaching and Learning through the Bush/MnSCU
Learning by Doing Program.

6. References

1. A Web-Based Computer Architecture Course
Database, Edward F. Gehringer
http://www.csc.ncsu.edu/eos/users/e/efg/archdb/FI

E/2000CACDPaper.pdf

2. Computer Organization and Design:
Hardware/Software Interface, Second Edition, John
L. Hennessy and David A. Patterson, 1997
http://www.mkp.com

3. Computer Architecture: A Quantitative approach,
Third Edition, John L. Hennessy and David A.
Patterson, 2008ttp://www.mkp.com

4. The Undergraduate Curriculum in Computer
Architecture, Alan Clements,
http://www.computer.org/micro/mi2000/m3toc.pdf

5. Teaching Design in a Computer Architecture
Course, Daniel C. Hyde,
http://www.computer.org/micro/mi2000/m3toc.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Rapid Prototyping Using Field-Programmable
Logic Devices, James O. Hamblen,
http://www.computer.org/micro/mi2000/m3toc.pdf
PUNCH: Web Portal for Running Tools Nirav H.
Kapadia, Renato J. Figueiredo, and José A.B.
Fortes,
http://www.computer.org/micro/mi2000/m3toc.pdf
Building Real Computer Systems Augustus K. Uht,
Jien-Chung Lo, Ying Sun, James C. Daly, and
James Kowalski,
http://www.computer.org/micro/mi2000/m3toc.pdf
HASE DLX Simulation Model Roland N. Ibbett,
http://www.computer.org/micro/mi2000/m3toc.pdf
An Integrated Environment for Teaching
Computer Architecture Jovan Djordjevic,
Aleksandar Milenkovic, and Nenad Grbanovic,
http://www.computer.org/micro/mi2000/m3toc.pdf
Digital Design 3/e2002Morris Mano,
http://prenhall.com
Digital Design: Principles and Practices, Updated
Edition, 3/e 2001John Wakerly,
http://prenhall.com
Digital Design Essentials and Xilinx 2.1 Package
1/e 2002Richard Sandigeittp://prenhall.com
Computer Systems Organization and Architecture
John Carpinelli (2001 http://awl.com
COMPUTER ORGANIZATION, Fifth EditionV.
Carl Hamacher, Zvonko Vranesic, Safwat Zakay,
http://mhhe.com
Computer Systems Design and Architecturke
1997Vincent Heuring , Harry Jordan,
http://prenhall.com
Parallel Computer Architecture: A
Hardware/Software Approach David Culler and
J.P. Singh with Anoop Gupta, August 1998
http://www.mkp.com
Readings in Computer Architecture, Mark D. Hill,
Norman P. Jouppi, and Gurindar S. Sohi,
September 199%ttp://www.mkp.com
Computer Architecture | Preliminary version
http://web.stcloudstate.edu/jherath/CompArch-1
Computer Architecture Il Preliminary version
http://web.stcloudstate.edu/jherath/CompArch-2
Hardware/Software Interfacing for High
Performance Symposium -02
http://web.stcloudstate.edu/jherath/Conference.htm
The RAW Microprocessor, M.B. Taylor etal,
MICRO 2002March
http://dlib2.computer.org/mi/books/mi2002/pdf/m2
025.pdf
VHDL Primer, A, 3/e1999Jayaram Bhasker,
http://prenhall.com
VLSI Digital Signal Processing Systems: Design
and Implementation, K. K. Parhi, 1999,

http://wiley.com




Effective Support of Simulation in Computer Architecture
Instruction

Christopher T. Weaver, Eric Larson, Todd Austin
Advanced Computer Architecture Laboratory, University of Michigan
{chriswea, larsone, austin } (@eecs.umich.edu

Abstract

The use of simulation is well established in
academic and industry research as a means of
evaluating architecture trade-offs. The large code
base, complex architectural models, and numer-
ous configurations of these simulators can con-
sternate  those  just  learning  computer
architecture. Even those experienced with com-
puter architecture, may have trouble adapting a
simulator to their needs, due to the code complex-
ity and simulation method. In this paper we
present tools we have developed to make simula-
tion more accessible in the classroom by aiding
the process of launching simulations, interpreting
results and developing new architectural models.

1 Introduction

The use of simulation tools in computer engi-
neering is essential due to the time overhead and
cost of manufacturing prototypes. To better pre-
pare the student, we and many others have inte-
grated the use of architectural simulation tools
into our computer organization curriculum. How-
ever, detailed simulators can be very daunting to
the beginner, as they typical possess hundreds of
options and thousands of lines of code. In this
paper we discuss how simulators can be made
more approachable to both students who are
learning the fundamentals of computer architec-
ture and those that are investigating a particular
issue in the field.

In our introductory courses, users who are
learning the fundaments are more concerned with
running simulations, than understanding or modi-
fying its implementation. We have found the best
way to aid novice students, is to provide tools that
have a simple interface and an output that allows
them to clearly see what is going on. We present

two graphical tools (SS-GUI and GPV) and a
backend perl script that decrease the complexity
of using architectural simulators.

In our more advanced courses, we often ask
our students to add performance enhancing fea-
tures to a microarchitectural simulator. We have
found the students are best served by a simulator
that is modular and simple to alter. In addition,
they require a verification method to ensure their
changes do not break the simulator. If bugs are
detected the infrastructure should have methods
to expedite the detection and correction of the
error. We present the features of the Micro Archi-
tectural Simulator Environment (MASE) that
make it ideally suited for class projects.

The rest of the paper is structured as follows.
First we discuss the tools (SS-GUI and perl script
backend) that we have developed that simplify the
running of a simulation. Next we talk about the
graphical pipetrace viewer (GPV) which simpli-
fies the simulation analysis process. We then
focus on MASE, which aids more advanced stu-
dents in developing new architectural models.
Finally, we give some concluding remarks on
these tools and their use in education.

2 Launching Simulations

SS-GUI, shown in Figure 1, is a user-interface
form that contains all of the fields necessary to
launch a simulation. The save and load options
make it possible for an instructor to setup a tem-
plate for the class to use as the basis of their sim-
ulations. Presently the environment is customized
to the SimpleScalar toolset [3], however the only
non-generic field is the simulator options field.
These fields are constructed by parsing a global
configuration file that specifies the options avail-
able for the simulator. Additional features of the



GUI are enumerated below with corresponding
marks on Figure 1.
1.

File options- This menu allows for the load-
ing and saving of the GUI form contents. This
allows the system admin or class instructor to
fill in a base line form that the student can
load and alter.

Setting Menu- This menu bring up prompts
for the form comments.

Simulation Settings- This section contains all
the paths to the necessary components to run
a simulation. This can be classified as three
different types of data: configuration of the
simulator, run setup, and benchmark specifi-
cation. The configuration of the simulator
requires the user to supply the path to the
actual simulator and any configuration file to
use. The run setup requires the user to supply

3

the path of the backend run script (talked
about in the next paragraph), where to run the
simulation, where to store the results and how
to tag the results for later inspection. Finally,
the user must supply the benchmark to exe-
cute, the path to the executable and type/path
of the input set to use.

Benchmark Selection window- The user has
the option to select the benchmark from a list
or type the benchmark and its options in man-
ually. The pop-up window contains informa-
tion about each of the different benchmarks
that are supported (currently spec2000,
spec95 and a few others). A global bench-
mark configuration file specifies how to run
the experiments.

Simulator Option Scroll Window- This win-
dow contains all of the simulator options that

& 1
pal e[|
— Sl Setlings ~ Search For:
Simutator © Fnfsibinomial/kssimplesim-3.0/5im-ouarder  popnicsions @ File Exists,rw,x Y compress
ccl
Run Script : fhfs/binomial/scriptsmewspecrun Permissions : File Exists,r,w.x / yceds
/ g
Where 1o run the program at : izt Permissions : Dir Exists drwx ljpey
li
Where to store results : diifsraingmiskite sults Permissions : Doesn't Existtt < i35
mBksim
Simple Scalar Config file : relax.cly Permissions : Doesn’t EAst!l! W Use 35 Config "e:w
voriex
Benchmark * Select Benchmark | applu
apsi
\here to find benchmark : fnfs/binomialskspec2d00_newcomp/ Permissions : Dir Exists Yhr.w,x Spec 95 132.ijpey
el ume: ISec
N Ref time: 2400:
S eak.evh . (test Application Area: Imaging
Benchmark Extension : B Test Size : N Description: Perfonms jpeg image compression with
N various parameters,
Simulation Tag : myresults N
Select Benchmark
Where to find bench inputs : fnfsfhinomialfkspec2dii_newcomphenchs| Permissions : Dir Exists drow x N
=
S
Simulator Option Valid Values Value Simulator Option Valid Values Value \
config string =null= dumpconfig string =null=
h true|false false ¥ true|false Talse
d true|false false i true|false Talze
seed int 1 q true|false false \
chkpt string =null= redir:sim string =null= 5
redir:prog string =null= nice int 1] )
max:inst uint o Tastfwrd int. o
ptrace string list... <null= fetch:ifgsize int 4
fetch:mplat int 3 fetch:speed int 1 —/
— Options Coloring Key:
Multiple Entries Coloring | User Inputed Coloring || Config file Coloring Default Value Coloring
— Help K g
This window displays the pemmissions associaled with a file. D= Directory,R= Ri W= Wil *=E
Update Options Run Simulation | Launch Visualization | Exit

Figure 1: SS-GUI - a frontend for running simulations



are available for the current simulator. If a
configuration file is specified, the options will
display this value. The entries can also be
modified by the user. A color guide is used to
illustrate whether the value is the default,
specified in the config file, entered by the user
or contains multiple entries. The multiple
entry fields are reserved for future usage,
where the GUI can be used to generate test
queues for a variety of simulator options.

6. Update Options Button- This button will run
the simulator without any arguments, so that
the available options are reported. The
reported options are then parsed and reloaded
into the Simulator Option Scroll Window.

7. Run Simulation Button- This button will run
the backend perl script with the options setup
in the GUI form.

8. Launch Visualization Button- The launch
visualization option will run the backend perl
script with a flag that causes the output to be
streamed into GPV (described in the next sec-
tion).

9. Exit- Exit the GUI environment.

The backend perl script contains a variety of
features, however its basic function is to copy all
of the simulation files to a experiment directory,
launch the simulation, and copy back the results.
The script contains all of the arguments need to
launch the supported benchmarks (currently
spec2000, spec95 and a few other benchmarks).
The run script can optionally check that the simu-
lator gave the correct output. The logs generated
by the script expedite the diagnosis of run fail-
ures.

3 Interpreting Results

Figure 2 gives an overview of GPV, our pipe-
line viewer. An architectural simulator is used to
produce a pipetrace stream. This stream contains
a detailed description of the instruction flow
through the machine, documenting the movement
of instructions in the pipeline from “birth” to
“death”. In addition, the pipetrace stream denotes
various other events and stages transitions that
occur during an instruction’s lifetime.

The pipetrace stream from the architectural
simulator can be sent directly into GPV or buff-
ered in a file for later analysis. GPV digests this
information and produces a graphical representa-

tion of the data. The graph generated by GPV
plots instructions in program order, denoting over
the lifetime of an instruction what operation it
was performing or why it was stalled. In addition,
the tool is able to plot any other numeric statistics
on a resource graph.

Multiple traces can be displayed on the screen
at any given time for easy analysis. GPV also
supports both coarse and fine grain analysis
through the use of a zoom function. Color coded
events, which are user definable, makes spotting
potential bottlenecks a simple task. The remain-
der of this section will outline the tool in detail,
including the main view, advanced features, trace
file format, and other infrastructure with which
GPV has been designed to communicate.

3.1 Main Visualization Window

The main GUI window of GPV is illustrated in
Figure 2. The GUI has two main graphical dis-
play windows, the instruction window and the
resource window. The instruction window plots
instructions in program order on a time axis
(measured in cycles). For example, the third
instruction bar in Figure 2, shows the execution
of an ADDQ instruction on a 4-wide Alpha simu-
lator. As shown in the figure, this instruction is
stalled in Fetch (IF) until the stall in the internal
Id/st is resolved, after which it continues to com-
pletion.

This method for graphing instructions as they
flow through a pipeline is a common visual repre-
sentation, used in many textbooks including Hen-
nessy and Patterson [6]. The instruction axis
contains tick marks to indicate the cycle count.
Additionally, the vertical axis will also display
the instruction mnemonic when the window is
zoomed in enough to fit legible text aside each
instruction mark (typically two zooms from when
the pipetrace is first loaded).

The right panel provides a legend of the color-
ing that is used to illustrate the instruction’s flow
through the different stages of the pipeline. Sig-
nificant events, such as branch mispredictions or
cache misses, are displayed in conjunction with
the instruction’s transitions through the pipeline.
The use of color (with a user configurable palette)
provides an effective means for spotting potential
bottlenecks. A highlight option, which can flash
the occurrences of a particular event, can be used
as an alternative method of locating bottlenecks.



The bottom window, the resource view, dis-
plays graphs of any numeric statistic provided in
the pipetrace file. GPV has been designed to plot
both integer and real statistics. Up to four data
sets (our current development extends this to ten)
can be displayed simultaneously with color coded
axes that indicate the range of the variable. Since
there can be a wide variation in the data range of
a statistic, a separate x-axis is provided for each
one of the four resources that can be displayed at
a time. Both the resource and instruction views
are plotted against simulator time on the x-axis.
This permits widely varying statistical data sets to
be plotted within the same window. To avoid clut-
ter, the GUI allows the selective hiding of individ-
ual resource views.

The resource view in Figure 2 is shown plot-
ting the IPC of a simulated program. As shown in
the figure, the IPC of the program starts to drop
during the cache miss. Once the miss has been
handled and instructions start to retire, the IPC
begins to recover. The flexibility of the resource
view allows the user to chose the statistics that are
most valuable for performance analysis and cor-
relate these statistics to instructions flowing
through the pipeline. This simplifies the task of
identifying bottlenecks, as illustrated by the rela-

SimpleScalar - Graphical Pipeline Viewer

Fle View Display

Zoom In Zoom Out

INSH CYCLES 15q 160 170

180 190 oF
e L u o oa
Instruction Axis m Ex
1dg21.0{x19) B . . m e
| CT
addq ¥19.8.x19 B . Bl Cache Miss
W TLE Miss
brve 21 0x SEEETEELEIEERS - O B Mispred occured
I Mizpred detected
B Address Generation
[internal 1dsst] 8= _ .

1dq z1,0¢r18) -

tionship of the cache miss to the IPC drop in Fig-
ure 2.

The GUI provides several additional features
that assist in diagnosing performance bottlenecks.
The display can be zoomed in and out to trade off
detail for trend analysis. When the display is
zoomed out it is straightforward to determine
areas of low performance by locating pipeline
trace regions with low slope. The slope of the line
is given by L

_AY _
slope = Ax - (IPC)

Thus for a perfect single wide pipeline (no
data, control or resource hazards) with no multi-
cycle stages the IPC would be 1 (slope of -1). The
display will show the areas of low performance
with a gradual (more horizontal) slope and areas
of high performance with a steep (more vertical)
slope.

GPV also allows users to select instructions for
more information. Selecting an individual

1. The negative sign is because instruction progress in the
negative y direction.

=10] %]
Help

Revert Scale

Coloring Legend

Button1 - Show Value

Button? - Drag Canvas
. . Button3 - Highlight Event
sddqr19 9210 8am - Selected Instruction Value
cycle: 155
brue 11 O TEETTITAEIENS 7 Instruction Window inst:
. addg r19,8,r19
[intsunal 1dist] -
0.360° M sim_IPC
] Resource Window
0352
i Selected Resource Valup
Resource Aﬂg“i cycle: 154.0625

=
@
o

TP

sim_IPC:
~=0.35745886

Figure 2: GPV Display Window. This example shows the execution of instructions on a 4-wide Alpha ISA
model. (Note: Internal micro-code operations, i.e. internal 1d/st, are allowed to finish out of program order.)



instruction displays the cycle time of execution
and the instruction mnemonic. This makes it pos-
sible to get information about single instructions
when the pipeline display is too small to label
each individual instruction. Similarly, the
resource view allows resource graph lines to be
selected, which returns the label, cycle number
and instantaneous value. Since the resource
graphs are displayed as continuous lines from dis-
crete data in the pipetrace file, intermediate points
are calculated by linear interpolation.

4 Developing New Models

MASE (Micro Architectural Simulation Envi-
ronment) is a flexible performance infrastructure
to model modern out-of-order microarchitectures.
It is a novel performance modeling infrastructure
that is built on top of the SimpleScalar toolset [3].
MASE is most appropriate for advanced com-
puter architecture courses where students are add-
ing enhancements to a baseline microarchitecture
and analyzing their results. MASE simplifies this
process by adding a dynamic checker that can
detect implementation errors, modularizing the
code base improving code readability and under-
standing, and adding support for optimizations
that are difficult to implement. Additional infor-
mation on MASE can be found in [7].

4.1 Dynamic checker

The dynamic checker is used to verify that any
changes or enhancements to the simulator code
are indeed correct. Since not all errors directly
cause an error in the output, it provides extra
security that a model enhancement did not violate
any microarchitectural dependencies or program
semantics. In most simulators, it is difficult to
determine precisely where an error occurred
when there is a difference in the output. The
checker will pinpoint the first instruction where a
mismatch occurs, greatly reducing debugging
time.

The checker resides in the commit stage, moni-
toring all instructions that are committed. It com-
pares values produced from the core to the correct
value. The correct value is obtained by the use of
an oracle in the fetch stage. The oracle is an in-
order functional simulator that has its own archi-
tectural state and memory. The oracle data is
passed to the checker using a queue. In addition
to checking the output value, the checker will also

check (if appropriate) the PC, next PC, effective
memory address, and any value written into
memory. If the results match, the result will be
committed to architectural state and the simula-
tion will progress as normal. If the results do not
match, an error message is printed out indicating
the failing instruction along with the computed
and expected values. The simulation may con-
tinue or be aborted depending on a user-con-
trolled flag. If the simulation is allowed to
continue, the oracle result will be committed to
architectural state and a recovery will be initiated.
The instruction with the bad result is allowed to
commit (with its result corrected) in order to
ensure forward progress. The remaining instruc-
tions in the pipeline are flushed and the front-end
is redirected to the next instruction.

Our experience with the checker has been very
positive, starting when we were implementing
MASE itself. The first bug we found involved
failing instructions that referred to Alpha register
$31 (the zero register). Almost immediately, we
were able to determine that the processing of this
special register was incorrect. Once that problem
was flushed out, we noticed that most of the prob-
lems dealt with conditional move instructions and
how the output was incorrectly zero most of the
time. We concentrated our debugging efforts at
the conditional move and quickly identified that
when the conditional move was not executed, it
was not handled properly.

The checker was also useful in implementing a
blind load speculation case study . As one might
expect, loads were the only instruction that failed
so the error message provided by the checker did
not provide as much insight as in the previous
cases. Instead, we focused on the first error that
was signalled. We used gdb to debug the simula-
tor and set a breakpoint on the failing instruction.
Once we arrived at the failing instruction, we ana-
lyzed the state of the machine at that time and
were able to isolate the problem relatively
quickly.

4.2 Modularized code

The MASE performance model has been
divided into several files, summarized in Table 1.
The rest of the SimpleScalar infrastructure is well

1. Loads are allowed to speculatively execute once their
addresses are known regardless if earlier stores could over-
write the data the load is accessing [9].



Table 1: Description of MASE files

mase-checker.c Oracle and checker.

mase-commit.c

Backend of the machine: writeback, commit, and some recovery routines

mase-debug.c

MASE-specific support for SimpleScalar’s DLite! debugger

mase-decode.h

Macros used for decoding an instruction

mase-€xec.c

Core of the machine: issue and execute

mase-fe.c

Frontend of the machine: fetch and dispatch

mase-macros-exec.h

Execution macros for the execute stage

mase-macros-oracle.h Execution macros for the oracle

mase-mem.c Memory interface functions

mase-opts.c

File contains all MASE-related options and statistics

mase-structs.h Common MASE data structures

mase.c

Initialization routines and main simulator loop

modularized with separate files for branch predic-
tors, caches, and memory systems. This organiza-
tion allows users to focus on the part of the
simulator they plan to work on without requiring
intimate knowledge of the other sections. It also
allows different users to work on different files
without having to worry about combining
changes within in a single file later!. It is straight-
forward to add enhancements since most of the
new code can be placed in separate files usually
requiring only slight modifications to the existing
code.

Many of the features in MASE were added to
make the model more realistic and representative
of modern microarchitectures. A side effect of
this is that it makes it easier for new users to
understand how the provided code works. For
example, one of the main obstacles to understand-
ing how sim-outorder works is due to the fact that
the core only simulated timing - there is no exe-
cute stage. The core of MASE executes instruc-
tions, allowing new users to track an instruction
from fetch to commit without wondering where
the execute stage is. To further improve readabil-
ity, the execution and decoding macros have been
placed into separate file, removing machine-
dependent code from the bulk of the core.

1. sim-outorder.c is 4,692 lines long!

4.3 Modernized microarchitectural model

One of the goals of MASE is to modernize the
baseline microarchitectural model, allowing for
the creation for more accurate models. To accom-
plish this, we added support for several different
types of optimizations or analyses that would be
difficult to implement in the previous version of
SimpleScalar. This section outlines some of the
things we added.

A micro-functional core is added that executes
instructions instead of just timing them. This
allows for timing dependent computation which
is necessary for accurate modeling of the mispec-
ulated instruction stream or multiprocesssor race
conditions. Lastly, it is necessary to execute
instructions in the core in order to use the checker
to find implementation errors such as violating
register dependencies.

An oracle sits in the fetch stage of the pipeline
and is a functional emulator containing its own
register file and memory. Oracles are commonly
used to provide “perfect” behavior to do studies
that measure the maximum benefit of an optimi-
zation. A common case of this is perfect branch
prediction where all branch mispredictions are
eliminated. In order to provide this capability, the
oracle resides in the fetch stage so it knows the
correct next PC to fetch.

We added a flexible speculative state manage-
ment facility that permits restarting from any
instruction. The ability to restart from any



instruction allows optimizations such as load
address speculation and value prediction to be
implemented. In these optimizations, instructions
other than branches could be mispeculated, mak-
ing it necessary to restart at the offending instruc-
tion. This approach also simplifies external
interrupt handling since any instruction could fol-
low an interrupt request, forcing a rollback. The
checker also uses this mechanism to recover from
any errors that are detected since any instruction
could potentially cause an error.

MASE uses a callback interface is used that
allows the memory system (or any resource) to
invoke a callback function once the memory sys-
tem has determined an operation’s true latency.
The callback interface provides for a more flexi-
ble and accurate method for determining the
latency of non-deterministic resources.

5 Related Work

There are a number of performance modeling
infrastructures available to instructors today that
implement various forms of these technologies.
The Pentium Pro simulator [12], Dinero [5], and
Cheetah [15] are examples of simulators that read
external traces of instructions. Turandot [10],
SMTSIM [16] and VMW [4], are simulators, like
SimpleScalar, that generate instructions traces
through the use of emulation. RSIM [11] is an
example of a micro-functional simulator; instruc-
tions are emulated in the execution stage of the
performance model. Unlike MASE, it does not
have a trace-driven component in the front-end.
This prevents oracle studies such as perfect
branch prediction. The idea of dynamic verifica-
tion at retirement was inspired by Breach’s Multi-
scalar processor simulator [2]. Other simulation
environments include SimOS [13] and SimICS
[8] which focus on system-level instruction-set
simulation. MINT [17] and ATOM [14] concen-
trate on fast instruction execution.

There are also numerous visualization infra-
structures available today. The tools range from
pedagogical aids to comprehensive performance
analyzers. DLXview [18] is a tool that depicts the
DLX pipeline that is outlined in Computer Archi-
tecture: A Quantitative Approach by John Hen-
nessy and David Patterson [6]. It was created as
part of the CASLE (Compiler/Architecture Simu-
lation for Learning and Experimenting) project at
Purdue. Another common method for visualizing
the performance of a simulator is to abstract away

the architecture and provide statistics based on
the actual code running. CPROF [20][21] and
VTUNE[19] are two examples of programs that
display information such as cache misses or
branch mispredictions for specific segments of
code. RIVET [22-24] is a powerful display envi-
ronment developed at the Stanford Computer
Graphics Laboratory. The tool provides a very
detailed time line view to identify problem areas.
This view uses multiple levels of selection to
gradually decrease the area of code being viewed,
while simultaneously increasing the detail. Fur-
ther background information on these tools and
how GPV differs can be found in [25]. This paper
also illustrates how visualization can be used for
performance analysis.

6 Conclusion

We have introduced three tools in this paper
that aid students using simulation in the class-
room. The SS-GUI and backend perl script make
it simple to launch simulations, by allowing the
user to graphical select the simulator options and
benchmark to simulate. The graphical pipeline
viewer (GPV) aids the student in analyzing the
simulation results. Finally, MASE’s modularized
code base and built-in checker mechanism make
it ideally suited for efficient architectural model
generation.

SS-GUI and GPV can be downloaded from

http://'www.eecs.umich.edu/~chriswea/visual-
ization/vis.tar . The MASE toolset and documen-
tation can be downloaded from htp://
www.simplescalar.com/v4test.html.

Acknowledgments

This work was supported under a National Sci-
ence Foundation Graduate Fellowship and by the
NSF CADRE program, grant no. EIA-9975286.
Equipment support was provided by Intel.

References

[1] T. Austin. DIVA: A Dynamic Approach to Micropro-
cessor Verification. Journal of Instruction-Level Par-
allelism Vol. 2, Jun. 2000.

[2] S. Breach. Design and Evaluation of a Multiscalar
Processor. Ph.D. thesis, University of Wisconsin-Mad-
ison, 1999.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin Computer Sci-
ences Technical Report #1342, June 1997.

[4] T. Diep. VMW: A Visualization-based Microarchitec-
ture Workbench. Ph.D. thesis, Carnegie Mellon Uni-
versity, June 1995.

[5] J. Edler and M. Hill. Dinero IV Trace-Driven Unipro-



cessor Cache Simulator. http://www.neci.nj.nec.com/
homepages/edler/d4.

[6] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach, Morgan Kaufmann, San
Francisco, 1996.

[71 E. Larson, S. Chatterjee, T. Austin. MASE: A Novel
Infrastructure for Detailed Microarchitectural Model-
ing. Proceedings of the 2001 International Symposium
on Performance Analysis of Systems and Sofiware,
Nov. 2001.

[8] P. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F.
Larsson, F. Lundholm, A. Moestedt, J. Nilsson, P.
Stenstrom, and B. Werner. SimICS/sun4m: A Virtual
Workstation. Usenix Annual Technical Conference,
June 1998.

[91 A. Moshovos and G. Sohi. Memory Dependence

Speculation Tradeoffs in Centralized, Continuous-

Window Superscalar Processors. The 6th Annual Int.

Symposium on High Performance Computer Architec-

ture, Jan. 2000.

M. Moudgill, J. Wellman, J. Moreno. Environment for

PowerPC Microarchitecture Exploration. [EEE Micro,

May/June 1999.

V. Pai, P. Ranganathan, and S. Adve. RSIM Reference

Manual. Version 1.0. Technical Report 9705, Depart-

ment of Electrical and Computer Engineering, Rice

University, July 1997.

[12] D. Papworth. Tuning the Pentium Pro Microarchitec-
ture. IEEE Micro, April 1996.

[13] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.

Complete computer system simulation: the SIMOS

approach. [EEE Parallel & Distributed Technology:

Systems & Applications, Winter 1995.

A. Srivastava and A. Eustace. ATOM: A system for

building customized program analysis tools. Proc. of

the 1994 Symposium on Programming Language

Design and Implementation, June 1994.

R. Sugumar and S. Abraham. cheetah - Single-pass

simulator for direct-mapped, set-associative and fully

associative caches. Unix Manual Page, 1993.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous

Multithreading: Maximizing On-Chip Parallelism.

Proc. of the 22nd Annual Int. Symposium on Com-

puter Architecture, June 1995.

J. Veenstra and R. Fowler. MINT: a front end for effi-

cient simulation of shared-memory multiprocessors.

Proc. of the 2nd Int. Workshop on Modeling, Analysis

and Simulation of Computer and Telecommunications

Systems, Jan. 1994.

[18] Intel. VTune: Visual Tuning Environment, 1997. http:/
/developer.intel.com/design/perftool/vtune/index.htm.

[19] DLXView.[online] Available: <http://yara.ecn.pur-
due.edu/~teamaaa/dlxview/>, cited June 2001.

[20] A.R. Lebeck, “Cache Conscious Programming in

Undergraduate Cmputer Science,” ACEM SIGCSE

Technical Symposium on Computer Science Educa-

tion, SIGCSE 99.

A.R. Lebeck and David A. Wood, “Cache Profiling

and the SPEC Benchmarks: A Case Study,” IEEE

COMPUTER, 27(10):15-26, October 1994.

Robert Bosch, Chris Stolte, Gordon Stoll, Mendel

Rosenblum and Pat Hanrahan,’Performance Analysis

and Visualization of Parallel Systems Using SimOS

[10]

[11]

[14]

[15]

[16]

[17]

[21]

[22]

[23]

[24]

[25]

and Rivet: A Case Study,’Proceedings of the Sixth
International Symposium on High-Performance Com-
puter Architecture, January 2000.

Robert Bosch, Chris Stolte, Diane Tang, John Gerth,
Mendel Rosenblum, and Pat Hanrahan, ’Rivet: A Flex-
ible Environment for Computer Systems Visualiza-
tion,” Computer Graphics 34(1), February 2000.

Chris Stolte, Robert Bosch, Pat Hanrahan, and Men-
del Rosenblum,”Visualizing Application Behavior on
Superscalar Processors,”In Proceedings of the Fifth
IEEE Symposium on Information Visualization, Octo-
ber 1999.

Chris Weaver, Kenneth C. Barr, Eric D. Marsman,
Dan Ernst, and Todd Austin, “Performance Analysis
Using Pipeline Visualization,” 2001 |EEE Interna-
tional Symposium on Performance Analysis of Sys-
tems and Software (1SPASS-2001), Nov 2001.



Web-based training on computer architecture: The case for JCachesm

Irina Branovic', Roberto Giorgi?, and Antonio Prete®

2 Dipartimento di Ingegneria dell’ Informazione
Facolta di Ingegneria
University of Siena, Italy
branovic@dii.unisi.it, giorgi@unisi.it

Abstract

This paper describes possible advantages of
adding an interactive tool with log capabilities, in
an online learning environment. We describe the
interactive, Java-based tool named JCachesim,
which is used for experimenting cache behavior
with simple assembly programs while varying
cache features. The tool has embedded features
that allow the teacher to monitor the progress of
each individual student.

1. Introduction

Internet offers the technology that supplements
traditional classroom training with Web-based
components and learning environments, where the
educational process is experienced online. The
objective is not to duplicate the characteristics of
an ordinary class, but to use the possibilities of the
computer to actually do better than what normally
occurs in the face to face class.

According to projections, by 2004, 75 percent of
US college students will have taken at least one
online course. The number of colleges and
universities offering elearning will more than
double, from 1,500 in 1999 to more than 3,300 in
2004. Student enrollment in these courses will
increase 33% annually during thistime[1].

Educational advantages that arise when
supplementing a course with Web-based tools
include:

» Enabling student-centered  teaching
approaches

* Providing 24/7 accessibility to course
materials

* Providing just in time methods to assess
and evaluate student progress

* Reducing “administrivia’ around course
management

® Dipartimento di Ingegneria dell'Informazione
Facolta di Ingegneria
University of Pisa, Italy
prete@iet.unipi.it

There are also other, less obvious, but equally
compelling advantages in favor of online teaching.
Students are judged solely by their submitted work
and their participation in online discussion forums,
not by how they look. This "anonymity filter" has
proven to have a positive effect on shyer students,
who are more likely to respond in class
discussions and debates when they have the time
to think beforehand, and to compose answers they
feel good about.

Navigating through the screens of an interesting,
colorful Web site maintains students' interest and
can keep their brains active. Students can see other
students work and profit from their inspiration and
understanding. Using conferencing, e-mail and
other Internet features, students can also comment
on each other's creations and discuss variations
and other possibilities.

Structured note taking, using tools such as
interactive study guides, and the use of visuals and
graphics as part of the syllabus and presentation
outlines contribute to student understanding of the
course. Student discussion records, groups and
project work and commentaries can be used to add
to the content of the course.

2. Virtual classroom on computer

architecture

There are a number of possible solutions for
building a Web-based course on computer
architecture. Detailed explanation about cregating a
virtual classroom, as well as examples of Web
teaching environments can be found in [2]. For the
purpose of creating our computer architecture
classroom, we used a similar environment.

The consistent interface of distance learning
environments speeds up the process of learning,
and does not intimidate instructors and students
with the ordeal of learning to use a new software



application each time a new tool is incorporated
into the course.

Although our students found reading text in
lectures via computer screen sometimes tedious,
they liked integrated simulators, prerecorded
lectures, and quizzes.

One of the most interesting enhancements that we
added recently is the possbility of using
interactive tools based on Java applets. Thesetools
allow the students both to exercize and to learn.
We aso embedded a facility to automatically 1og
the student’'s use of the tool, and create a
personalized record to make sure that he used the
basic functionalities of the toal. In the following,
we consider such interactive tool for a lesson
regarding cache memories.

3. The JCachesim tool

One of the lessons in our computer architecture
classroom allows students to use an interesting
tool for studying and analyzing a computer with
cache memory, called JCachesim. It is based on
previous experience on non Web-based tools [3].

/3 JCACHESIM - Microsoft Internet Explorer

File Edit ‘“iew Favorites Tools Help

JCachesim is a simulation environment of a
computer with a cache memory. It allows the
student to observe the CPU and the cache
activities during the execution of a program, and
in particular during read or write memory
operation, to evaluate the system performance, to
analyze the reference locality and the distribution
of memory accesses due to the program execution.
An exercise is organized in three phases:
configuration, simulation, and analysis.

In the first phase, students write a program in an
assembly language, and then configure the system.
For cache memory, the student chooses the cache
capacity, the placement policy (direct, full, or set-
associative mappings), the cache block size, the
number of ways. Main memory size can be
chosen, the main memory update policy and,
finally, the block replacement policy (FIFO,
random, or LRU).

For 1/0 devices, the student specifies the 1/0 type
(monitor, keyboard or general purpose), the
synchronization scheme (none or handshake), the
interrupt scheme (none, vectored interrupt or non
vectored interrupt), and the addresses of the
relative deviceregisters (Figure 1).

=100 x|

]
I

Qe - Q- 1] @ W

? < " i 2y
/ Search 1. Favorites @Medla 6;*

= Y
& 3

Address I

hittp: fivirtualclassraom, dii, unisi.it/computer _architectureifjcachesim, html

RN = |Links =
=

Placement Algorithn
Replacenment Algorithn
Update Algorithn

Cache size

Block size

Humber of Blocks for Set
Humber of Sets

MEMORY

PROCESS0R

SET ASS0OCIATIVE
LRU

HWRITE THROUGHT
512 b

16 b

2

16

INFUT

OUTPUT

=

|®j Done

’_ ’_ E |4 tnternet

4

Figure 1: An example of configuring parameters, by clicking on the selected system component.



In the simulation phase, JCachesim can work in

one of following three modes:

» Single — the student can ask for the execution
of a memory operation by specifying the
memory address and the operation type. In the
single mode, JCachesim executes a single
memory operation and shows, through an
animation, the cache and main memory
events, and the sequence of actions necessary
to perform the required memory operation
(Figure 2).

» Trace — the student can execute a program
step-by-step, and examine cache or memory
contents.

< JCACHESIM - Microsoft Internet Explorer

J File  Modifica  Vizualizza  Preferti  Strumenti 7

* Exe—the student can ask for the execution of
the whole program (or a portion).

The student can watch the statistics regarding
cache operations at any time (Figures 3, 4).
JCachesim tool is written in the form of interactive
applets that alow us to train students. However,
one of the most useful features of JCachesim is its
ability to create a log of student’s activities. The
log file contains the student name, the time he or
she took the test, the chosen settings and what
kind of experiments were performed. The log file
is automatically stored and available to instructors
(Figure5).

. >
- - %) D A @ B &
Indietror = Awant T Temina  Aggioma Pagina Cerca Preferti  Cronologia Pozta  Dimensioni
iniziale
J|n£|ili220| hittp: £ Mvirtualclassroom. dil. unisi. it /computer_architecture/jcachesim. hirnl j o Vai HEollegamenti 3

MODE

EYETEM_INFOD

PROCEES0R_INFO

SINGLE OPERATION

TYPE MEM OFR MHessage Hindow

* READ fh,s¥ @
HRITE

ADDREEE MEMORY DATA HWINHDOW

SEQUENCE OF CACHE ACTIONS

indicate the
of the set =

4y Set: w=1, tag=12
62 Update Replacernent field

End of operations

STATEHMENT :

ADDRESS

block b

RUN HWINDOM

532 Read from cache block £0,3)> data request

T¥PE_MEMORY TYPE_OP_MEM OFP_RE3SULT

CACHE_INFOD STATISTICE RUN PROGR ;I

Main Menoru

TAG SET

|@ Operazione completata

S

l_ l_ |§ Rizorse del computer

Figure 2: An example of JCachesim working in single mode.



»
« =~ Q @ I | B a
IRdietrar = At Temina  Aggioma Pagina Cerca Preferiti  Cronologia Posta  Dimensgioni
iniziale
J |ngiri220| hittp: # Avirtualclassroam, dil unisi it/computer_architecturejcachesim. himl j & Vai |J Collegamerti **
< [Excit | STATISTICS OF CACHE OPERATIONS PART 2 > B
TOTAL ACCESS

TOTAL HISS

TOTAL ACCESS READ + WRITE + FETCH

|

SET SELECTION

TOTAL HIT

TOTAL WRITE

TOTAL FETCH

|@ Operazione completata

’_ ’_ |3 Risorze del computer

Figure 3: Pictures showing the locality of accesses in various memory areas.

HESIM rosoft Internet Explorer

File Edit

Yiew Favorites Tools  Help

=10l x|
G

@Back - O e @ @ (b|psaarch ‘i\r\?Favorites *Media @| @v ;3_\; - I_J

3

Address

READ
CACHE OFERATION

HIT HISS
DATA

HIT HMISSE
FETCH

HWRITE

TYFE OF FETCH

OPERATOR DATA
STACK

TYFE OF

OPERAT IOH

BUS

OPERAT IOH

HIT HMISSE
ETACK

[

@ Dione

[ [ Blewms

Figure 4: Global statistics of cache operations.



The generated log file also contains following
information: total time spent for reasoning
between operations, and total idle time. These data
are used solely for tracking time the student spent

E log15 - Blocco note
File Modfica Cerca 2

using the tool, and not for
performances.

The JCachesim tool is still in the prototype phase,
but we hope to dliver afinal version to the public

as soon as possible.

measuring his

DETAILS OF OPERATIONS

2002-84-26 10:20:31 Configuration selected

2082-84-26 10:23:18 Saving default parameters
20802-84-26 10:23:31 Execution selected
2002-84-26 10:23:39 exe_java.module: trace

2082-84-26 10:27:13 Statistics selected

2002-84-26 10:35:20 Exit statistics selected
20682-84-26 10:35:28 Execution selected
2002-84-26 108:35:59 exe_java.module: exe
2002-84-26 10:37:16 Statistics selected

2002-84-26 10:41:89 Exit statistics selected

total time spent in trace tests: 88:83:22
total time spent for configuration: 88:83:81

total idle time: 88:85:18

il

2002-84-26 10:20:20 Accessing JCachesim: Graziano Aretusi =1

2002-84-26 10:20:39 config_java module: Type of processor: EB086
2002-84-26 10:20:55 config_java module: Hemory size: 16 KB

2002-84-26 10:21:10 config_java module: Hemory size: 32 KB

2002-84-26 10:21:25 config_java module: Placement algorithm: set associative
2002-84-26 10:21:43 config_java module: Update algorithm: write through
2002-84-26 10:22:81 config_java module: Update algorithm: copy back
2002-84-26 10:22:20 config_java module: Cache size: 8 KB

2002-84-26 10:22:47 config_java module: Block size: 128 b

2002-84-26 10:22:53 config_java module: Block size: 64 b

2002-84-26 10:23:04 config_java module: NHumber of blocks per set: 8
2002-84-26 10:23:12 config_java module: Humber of sets: 16

2082-04-26 10:23:2% default.cfr sucessfully updated
2002-04-26 10:27:81 exe_java.module: execution stopped
2002-04-26 10:27:84 exe_java.module: statistics
2002-04-26 10:27:19 statistics_java.module: complete
2002-04-26 10:27:27 statistics_java.module: screent

2002-04-26 10:29:18 statistics_java.module: screen2
2002-84-26 10:32:85 statistics_java.module: screen3d

2002-84-26 10:37:88 exe_java.module: execution stopped
2002-84-26 108:37:05 exe_java.module: statistics

2002-84-26 108:37:21 statistics_java.module: summary

2002-84-26 10:43:45 Logoff JCachesim: Graziano Aretusi

SUHMARY OF MAIN OPERATIONS PERFORMED BY Graziano Aretusi

total time spent for watching animated simulation:8@:83:18

total time spent for reasoning between operations: 88:82:43

407

Figure 5: An example of student log file, to be considered by the teacher.

4. Conclusions

Computer architecture requires understanding a
wide variety of issues and interactions among
them. One important step is that the student makes
use of simulation tools to understand concepts
otherwise difficult to experience.

Our internal research indicates that teaching and
studying at a distance is equally effective, even
better than traditional instruction, provided thereis
timely teacher-to-student feedback.

We have described the possible advantages of
integrating an interactive tool with log capabilities
into a virtual classroom environment. Using an
interactive tool like JCachesim allows students to
indicate the settings of a cache memory, to
observe the cache activity needed for a memory
operation, to evaluate the system performance by
varying the parameters, and to analyze the
program behavior by the memory references. One
of the most important features of this tool is the
ability to generate log files, which can be used to
monitor students' progresses and track their

activities. Future plans for improving the
JCachesim include providing more Java modules
for enabling immediate interaction between
students and instructors.

5. References

[1] International Data Corporation: Distance
Learning in Higher Education: Market
Forecast and Analysis, 1999-2004.

[2] Branovic, I., Milutinovic, V., Tutorial on
Advances in Internet-based Education,
(http://gal eb.etf .bg.ac.yu/~vnvtutorials),
School of Electrical Engineering,
University of Belgrade, Serbia,
Yugoslavia, 2001.

[3] Prete, A., “Cachesim: A graphical
software environment to support the
teaching of computer system with cache
memories’, Proceedings of 7-th SEI
Conference on Software Engineering
Education, Springer-Verlag, January 1994.



Digital LC-2

From Bits & Gates to a Little Computer

Albert Cohen
A3 group, INRIA Rocquencourt

Olivier Temam
LRI, Université Paris-Sud

May 26, 2002

Abstract

This paper describes DigL C2, a gate-level simulator for
the Little Computer 2 architecture (LC-2) [3] which
serves to strengthen the bottom-up approach to teach
computer architecture. DigL C2 is based on Chipmunk’s
digital circuit simulator [1]; the circuit is freely available
on the web and ready to use.

1 Context and Presentation

The principle of our approach is to combine a bottom-up
presentation of computer architecture (from digital gates
to processor and system) with an intuitive graphical gate-
level design tool. This combination enables students to
truly understand the logic behind processor design and
internal processor workings, and simultaneously to gain
confidence in the acquired knowledge thanks to experi-
mental validation of concepts with a gate-level processor
simulator (DigL C2). Based on this solid knowledge, we
believe students are much more likely to quickly grasp
and master new information about the evolution of pro-
cessor design.

DigLC2 [2] is a gate-level simulator for the Little
Computer 2 (LC-2), as described by Patt and Patel in
their introductory textbook on architecture and program-
ming [3]. Unlike the existing LC-2 functional simulator
[4, 5], it provides a detailed description of all processor
components at the gate-level, so that students can them-
selves build a full processor using only elementary gates
(AND, OR, NOT and Tri-State), thereby demystifying
processor architecture.

The DigL C2 simulator started as a support tool for a
course at Ecole Polytechnique (France) [6]. Designed to
cooperate with the LC-2 functional simulator and assem-
bler environment [4, 5], we wanted it robust and modu-
lar for practical lectures, as intuitive as possible to serve
as a basis for student projects, and versatile enough to
explore fundamental architecture and programming con-
cepts. DigL C2 contributed to our teaching experience in

the following ways:

o to understand the detailed sub-cycle behaviour of a
realistic 16-bit processor;

e to experiment custom processor components in the
context of a whole processor;

o to compare multiple data-flow and control models;

¢ to execute sample LC-2 programs, displaying pro-
cessing stages from instruction-fetch to write-back;

o to play with basic input/output and interrupt mech-
anisms (they were not supported in the functional
simulator [4]).

o to understand simple operating systems concepts;

o to extend the processor with hardware devices and
off-chip controlers;

o to design and implement architecture enhancements
for performance.

We followed the bottom-up approach advocated by
Patt and Patel: students have been directly involved in
the design of each processor component exploring multi-
ple design issues. They achieved a finer understanding of
the data-path and control structures, with a broader view
of processor and system construction. Based on these
fundamental concepts, the course diverted towards high-
performance designs, program optimization techniques,
and the forseable future of micro-architectures.

The students were already familiar with C, object-
oriented and functional programming (OCaml) on one
side, and analog electrical engineering on the other, but
they had no experience in digital systems. Our intent was
neither to bridge the gap between assembly and high-
level languages nor to describe the mapping of ideal tran-
sistors to silicon wafers — both topics being taught in



the following semesters. We focused instead at the in-
termediate levels of the design, demystifying the build-
ing blocks of a microprocessor: from gates to combi-
natorial and sequential logics to data-paths and micro-
programmed control to the instruction set architecture to
assembler programming [6].

2 Technical Overview

The LC-2 system [3, 5] comprises a simple 16-bit mi-
croprocessor and a basic terminal emulation hardware.
The instruction set is load/store! with 8 registers and
3 operands; it appears as a tradeoff between control-
friendly and education-friendly features. The data-path
is based on a 16-bit bus to connect almost all compo-
nents and to communicate outside of the chip. Control is
microprogrammed (fifty 39-bits wide microinstructions)
and relies on a dedicated microsequencer for fast in-
struction selection and compaction. The LC-2 instruc-
tion set is very sketchy but supports a universal machine
(e.g., no subtract, no OR operator, no shift...), forgetting
about efficiency considerations. In comparison, system
and device interaction is rather realistic and complete
for such an educational architecture: both polling and
interrupt-driven mechanisms are supported, and system
calls (TRAPs) are clearly distinct from subroutine calls
(yet the system does not address memory protection and
address translation). Thanks to the original and efficient
teaching model proposed by Patt and Patel, more and
more introductory architecture courses are being build on
the LC-2; the clean educational design of this processor
is obviously a major incentive to do so.

The DigL C2 simulator is free software (GPL), avail-
able online at
http://www-rocq.inria.fr/~acohen/teach/diglc2.html.

It is fully reusable, adaptable, and ready to use. Instal-
lation and usage documentation is available. The user
should be familiar with the LC-2 specification, signal
names and processor structures, as defined in Patt and
Patel’s textbook [3] (along with its appendices). DigL C2
still lacks a technical manual, but the circuit is simple
and most of the design is a straightforward implemen-
tation of the LC-2 specification. It runs over Digl og,
Chipmunk’s digital circuit simulator (GPL) [1]. We im-
plemented the complete LC-2 architecture, including I/O
terminal-emulation devices, interrupt vectors and mem-
ory (with customizable latency). Except for the SRAM
memory chips and terminal device, every component of
the LC-2 is built of elementary gates. The data-path and
microsequencer are identical to the LC-2 specification.

1plus indirect load and store operations — for programming con-
venience — that we personally would not have provided and that we
intentionally avoided in the course and application exercises.

We rewrote the microprogram from scratch — see the
DigL C2 documentation — and applied large-scale tests
on sample codes and student projects. The “boot-time”
memory structure (vector table, operating system, boot
ROM and memory-mapped 1/0) is almost identical to
the functional simulator’s model [5], except that the ini-
tial PC is 0x0000 and that some 1/O routines have been
optimized.

Concerning /O operations, the LC-2 description is
not complete and we had to make a few implementa-
tion choices: the interrupt vectors for keyboard input and
CRT output (0x0010 and 0x0011, respectively) and the
detailed implementation of 1/O registers (interrupt con-
trol bits, strobe signals, device operation latency).

Figure 1 shows the control panel of the LC-2 simu-
lator. It displays every addressable and internal regis-
ter, the full microinstruction, and many other signals. It
also provides keyboard and screen emulations (standard
DigL og components) for interactive terminal operations.

As one may expect, performance is much lower than
Postiff’s functional simulator: approximately 20 cycles
per second on a 500 MHz pentium III (interactive run,
maximum details displayed): gate-level simulation of big
programs is not realistic. However, we found these per-
formances quite reasonable for the educational purposes
of the LC-2 architecture:

o target codes implement short-lived classroom algo-
rithms, toy programs and simple 1/0 operations;

o the most tedious part is linked with string process-
ing and printing, e.g., the full CRT synchronization
protocol proposed by Patt and Patel leads to a very
slow implementation; still, choosing pragmatic pa-
rameters (short strings) and optimizing the code of
display-oriented subroutines is usually satisfactory;

e in many cases, the user may even want to watch the
real-time execution of the program, looking for er-
rors in the assembly code, in a processor compo-
nent, or in some custom additional circuit.

Eventually, we found only two architecture faults dur-
ing circuit implementation: the first one is about choos-
ing latches or flipflops and has been (arguably) cor-
rected in recent online errata, the second one is a tricky
page/PC-incrementation bug in conditional branch in-
structions. Considering the overall design, the detailed
implementation choices and our teaching experience,
we believe that the LC-2 architecture is a significant
progress over previous educational systems; but we also
hope that feed-back from professors and students around
the world will be taken into account in future versions of
the Little Computer and contribute to further improve-
ments.



branch enable
EKN

[EKz [EKBEN
EKr

memory latency

Microinstruction

I Clock generation

| Shift+R: reset

I [EK Reset
[ZK Clock

| @K MCR_15

| Step by step
22X step

|

|

automatic

D‘( Run

control signals

LD.?

Gate?

[ZK conD_0 [EK Lb.PC [CK GatecC
[ZK conD_1 [CK LD.REG [CK GatelNTV
[ INT TEST [EK Lb.cc [EK GateMARMX
[EK LD.BEN [EK GateALU
r— — A EKIrRD CKLDIR [IK GateMDR
current LD.MDR GatePC-1
| address | next address % LD.MAR % GatePC
[EK mPC_0 EKJo0
I [EK MPC_1 I EKaa
| [EK mPC_2 | [EKJ2
[EK mPC_3 [EKJ3
| EKmpc4 | CKJ4a
I_EK MPC_5 | EKJis

[ZK ccmx

[ZK STACKMX_0
[ZK STACKMX_1
[ZK MARMX_1
[ZK MARMX_0
[ZK SRIMX_0
[ZK SR1MX_1
[ZK DRMX_0
[ZK DRMX_1
[ZK PCcMX_0
K PCMX_1

misc
EKRW
EK MIOEN

[CKALUK_O
EKALUK_1

Figure 1: DigL C2 control panel.

3 Student Projects

Three application projects have been proposed based on
this digital simulator.

o Pipelining the LC-2, with a simple hazard detection
and branch prediction mechanism. One student im-
plemented a prototype version of a pipelined LC-
2 (hardwired control, no indirect memory instruc-
tions). As a side-effect, simulator performance was
significantly improved...

¢ Implementing a DMA controller for video output
and experimenting a few bus protocols. This kind
of extension is greatly simplified by the modular
structuire of DigL C2. For example, every memory
control signal has a LC-2 side and a SRAM-chip
side, and the LC-2 is designed to cope with an arbi-
trary/unknown memory latency.

e Adding an instruction cache and/or a data cache to

1/0 signals

EKINT

[ZK RD.KBDR
[OK LD.KBDR
[OK LD.KBSR
[EK KBSR_14
@K KBSR_15
[EK RD.CRTDR
[ZK LD.CRTDR
[EK LD.CRTSR
[ZK CRTSR 14
@K CRTSR_15

Reset ;J
CRT.Strobe

Output

e

Input

i

KB.Strobe > —

the LC-2; trying various associativity and replace-

ment policies.

We believe that many existing student projects could

4 Conclusion and Future Work

benefit from DiglL C2, focusing on the most interesting
part of the project without the overhead of building a full
processor or the complexity of a real-world processor. It
can also be used to investigate the detailed implementa-
tion of processor performance enhancements — such as
pipelining, superscalar and out-of-order execution — in
the context of interrupts, and to interact with an existing
assembler and legacy source code.

DigL. C2 is an interesting compromise between high-
level structural modeling of digital circuits and expen-
sive hardware test-beds. It is a useful tool for architecture
courses, practical lectures, student projects and tutorials.




DigL C2 is an intuitive and modular implementation of
the complete LC-2 system; it does not intend to be a fully
realistic view of the actual silicon mapping, but provides
a full gate-level simulation. By combining the bottom-
up approach with DiglL C2 within the course and classes,
students were able to progressively build their own full
processor, using components they themselves designed
session after session, and then they were able to visu-
alize the execution of simple assembly programs at the
gate-level.

Still, we would like to emphasize on the preliminary
nature of this work. We believe that the tool might be-
come even more beneficial if provided with multiple al-
ternative implementations of each component, variations
on the instruction-set architecture, and performance en-
hancements. We are not acquainted with processor veri-
fication techniques and did not address the testing and/or
formal validation issues. Thanks to the wide distribu-
tion of Patt and Patel’s textbook, we strongly encourage
a community effort to contribute to the DigL C2 project,
as well to the underlying DigL og simulator [1].

References

[1] The Chipmunk system (specifically DigL og, the
digital part of the Log simulator).
Available online at
http://www.cs.berkeley.edu/4azzaro/chipmunk.

[2] A. Cohen. DigLC2: a gate-level simulator for the
little computer 2.
Available online at
http://www-rocq.inria.fr/~acohen/teach/diglc2.html.

[3] Y. N. Pattand S. J. Patel. Introduction to computing
systems. from bits & gatesto C & beyond.
McGraw-Hill, 2001.
http://www.mhhe.com/engcs/compsci/patt.

[4] M. Postiff. LC-2 simulator (and assembler).
Available online at
http://www.mhhe.com/engcs/compsci/
patt/lc2unix.mhtml.

[5] M. Postiff. LC-2 Programmer’s Reference and User
Guide. University of Michigan (EECS 100), 1999.
http://www.mhhe.com/engcs/compsci/
patt/lc2labstud.mhtml.

[6] O. Temam and A. Cohen. Cours d’architecture.
Ecole Polytechnique 3°™ année majeure 1,
2001-2002.
http://www.Iri.fritemam/X/index.html
(in French).



Mipslt—A Simulation and Development Environment Using

Animation for Computer Architecture Education

Mats Brorsson

Department of Microelectronics and Information Technology,
KTH, Roya Ingtitute of Technology
Electrum 229, SE-164 40 Kista, Sweden
email: Mats.Brorsson@imit.kth.se

Abstract

Computer animation is a tool which nowadays is used in
more and more fields. In this paper we describe the use of
computer animation to support the learning of computer
organization itself. Mipslt is a system consisting of a
software development environment, a system and cache
simulator and a highly flexible microarchitecture simulator
used for pipeline studies. It hasbeen in use for several years
now and constitutes an important tool in the education at
Lund University and KTH, Royal Institute of Technology in
Sweden.

1. Introduction

In order to learn computer architecture and systems you
need to learn how to master abstractions. A computer system
isone layer of abstraction on top of the other. At one end you
have digital eectronics, which in itself can be seen as sev-
eral layers, and at the other you have complex applications
using perhaps techniques such as polymorphic inheritance
which needsto be resolved in run-time.

For students studying computer organization and archi-
tecture, these abstractions are often confusing asthey are not
aways that distinct. Furthermore, given the high level of
integration in modern computers, it is also quite difficult for
students to get a good understanding of what is happening
deep down in the black centipedes on the motherboard.

At Lund University, and now also at KTH, Royal Institute
of Technology, both in Sweden, | have taken part in the
development of a set of courses in computer systems, orga-
nization and architecture in which laboratory exercises and
simulation tool support are used extensively to support
learning. In this paper | describe some of the simulation
toolsthat were developed during this process.

The Mipsit set of toolsis part of abigger laboratory exer-
cise environment with a hardware platform, software devel-
opment tools and a number of simulators. Many of the
simulators support animation as a support for the studentsto
understand the works of arelatively complex structure.

| first describe some of the trade-offs between hardware
platforms and simulators that we considered in developing

our exercise material. Next | present an overview of the soft-
ware system of Mipslt followed by a more detailed descrip-
tion of the animated simulatorsin sections 4 and 5.

2. Hardwarevs. Simulation

| think that most instructors would agree with me that exer-
cises where the students get real hands-on experience with
digital electronics, assembly level programming, datarepre-
sentation etc. are crucial for the students' learning. Further-
more, it ismy firm belief that students must touch, feel and
smell! the real hardware in a computer organization course.
Some universities let the students study computers using
only smulated hardware. In my experience, this might lead
to aconfusion as to what is really happening. Isthere really
another machine inside this PC, workstation or whatever is
used as simulation host?

Therefore, we use real, naked hardware—naked in the
sense that there is no operating system on the hardware—to
aid the students in understanding computer systems. The
current system consists of adevelopment board withaMIPS
processor, some memory and afew simple I/O devices [2].
Unfortunately, this does not entirely solve the problem of
abstraction. When you connect a development board to a
host computer through a terminal program this might be a
problem as well. | have had students that answer the ques-
tion on where the program is executed by pointing to the
window on the host computer screen instead of on the pro-
cessor chip on the board on the desk beside the computer. It
is anyway less abstract than if the program executes on a
simulator and it is possible to remove the cable between the
development board and the host computer and verify that the
program still executes with simple 1/0 deviceson the board.

Thisworkswell for studentsto learn about data represen-
tation, assembly level programming, simple 1/O structures
(polling and interrupts) and general low-level computer sys-
tem design. It is, however, not well suited to study cache
memories or processor hardware design as these structures
are buried deep inside the processor.

1. Hopefully they smell burned electronics before it breaks!



We have previoudly let the students build simple micro-
programmed processors using discrete components during
|laboratory exercises. Even though this has been very effec-
tive for the understanding of how simple hardware can be
organized to execute instructions, we have abandoned it for
the first compulsory course.! The simplifications that we
needed to make in the instruction set that we could imple-
ment were to big in order to relate to modern computer
instruction set architectures and it was not possibl e to do off-
line development with the hardware used.

So how do we then support the study of hardware struc-
tures such as cache memories and pipeline design when we
cannot build hardware for it. Thisiswhere animated simula-
tion fitsin. We have aso resorted to simulation of the devel-
opment board to | et the students work at home preparing for
lab. exercises and to support distance courses.

| have during the course of being a university teacher
found that many students have difficulties of really under-
standing how cache memorieswork. They can easily under-
stand the concept, but when it comes to how you should
build the hardware to actually implement the concept, it
becomes difficult. The concept of pipelining—which is the
dominant implementation method of processors today—has
similar characteristics. It is easy to understand in principle,
but when it comes to the actual hardware design, it becomes
tricky. Thiswasthe motivation to why we devel oped the ani-
mated simulators described in this paper.

3. TheMipslt system

The Mipslt system consists of a development environment,
a hardware platform and a series of simulators. The topic of
this paper is mainly the animation support in the simulators
for cache memory and pipeline simulation, but for compl ete-
ness | also describe the other parts. All software developed
for the Mipslt system are targeted for the Windows (95-XP)
platform as host machine.

3.1 Development environment

The Mipslt development environment is used to develop
software for the hardware platform aswell asfor the various
simulators. It targets the development board shown in sec-
tion 3.2 but the same binary can be used to execute on the
various simulators as well. Figure 1 shows an example of
how the devel opment environment might ook for a software
project with mixed C and assembler files.

The compiler, linker and other tools are standard tools in
the gcc tool chain configured for cross-compilation to a
MIPStarget platform. What we devel oped was the graphical
user interface mimicking the MS Visual DevStudio as a

1. The courseis given in a4.5 year programme leading to an
M.Sc. in computer science, electrical engineering or informa-
tion technology engineering.

.......
W Project Buid Window Help

e

|

)

E

Ready [lni.cat | [p0s| [nEAD[1051 PM

Figure 1. The development environment is
inspired by Visual DevStudio.

front-end to gcc and which also replaces Makefile by han-
dling projects of source codes and their dependences.

Although not tested, the same front-end should be possi-
ble to use with any gcc cross-compiler. The systemishighly
configurable and there is aso an option to run an arbitrary
command before or after linking. We use this feature to cre-
ate an S-record file that can be used for downloading to the
development board. We later modified the on-board monitor
to use the ecoff-file produced by the compiler/linker.

3.2 Hardware

Figure 2 shows a photograph of the development board from
IDT that isinuse at Lund University [2]. It containsan IDT
36100 micro controller with a MIPS32 ISA processor
core [3]. We deliberately chose the MIPS architecture as our
instruction ISA because of its simplicity.

Another advantage of the MIPS I SA at the time was also
that it isused in the textbooks of Hennessy and Patterson [1,
4]. These textbooks are used at Lund University as well as
in many other universities and it makes it easier for the stu-
dentsif they can relate the laboratory exercise material tothe
textbook directly. The abstractions needed are difficult
enough anyway.

The evaluation board itself, asshown in figure 2, contains
the processor (chip-select logic, timers and two serial port
UARTSs are also integrated on-chip), some SRAM, slots for
DRAM (not used in our configuration) and EEPROM which
contains a simple monitor. The monitor contains some rou-
tines from libc which can be taken advantage of for small
footprint C programs. The routinesinclude partial function-
ality of printf. There are also routines to install norma C
functions as interrupt routines.

All micro controller signals also appear on the edge con-
nectors of the development board. We developed a simple
daughter board containing one eight-bit and one 16-bit par-
alel bi-directional 1/0 port. It also contains a simple inter-
rupt unit with three interrupt sources (two push-buttons and



CPU

T
UL
—

Figure 2. The IDT development board used in the
exercises.

one adjustabl e pulse source) that also could be read as a six-
bit parallel input port. Three of the bits contain the current
status of the three input sources and the other three are
latched versions of the same input. These bits retain their
value until reset by writing (any value) to the port.

3.3 Thesimulators

The third part of the Mipslt environment is a set of simula-
tors. Thereisone system simulator which mimicsthe evalu-
ation board as faithfully as possible. While developing this
simulator it was our goal to be able to execute any binary
code developed for the target hardware platform. We there-
fore have to simulate the on-board monitor and al 1/0
devices, including on-chip timers.

The full code compatibility has been achieved in the sys-
tem simulator which is described in section 4. Thissimulator
also contains an animated cache simulator. We also wanted
to use simulation for microprocessor implementation stud-
ies. This resulted in a general micro architecture simulator
which is controlled by a simple hardware description lan-
guage and animation control so that many different micro-
processor implementations can beillustrated. Thissimulator
is described in section 5.

4. The system simulator

4.1 Overview

Figure 3 shows the system simulator with a few of its win-
dows open. The top left window shows asimplified view of
the entire system: CPU, instruction and data caches, some

RAM, aconsolewindow and some /O devices. The window
at bottom left shows the register contents of the CPU. The
top right window shows the eight-bit paralel 1/0O device
which consists of eight LEDs and eight binary switches. Just
aswhat we have in hardware. The 16-hit parallel I/O-portis
the only one from the hardware that is not implemented in
the simulator. The bottom right window shows the simple
interrupt sources. Two push-buttons and an adjustable pulse
timer.

The main reason for developing this simulator is because
it smplifiesfor the students to study computer organization
on their own, at home. Most students have access to PCs
with Windows and it is therefore easy for them to download
the simulators and development environment to start work
on their own.

However, as we designed the laboratory exercises, we
found that the simulator could actually be used aso in the
class-room. Figure 4 shows the memory view in the smula-
tor. The memory addresses are shown to the left and the con-
tents is shown to the right as hexadecima numbers and an
interpretation. In the current view the interpretation is the
disassembler view but other possible views are interpreta-
tions as unsigned integers, signed integers, single precision
floating point numbers and ASCII characters.

The dot to the left in the memory view shows a break
point and theline, also to theleft, signifiesthat these instruc-
tions are currently in the instruction cache. The darker line
shows the current instruction being simulated.

With this view, the simulator became a powerful tool to
study instruction execution and the effect each instruction
had on the registers etc. Since the MIPS architecture does
not have vectored interrupts, it became cumbersome to sin-
gle-step interrupt routines on the hardware and we therefore
used the simulator to study interrupt routines in this detail.
The students could also experiment with instruction coding,
making hexadecimal instruction codes by hand, entering
them in the memory and immediately see if they had coded
the instruction correctly. Floating point number coding
could be studied in the same way.

4.2 Cache simulator

Evenwith all the benefits as described above, these were not
the only purposes for developing the simulator. The major
driving force was to introduce animation to aid the students
to really understand the inner workings of cache memories.
We used the figures of atextbook as an inspiration as how to
present the caches graphically [4].

Figure 5 shows the cache view in the simulator. It shows
the current configuration of the data cache. The data and the
instruction caches can be configured independently. It
shows the entire cache contents with both tag and data store.
It also shows how the address presented by the processor is
divided into different fieldsfor indexing, word select and tag



4 Untitle M= E3| |input & Dutput . |

File Edit “iew Cpu Help — Dutput

=l eete] Frrcrrcr

 nput

0x00

D-Cache

~ Internal Tirmer

W Accelerate

T-Cache

L Console —Estemal Timer
™ Pulse

J—

Slow

For Help, press F1 04/25/02 [22:40:33 - Interrupt
x|
r0/zero=00000000 rlfat =00000000 rZ/v0 =00000000 r3/vwl =00000000
r4sal =00000000 rE&fal =00000000 r&faf =00000000 7723 =00000000
r2sc0  =00000000 r9/cl =00000000 rlOfcZ =00000000 rll/t3 =00000000
rlz/fcd4 =00000000 rl3scE5 =00000000 rld4sté =00000000 rlS5/c7 =00000000
rleg/=s0 =00000000 rl17/=s1 =00000000 rl&/sZ =00000000 rl3/s3 =00000000
rZ0/=s4 =00000000 rzlssE =00000000 rZEfsé =00000000 rE3/7=7 =00000000
rZd4/c8 =00000000 rz&/c9 =00000000 rZ&/k0 =00000000 rE7/k1 =00000000
rEZ8/gp =00000000 rz3fsp =800be000 320 fp =00000000 r3lfra =bhfc00088

po =200z20000 mdhi =00000000 mdlo =00000000  conf =00000000
bad wa =00000000 =status =00400000 cause =00000000 epco =00000000

Figure 3. The system simulator with CPU register and 1/0O-device windows open.

| Address | Content | Label | A| ;Iglil
5002Z0A8C &F BF 00 1C jay $31, Oxlc($za)
80020AS0 &F EE 00 18 L $30, 0x1B($29) g?dress [005013FF5d'-lD]
50020494 BF Bl 00 14 L $17, 0xldis$zs)
50020498 BF BO 00 10 jhy $16, 0xlO{$z3) 00007FF IZ_ll_El
S00Z0ASC 03 EO OO0 08 IR $31
S00Z0ARD 27 BD OO0 Z0 ADDIV  $2%, $29, Oxz0
() 5002084 3C 02 30 0z _ mainf) LUL $0Z, 0xs002
S00ZOARE BC 42 OE 70 jhy $0Z, 0xe70($02)
S00Z0RRC 27 BD FF Ea ADDIU 329, $29, Oxffes W Tag Data
50020ABO AF BE 00 10 =10 $30, 0xl0{$z3) . |00007FF | 00000000 | 00000000
50020AB4 03 A0 FO Z1 ADDT $30, $29, 00 "
S00Z0ABE 14 40 00 08 ENE $00, $0Z, Ox6 00007FF | 00000000 | 00000000
S00Z0ABC AF EF 00 14 1 $31, Oxl4($z3) _I « |00007FF | §001FEDE | 80020774
S00ZO0ACO 24 0Z 00 01 ADDIT F02, 00, Oxl + [00007FF | 00000000 (00000000
S00Z0AC4  3C 01 80 02 LUT $01, 0xS00Z F00007FF |ooo00000 | 00000000
S00Z0ACE AC ZZ OE 70 By $0Z, 0xe70($01)
S00Z0ACC OC 00 82 &0 JAL oxgz80 v |00007FF | 00000000 | 30020988
S00Z0ADO 00 00 00 00 HOFP + 0000239 | 00000000 | 00000000
50020AD4 03 CO ES Z1 ADDT $29, $30, 00 + |0o0007FE |oo0o0000 | 00000000
50020ADE &5F BF 00 14 jhy $31, 0xldi$zs) ]
5002Z0ADC  BF BE 00 10 L $30, 0xl0{$z3) |
5002Z0AED 03 EO OO 08 IR $31 -
500z0AE4  Z7 BD 00 18 ADDIU  $23, $23, O0x13 { bl o
500Z0AES 00 00 OO0 00 HOF
500Z0AEC 0O 00 OO0 00 NOF
S0020AF0  3C 02 BF c0 Aoidan/caitindidt Loz $0Z, Oxbfch
S00Z0AF4 34 42 00 38 ORI $02, $0Z, 0x38 kd|
[LUr 01, 0002~ - $1=0
| Address mode: | Wirtual | View mode: | Assembler | Tracking PC Cache statistics
Hit Court: Sran
Figure 4. The memory view in the simulator. Miss Court: 5786
Hit Rate: 0.50

Cryile count: 1224

Figure 5. The animated cache view.



4 Untitled - Pipe
File Edit WView

=18l

= Bex s

] [ frow

IE/ID ID/EXE

— |Read  Read|
2 ¥ register 1 data ]

oo JRead
100N e gister 2

MEM/VB

Register

Write
register

[[nstruction|

memory
Address

Read|

data

o | Regiwite

I

I

I

I

I

i

Read|
data

T tstruttion

PC

e

66000000

[
= »ln|=]

Figure 6. An example of a simple pipeline simulator view. The simulator is only a
shell which can be loaded with arbitrary pipeline structures.

check. The students can single-step their programs and fol-
low the cache access for every memory reference and there-
fore gain a deeper understanding of how the cache works.

The simulator also keeps some simple statistics, as shown
at the bottom right in thefigure. This can be used to compare
different cache settings for more longer-running programs.

Memory access penalty can also be configured and it is
thereby possibleto perform direct comparison with the hard-
ware which contain small instruction and data caches.

5. The pipeline smulator

At Lund University, we had a long experience of using ani-
mation and graphical representation of pipeline
execution [5]. Wewanted to make use of thisexperience, but
retain the compatibility with the hardware that we devel oped
for the system simulator as described previously. Another
design goal was to make a flexible design that could be run
by students at home on their PCs. The existing software was
for Sun/Solaris and neither very portable nor flexible.

5.1 PipeS and PipeXL

Instead of having ahardwired pipeline designin the smula-
tor software, we developed aflexible simulation shell which
could be loaded with different micro architecture implemen-
tations. The simulator shell can be used to load programs
into memory, to drive the simulated clock signal and to mon-

itor register and memory contents, as in the previously
described ssimulator. However, when the program starts, it
contains no description of the simulator hardware. This has
to be loaded from afile which describes the micro architec-
ture in a hardware description language (see next section).
Figure 6 shows an example in which a simple five stage
pipeline without forwarding is shown.

The students can |oad the memory with a program, just as
before, and starts to single step the execution. As the pro-
gram advances, the pipeline graphicsis changed. Muxes are
set in the positions needed for execution, data values on
buses and inputs are shown and the instruction currently
executing in each pipeline stage is shown at the top.

Our experience is that this tool has been tremendously
powerful to convey the concept of pipelining to the students.
The way that the pipeline is graphically represented is an
invention of astudent at Lund University in the late 80s but
was independently later discovered for use in major text-
books [4, 6].

Figure 7 shows another example of a micro architecture
implementation. This is much more complex and complete.
In addition to what is present in figure 6, it also contains the
control signals, dataforwarding and hazard control. We will
now see how we can represent different pipeline structures
to be used in the simulator.



# Untitled - Pipe
File Edit Wiew

=181

D ]

[ ]

[

= ]

\_{/zLJ ]
Shift \ ogoogoof— 7+

lef 2

IF/D

|

MEM/WE

—wa

|

[Ecconooa)

a2

Soooooos

ccoossos]

00000000

F
B
E
J
MemtoReg
coooooog |
| cooooood
cocoooooo

Figure 7. A more complex pipeline structured using the same simulator shell.

5.2 Some Hardwar e Description Language

The micro architectural structure of the processor is
described in a ssimple hardware description language which
is described here shortly. The pictures shown in figures 6
and 7 are not derived from this language but simple bitmap
files that are shown in the window.

Theorigina aim wasto use asubset of VHDL as descrip-
tion language to be able to leverage on the body of text writ-
ten about this language. However, it turned to be
cumbersome to parse and instead we developed a simple
object oriented HDL where each component isaclasswhich
can be instantiated to an object and the inputs and outputs of
an object are connected to the inputs and outputs of other
objects. Almost any synchronous hardware structure can be
expressed in this language. There are aso hooks to the sim-
ulation framework in the language. Most notably for the
clock signal, memory accesses and to the register and mem-
ory views of the ssimulator.

5.3 Components

Below is the code for a simple component; the two-input
mux:

class CMux2

{

in InoO

in Inl
in Control:1
out Out
script
function OnChange ()
if ( Control.Get()==0 )
Out.Set ( In0.Get () );
else
Out.Set( Inl.Get() );
Out.Set (0) ;

end_script

event ALL OnChange ()

At first a class description is used to give the component
a name. Next the interface of the component is specified.
The default width of inputs and outputs is 32 bits. In this
case only the control signal deviatesin that it is specified as
one bit only.

Then follows a script which describes the behavior of the
component. The function OnChange is executed whenever



any of theinput signals changes state as described by the last
statement in the component description. Input signal values
are retrieved by accessing a member function Get () and
similarly output signal values are set by the member func-
tion Set (x) . Thelast lines of the script can be used to set
theinitial state of the output signals.

A mux is a combinational component and does not con-
tain any state. If any of the input changes, the output is
immediately changed also. In contrast, the program counter
is a simple component which is clocked. As shown by the
example text below, the PC is clocked by a simulated two-
phase clock.

// this is the Program Counter
class CPC {

in PhO:1

in Phl:1

in In

out Out

script
var rPC = 0;

function OnPho () {
rPC = In.Get () ;
}

function OnPhil() {
Out.Set (rPC) ;

}

end script

event PhO OnPhoO ()
event Phl OnPhl ()

}

Thesignals Pho and Ph1 aredriven by aclock object and
are used to derive the two-phase clock. The value of the PC
isstoredin aninternal variable (rPC) which isread from the
input on one clock phase and output on the second clock
phase.

5.4 Connecting components together

When the entire micro architecture has been suitable broken
down in components, clocked or not, they can be connected
together. Thefollowing piece of code showsthe connections
for the ID-stage in the simple pipeline of figure 6.

// components:

object CPC PC

object CInstrMem InstrMem
object CMux2 PcMux

object CiAdd4 IfAdd4

object CRegIfId RegIfId

// Net list:
// to PC
connect PcMux.Out PC.In
// to InstrMem
connect PC.Out InstrMem.Address
// To pc+4 thing
connect PC.Out IfAdd4.In
// to the pipeline register
connect InstrMem.ReadData
RegIfId.in Instruction
connect IfAdd4.0Out RegIfId.in PC
// to the pc mux
// (only connections from this stage
// are done here)
connect IfAdd4.0Out PcMux.InO
// connect the clock
connect clk.PhO RegIfId.PhO
connect clk.Phl RegIfId.Phl
connect clk.PhO PC.PhO
connect clk.Phl PC.Phl

// and now some probes:

probe InstrMem.ReadData 173 393 16 8 1
probe PC.Out 70 355 16 8 1

probe IfAdd4.0Out 148 171 16 8 1

probe PcMux.Out 14 355 16 8 1

probe InstrMem.ReadData 2 4 16 30 2

Note how the components first are defined and then con-
nected together in simple connect-statements. At the end,
graphical probes are defined. It is these that makes up the
animation in the final simulation picture. After the key word
probe, asignal nameisgiven. Thisisthesignal to monitor.
The next two arguments are the x- and y-coordinates of
where the probe is to be shown in the pipeline picture. The
third argument is the number format for the probe data, the
fourth argument is the number of digitsto use, and the final
argument is the direction of the probe: 0 for horizontal and 1
for vertical. Thelast probeisdifferent. It is used to show the
assembler format of the instruction read from memory. The
mux direction isalso aprobe, but since the mux in this pipe-
line is controlled in the EX-stage, the probe is also defined
there.

We have not yet let students define their own pipeline
designs. What we have done is to provide them with a skel-
eton and let them work out the instruction deciding, hazard
control, and forwarding unit for themselves. It has been
amazingly simple for them to iron out these details, once
they got the hang of pipelining in the first place.



6. Conclusion

The software described in this paper has been used in com-
puter organization and architecture education at Lund Uni-
versity and at KTH for several years now. It is now mature
enough that we feel it istimeto share our experienceswhich
have been very good. We have received quite encouraging
feedback from students who both find it useful to work with
|aboratory exercises at home and who appreciate the graph-
ical animation in the user interface.

Acknowledgements

The work reported here was performed while the author was
affiliated with the department of Information Technology at
Lund University. The laboratory exercises were made
together with Jan Eric Larsson. Coauthors of the software
were: Ola Bergqvist, Georg Fischer, Mats Brorsson, Martin
Andersson, Joakim Lindfors and Tobias Harms.

A binary version of the Mipslt package for Windows 95-
xp with suitable exercises can be retrieved for educational
and personal use from the following web site:
http://www.embe.nu/mipsit.

References

[1] J.L.Hennessy andD. A. Patterson, Computer Architecture—
A Quantitative Approach, 3rd ed., Morgan Kaufmann
Publishers, 2002.

[2] Integrated Device Technology, Inc., 79S361 Evaluation
board: Hardware User’s Manual, ver 2.0, Sept. 1996.

[3] Integrated Device Technology, Inc., IDT79RC36100, Highly
Integrated RISController: Hardware User’'s Manual, ver 2.1,
Aug. 1998.

[4] D.A. Patterson and J. L. Hennessy, Computer Organization
and Design: The Hardware/Software Interface, 2nd Ed.,
Morgan Kaufmann Publishers, 1997.

[5] P Stenstrom, H. Nilsson, and J. Skeppstedt, Using Graphics
and Animation to Visualize Instruction Pipelining and its
Hazards, in Proceedings of the 1993 SCSWestern Simulation
Multiconference on Smulation in Engineering Education,
1993, pp. 130-135.

[6] B.Werner, K. Ranerup, B. Breidegard, G. Jennings, and L.
Philipson, Werner Diagrams - Visual Aid for Design of
Synchronous Systems, Technical report, Department of
Computer Engineering, Lund University, November 1992.



CoDeNios: A Function Level Co-Design Tool

Yann Thoma and Eduardo Sanchez
Logic Systems Laboratory
Swiss Federal Institute of Technology
1015 Lausanne, Switzerland
{yann.thoma,eduardo.sanchez}Qepfl.ch

Abstract

The need of co-design systems, along with the FPGA
complexity, is increasing dramatically, both in indus-
trial and academic settings. New tools are necessary
to ease the development of such systems. Altera
supplies a development kit with a 200’000 equiv-
alent gates FPGA; combined with its proprietary
Nios configurable processor, it allows co-design and
multi-processor architecture creation. In this paper,
we present a new tool, CoDeNios, which lets a de-
veloper partition a C program at the function level,
and automatically generates the whole system.

1 Introduction

Until recently, co-design[4] was limited to complex
industrial projects. The high cost of such systems
did not allow academic projects to use co-design.
Now, with the development of Field Programable
Gate Arrays (FPGAs), the conception of such sys-
tems is easier. The reprogrammable capability of
FPGASs permits prototyping at a low cost, which is
very important for universities and industries. The
problem now is the lack of tools aiding development
of these systems. With this aim in view, Altera sup-
plies the Nios processor family. This soft IP core is
a configurable RISC processor which can be used in
any design.

In this paper we present CoDeNios (CO-DEsign
with a NIOS), a new tool based on a Nios processor,
which helps a developer make a hardware/software
partition[3] of a C program. This partition is made
at the function call level. For each function declared
like void fname(...), the user can force it to be
calculated either by the main processor, by a slave
processor, or by a hardware module. For the last
case, the developer has to write a VHDL file to define
the function behavior. Apart from this human inter-
vention, the whole interface between hardware and

software is automatically generated (C and VHDL
files).

Contrarily to other systems like COSYMA [2],
which automatically makes a partition, our software
lets the user choose it. This particularity allows the
developer to test any hardware module by automat-
ically interfacing it to a processor. It is also use-
ful for academic courses, where students can do the
partition themselves, and evaluate their work. P.
Chou, R. Ortega and G. Borriello [1] have created
a system to synthesise a hardware/software inter-
face for a micro-controller. Their work is made for
peripherals present outside the chip which contains
the controller. With our tool, the processor and
its user-defined peripherals are implemented in the
same chip. Thus, CoDeNios is better suited for sys-
tem prototyping and hardware module evaluation.

This paper is structured as follows: Section 2 de-
scribes the APEX20K?® FPGA family supplied by
Altera”™ and the Nios processor used by CoDe-
Nios. Section 3 focuses on CoDeNios itself, explain-
ing its possibilities, while section 4 explores the per-
formances of a design generated by our application.
Finally section 5 concludes by discussing current and
future work.

2 APEX20K family and Nios

Altera, with the APEX20K family, offers FPGAs
with densities ranging from 30’000 to over 1.5 million
gates. It is built for system-on-a-programmable-chip
(SOPC) designs, with embedded system blocks used
to implement memories as dual-port RAM, ROM,
CAM, etc. For our application, we use a devel-
opment board with an APEX20K200E, from the
APEX20K family (cf. figure 1). This FPGA con-
tains 106’496 configurable memory bits, and 200’000
equivalent gates, which is enough to implement a 3-
processor design.

Along with these new FPGAs which allow SOPC



MultiCore Architecture

Embedded System Block (ESB)

Dual-Port RAM
ROM
(AM

Lut

1/0 Features
oS SSTL-2/-3
GIL+  HSIL
QT LWPECL
AGP MultiVlt 1/0

Clock Management
Upto 4 PLLs
ClockShift Circuitry
ClockBoost Circuitry
ClockLock Gircuitry

Figure 1: APEX Device Features

designs, Altera supplies a new processor. The Nios
(cf. table 1) is a configurable RISC processor, work-
ing with 16 or 32 bits (instruction and data). A
wizard helps create a Nios with all the necessary
parameters.The size of instructions, as well as the
number of registers, is decided by the user. A mul-
tiplication unit can be added to speed up multipli-
cations, with a cost in term of gates. The most in-
teresting possibility is the ability to add as many
peripherals as needed. Many of them are already
supplied by the wizard: memory interfaces for ROM
or RAM, UART to manage a serial COM, IDE con-
troller, timer, etc. All these peripherals are mem-
ory mapped for the processor. User-defined periph-
erals can also be added, by specifying the address
range, an optional interrupt number and the number
of clock cycles for write and read operation. When
all the processor parameters are set, a VHDL entity
is generated, which can be included in any design.

As CoDeNios supports a multi-processor architec-
ture, we chose a 16 bit Nios, so as to allow a max-
imum of processors in a design. One single special
peripheral was added, which contains all hardware
and slave processor calculated functions. It has an
address range of 2, used to access a counter (1 ad-
dress for a 32 bit counter accessible in 2 read cycles)
and to define a protocol for calling functions and
pass parameters.

3 CoDeNios

The hardware/software partitioning of a task aims
to accelerate it, by taking advantage of hardware
speed. An important issue is therefore to be able to
find bottlenecks where hardware can speed up a sys-

Table 1: Nios processor characteristics

Feature \ Description ‘
type RISC
pipeline 4 levels

(5 for load/store)
16 or 32 bits

instructions and

data size

number of registers | 128, 256 or 512
frequency < 50 MHz

place approximately 26’000

bits for the 16 bits
version

tem. Then the new solution needs to be evaluated in
order to prove it is better than the original software
execution. Currently there is no theory to calculate
precisely the execution time of a co-design system,
so many experiments and measures have to be run.

A second co-design problem is the interface be-
tween hardware and software. For each new hard-
ware module connected to a processor a protocol has
to be defined. The conception of this part of a sys-
tem can be very time-consuming, so automating this
task would be a great advantage for a developer.

CoDeNios proposes to solve both problems. This
tool, based on the Nios processor described above,
has a graphical user interface which enables a de-
veloper to make a partition of a C program, at the
function level, simply by click, drag and drop oper-
ations. This partition allows a function to be cal-
culated by the main processor, by a slave, or by a
hardware module. Once the choices are validated,
an interface between the different processors and the
hardware modules is generated in the form of VHDL
and C files. The original C code of the main proces-
sor is transformed to call slave modules, while for a
slave Nios, the whole C code is generated. For the
hardware, the whole system is generated, except the
architecture of hardware modules. For them, a tem-
plate is generated, letting the developer describe the
function behavior.

3.1 Function Selection

At the beginning of a project, the developer writes
a C program for a 16 bit Nios. The C file can be
opened with CoDeNios. A graphical user interface
(GUI), as shown in figure 2, lists all functions re-
turning void! in a rectangle representing the main
processor. It is then possible to drag and drop a

IThis limitation will be reduced, by also allowing functions
returning an integer.



&~ test.cnp - CoDeNios2

File Edit Wiew Help COM Tools

=10l x|

@RS e @] f

main processor

Ready

SN

Figure 2: CoDeNios graphical user interface

function outside this rectangle to make it a hard-
ware module. By clicking on it, a hardware module
can be turned into a slave processor, and vice versa.
For both entities, all input and output parameters
are listed, connected by an arrow. For a parameter
passed in C by reference (int *a), the direction (in-
put, output, input-output) can be changed by the
user, by clicking on the arrow. The value or the ref-
erence can be sent to the slave module, allows the
use of pointers to access a shared memory.

When the whole system is configured correctly,
buttons on the GUI can launch VHDL and C file
generation, hardware synthesis, placement and rout-
ing, C compilation, and finally start up the execution
of the program on the board, assuming the FPGA
is configured. This command sends all different ex-
ecutable codes for every processor on-chip. Then,
with a terminal, CoDenios installs a communication
between the main processor and the user, who can
view printf () results and type characters which are
sent to the FPGA.

3.2 Automatic Interface Generation

As explained above, CoDeNios generates VHDL files
implementing a protocol between all processors and
hardware modules. For a Nios-to-Nios communica-

tion, no intervention of the user is required, whereas
he has to write VHDL for a Nios-to-hardware com-
munication. In this last case, a template is gener-
ated, declaring the entity and implementing a small
state machine. The state machine corresponds to
the protocol the developer has to respect. First, ev-
ery input and output parameter of the function is
declared as ports. For an output parameter, an ad-
ditional port, called load_x (where x is the name of
the parameter), is used to load the result value in
a register outside the entity. An input signal called
start goes to ’1’ for one clock cycle, indicating that
the input parameters are loaded, and that the entity
can start the calculation. An output signal called
done has to be put at ’1’ during one clock cycle to
inform an external controller that all output param-
eters are loaded, and that the calculation is over.

As an example, the Greatest Common Divider
(GCD) function is declared like this: void ged(int
a,int b,int *c). Figure 3 shows the template
generated, which implements a state machine wait-
ing for the start signal to be '1’. When this event
occurs, it loads the value 0 in the output register of
¢ and sets done to ’1’ to signify the treatment is fin-
ished. From this template, the developer only needs
to change the architecture, or to map an existing
VHDL file into the architecture.



library ieee;
use ieee.std_logic_1164.all;

architecture struct of gcd is

type state_type is (s0,s1);
signal state,n_state: state_type;

begin

process(state,start)

entity gcd is port (
—-- input parameter
a_in: in std_logic_vector(15 downto 0);
-- input parameter
b_in: in std_logic_vector (15 downto 0);
-- output parameter
c_out: out std_logic_vector(15 downto 0);
-- put it at ’1’ to load the output
—-— parameter
load_c: out std_logic;

clk: in std_logic; -- clock signal
rst: in std_logic; -- reset, ’0’ active
-- ’1’ during one clock cycle to begin
-- the treatment
start: in std_logic;
-- put it at ’1’ during ome clock cycle
-- when the treatment is finished
done: out std_logic
); end gcd;

begin
-- default output values
done<=’0";
c_out<=(others=>’0’);
load_c<=’0’;

n_state<=state;

case state is

when s0=> -- wait for start
if start=’1’ then

n_state<=sli;

end if;

when si1=>
done<=’1’;
load_c<=’1";
n_state<=s0;

end case;

-- treatment finished

end process;

process(rst,clk)
begin

if rst=’0’ then
state<=s0;

elsif clk’event and clk=’1’ then
state<=n_state;

end if;

end process;

end struct;

Figure 3: Generated VHDL file for GCD function

3.3 Parallelism

Regarding the C files, each original function which
is chosen to be calculated by a slave (processor or
hardware) is replaced by two new calls, one to start
the function calculation, and one to wait for its
termination. Continuing with the GCD example,
gcd(a,b,&c) will be replaced by:
hcall_gcd(a,b,&c) ;hwait () ;

hcall_gcd() launches the new hardware func-
tion calculation, and hwait() waits for its termi-
nation and retrieves the output parameters. This
call/termination splitting allows us to take advan-
tage of the hardware parallelism. It is possible to
call several independent? functions and then to wait
until they are all finished. By calling the most time-
consuming functions first, the total execution time
can be dramatically reduced (cf. figure 4).

3.4 Execution Time Evaluation

As presented above, one important aspect of CoDe-
Nios is its capacity to evaluate the execution time of

2Two functions are said to be independent if they are called
consecutively, and no output parameters of the first are input
of the second.

a hardware or software function. With this aim in
view, some counters are automatically placed in the
system. One global 32bit counter is directly accessi-
ble by the main processor. It is set to 0 with a soft
reset of the FPGA, and counts the clock cycles. It
makes it possible to evaluate the total time of dif-
ferent (parallel or not) function calls. A counter is
attached to each co-design module, in order to eval-
uate the real number of clock cycles of a function
execution. It does not take into account the time to
pass parameters and to call the function. Its value is
retrieved by the master after the output parameters.

The global counter value is accessible via a func-
tion void GetTime(time_t *t) and the module
counters are accessible by void GetFuncTime(int
FUNCID,time_t *t). They are declared in an auto-
matically generated file which contains all the pro-
cedures responsible for the co-design function calls.

3.5 Memories

As multi-processor architectures are possible with
CoDeNios, several memories are used. The main
processor places its executable code in the onboard
SRAM of 1MB. The slaves each use only one on-chip
RAM of 1KB. This limitation is due to the number



Software: fl f2 f3

fl
e
Hardware i i i

a e t

3

tﬂ te t‘

Hardware f t,= time to call the
with parallelism: «————+— function and to
t, t i
pass the
. f2 i parameters

t= execution time

t = time to pass the output
parameters and to end
the function

Figure 4: 3 types of executions

of embedded system blocks® of the APEX20KE200
(52 blocks of 2048 bits). A larger RAM for each
would have prevented having 3 processors on-chip.
A shared memory of 1KB can be added automati-
cally in order to pass arrays to co-design functions
(by passing a pointer). It is shared between the main
processor and all co-design modules. To manage this
RAM, a simple arbitration is implemented, giving a
different priority to each module.

4 Performance

The performance of a design made with CoDeNios
depends on the hardware implementation written by
the user for the hardware functions. The total exe-
cution time depends on the parameter passing time ,
the calling time, and the hardware calculation time.
The parameter passing time is very small; a write in-
struction for an input parameter, and a read one for
an output. On the other hand, to call and then to
wait for a function costs 113 clock cycles. Because of
this, the efficiency of the hardware user-defined mod-
ules is very important. One single addition would be
slower by hardware, the latency of 113 clock cycles
being too long, whereas a mathematical series cal-
culation could be more efficient in hardware. Note
that for an industrial purpose these 113 clock cycles
could be reduced, by changing the generated C code.
Currently, this code is split into different functions
(one to call, and one to wait). As a software function
call costs time, by putting all operations inline we
could gain a lot of time. This has not been done yet,
because of the C code clarity, which is important for
student projects. Another way to save time would be
not to allow exact calculation of hardware function

3The embedded system blocks are used to implement
memories.

execution time. In the current version, this value is
retrieved after the function termination. By delet-
ing it, 4 clock cycles could be spared, but, because
they allow the developer to evaluate the software so-
lution as well as the hardware one, this deletion was
not done.

Finally, the performance of a system depends on
the parallelism imposed by the developer. If more
than one function can be launched at the same time,
the execution time can be dramatically reduced.

5 Conclusion

In this paper we presented a co-design tool called
CoDeNios. This pedagogic tool helps a developer
make a hardware/software partition of a C program,
and generates the interface between the hardware
and the software. A multi-processor architecture is
also possible, sparing the user the task of interfacing
the different processors.

CoDeNios, in its present state, can be used as a
teaching tool. The students can rapidly test hard-
ware modules by integrating them in a co-design sys-
tem, without having to develop a protocol to syn-
chronize the hardware and the software. To evalu-
ate the efficiency of their hardware modules, C func-
tions permit to retrieve counters values. Therefore
it is possible to compare a software solution with a
hardware one.

In the latest version of Nios (v2.0), the developer
can add a user-defined module inside the core pro-
cessor, a feature which overlaps a subset of the Co-
DeNios possibilities. This new development is inter-
esting in that it highlights the importance of the cur-
rent co-design trend that our project follows. Even
though the performances of the Nios add-on are bet-
ter in term of speed, our system allows for a much
richer and wider range of applications. In effect, the
Nios system is limited to the call of one module at
a time and a maximum of two operands per mod-
ule. In contrast, it is possible to implement fully
parallel module calls with CoDeNios, with as many
arguments (input/ouput) as desired, and add extra
features, such as shared memory access from the
hardware module. This higher flexibility and wealth
of potentialities make CoDeNios a perfect tool for
teaching applications.

In addition to the educational function of CoDe-
Nios, an industrial use is possible. Having the possi-
bility to create a complete system mixing hardware
and software implies a small development time. To
make this even easier, a tool to generate VHDL from
C functions is currently being developed in our lab.



It will be able to transform a subset of C (if, for,
while, 4+, -, *, /) calculating with 16 bit integers into
a hardware pipeline. Integrated with CoDeNios, it
will complete the automation of the system genera-
tion. The development process will also be totally
automated based on the user choices.

Finally, besides the C to VHDL translation, we
will add new possibilities to CoDeNios. First, func-
tions which return an integer will be potential slave
calculated functions. For instance, a developer will
be allowed to use a co-design function in a condi-
tional statement, or in an expression. Second, the
function parameter size is currently fixed to 16 bits.
This limitation will be removed, allowing different
types of data to be sent to a co-design module.

References

[1] P. Chou, R. Ortega, and G. Boriello. Syn-
thesis of the hardware/software interface in
microcontroller-based systems. In Proceedings of
the International Conference on Computer Aided
Design, pages 488-495, Los Alamitos, California,
1992. IEEE Computer Society Press.

[2] J. Henkel, T. Benner, and R. Ernst. Hard-
ware generation and partitioning effects in the
COSYMA system. In Proceedings of the Inter-
national Workshop on Hardware-Software Code-
stgn, 1993.

[3] A. Kalavade and E. A. Lee. The extended par-
titioning problem: Hardare/software mapping,
scheduling, and implementation-bin selection. In
G. De Micheli, R. Ernst, and W. Wolf, editors,
Readings in hardware/software co-design, Series
in Systems on Silicon, pages 293-313. Morgan
Kaufmann, June 2001.

[4] G. De Micheli and R. K. Gupta. Hardware-
software co-design. In G. De Micheli, R. Ernst,
and W. Wolf, editors, Readings in hard-
ware/software co-design, Series in Systems on

Silicon, pages 30—44. Morgan Kaufmann, June
2001.



How Computers Really Work: A Children’s Guide

Shirley Crossley and Hugh Osborne

School of Computing & Mathematics

University of Huddersfield
Queensgate
Huddersfield HD1 3DH
U.K.
shirleycrossley@blueyonder.co.uk
h.r.osborne@hud.ac.uk

ABSTRACT

Current Information Technology teaching at elementary school
level concentrates on teaching pupils “application skills”.
Very little time is spent in teaching pupils the fundamen-
tals of “how a computer works” — computer architectures.

One source of this lacuna is the lack of suitable support
material for teaching the basic concepts of computer archi-
tecture to this age group. This paper reports on the inves-
tigation, development and evaluation of a pilot computer
architecture CD-ROM, aimed at 7-11 year olds.

1. INTRODUCTION

Children of today are different from those of 10-20 years
ago. The majority of children going through the educa-
tion system at the moment are the first generation having
grown up with computers. Children need to be prepared
for future employment, and to become full members of the
“Information Society”. They need not only to be able to
use a computer, but also to understand the basics of how it
works — e.g. to be able to name the major components of
the machine and to understand how they affect its efficiency.
However, current teaching at this level concentrates on ap-
plication skills. Little, if any, time is dedicated to computer
basics.

This is a missed opportunity. In a survey of teachers of this
age group we found that 80% felt that children should be
taught basic computer architectures. Just as children may
learn a foreign language most fluently at an early age [14], so
they may also be most receptive to the “foreign language”
of computers at elementary school level. The difficulties
that undergraduates often experience in understanding com-
puter architectures are not due to any inherent difficulty of
the subject matter, but are caused by having to “unlearn”
incomplete, unrealistic and sometimes just plain weird mis-
conceptions of how a computer works. Currently there is
a shortage of useful, up-to-date information for children in
the 7-11 age group on “how computers work”. The major-
ity of books and on-line resources are either outdated or too
in-depth and complicated for this age group, or both.

Traditional text-based computer architecture teaching can
be hard for children to digest. The use of multimedia can
aid learning, as children can not only read and listen but also

William Yurcik
Dept. of Applied Computer Science
lllinois State University
Normal
lllinois
USA
wjyurci@ilstu.edu

watch animations of computer components, thus enhancing
the learning process. They can learn at their own pace and
in a non-linear fashion.

In this paper we report on a pilot interactive CD-ROM
aimed at teaching the basics of computer architecture to
children aged 7-11.

2. BACKGROUND

2.1 How Children Learn

John Holt in “How Children Learn” [8] writes that chil-
dren do not need to be made, told or shown what to learn
as they are already active learners. Children learn from
hands-on experiences that involve all their senses. Early at-
titudes and perceptions influence a child’s learning. When
children are learning new information and skills, they are
also developing attitudes towards learning. Children learn
well through play [8, 11]. Play is the primary way that chil-
dren gather and process new information, learn new skills
and practice old ones. It is also important for children to
be able to reflect on what they know and how they solved a
problem. “All of us, not just children, learn more effectively
when we are at our most “playful” ... when we are actively
participating in an enjoyable experience.”  [6] Games and
game like learning environments can provide children with a
challenge. Children delight in “new styles of learning” that
can be delivered with new technologies.

2.2 How ComputersAid Learning

It has long been suggested that the computer will change
how children learn. In 1966 Suppes [15] predicted that de-
velopments in educational technology, and especially com-
puter usage, would change the face of education. He saw
the computer as a tool that can be used interactively and
present materials in different and novel ways. In 1981 Pa-
pert [12] also discussed the promise of classroom computers,
suggesting that we can confidently allow children’s minds
to “develop through the exploration of computer simulated

‘microworlds’”.

Today these visions are closer to reality. The development of
multimedia technologies offers new ways in which learning
can take place. It has the potential to reduce the need for
subject specific teacher expertise [13]. Schools across the
world are embracing this new technology and looking for



ways to use it to enhance learning. At the same time many
of these institutions are attempting to manage on small bud-
gets, inferior technology, limited access and a teaching staff
that does not have up-to-date training in computer use. A
recent British Educational Communications and Technology
Agency (BECTA) report [5] reported that only 29% of chil-
dren had used the Internet at school, and only 4% had used
email. This suggests that a “low tech” CD-ROM that can be
used as a stand alone program on a low specification machine
is more likely to be successful than a “high tech” product
requiring Internet access. In order to address the problem
of teachers’ lack of familiarity with the subject matter, any
such teaching material must also be self explanatory, allow-
ing children to use it without requiring too much teacher
expertise.

2.3 Other Products

Although the market is flooded with educational software
there is very little available in this area for this age group.
In our survey a typical comment was “[ ... ] terminology
[is] aimed at older students”.

2.3.1 Textbook Related Products.

[17] is a book and CD package that can be used in (pre-
)university education. The book is expertly illustrated for
visualization of computer processes at different layers of ab-
straction. The interactive CD provides a tour through the
interior and exterior of a computer with animated explana-
tions, video interviews, and computing tips. However, the
CD does not include all of the information contained in the
book and is in fact no longer being sold bundled with the
book. [17] also does not synthesize the many separate com-
ponents it describes, instead leaving as a mystery how all
the parts of a computer work together in unison.

2.3.2 Sand Alone Products.

Two products are in the “Techno Quest” range produced by
Eaglemoss Publications Ltd.: scuz quest is a game that cov-
ers binary code, computer memory, programs and operating
systems; bug quest addresses integrated circuits, calculators,
computer logic, the CPU and AI. Both are aimed at be-
ginners, but have various shortcomings: “The game has to
be played successfully right through in order to progress.”;
“After three incorrect attempts you are thrown out.”; “The
level is too low.” [3, 4]. A similar program is “KeyBytes Plus
for Windows”. This is a heavily text reliant program [2]. It
is therefore probably unsuitable for the target age range.

2.3.3 Internet Based Products.

The British Broadcasting Corporation gives a brief overview
and explanation of each part of a computer [1], but this
is totally text based and again unsuited to the age range.
Another text-based source of (teacher support) material is
the Computer Museum [16].

PV Insight [10] has a downloadable program explaining com-
puter architecture. The program consists of very dense im-
ages of various parts of the computer with hotspots. When
the user clicks on a hotspot a text box with very dense text
appears giving an explanation of the corresponding compo-
nent. This text window also covers the image so that the

user cannot view both at once. This is a very complex pro-
gram that children would struggle to use and understand.

EasyCPU is an Internet-accessible, simplified CPU simu-
lator of the Intel X86 processor family designed for pre-
university education [18]. EasyCPU uses colour changes and
animations to illustrate data path operations during the ex-
ecution of each instruction. Results from over 2000 students
measuring the effectiveness of EasyCPU indicated that an
interactive and animated software tool enhances both moti-
vation and debugging skills [18].

3. THE DESIGN

The software is designed for children aged 7-11, who have
been classified as novice users. With this in mind inter-
action between the child and the computer is limited to
mouse clicks and rollovers. Interaction between the com-
puter and the child is through animation, sound and text.
Visual aids, such as animation, are used to highlight and to
distinguish between different actions and areas of informa-
tion. A schematic layout of the pages is shown in Figure 1.

Navigation has been kept simple, consistent and intuitive.
At all times the user can easily decide where they are, where
they can go and how they can get there. Navigation incorpo-
rates the well documented “three-step rule”, where the user
only needs to jump three levels to get to any point in the
CD-ROM. To help with this every page contains a shortcut
back to the “welcome page”.

Because of the age of the intended audience, buttons and
icons include sound as well as text. As the product was
aimed specifically at children all voiceovers and sound effects
were provided by children from the target age group. A nine
year old girl recorded the sounds naming the buttons. An
eleven-year-old boy read the voiceovers for the introductory
text in each section. There is a facility for toggling the
voiceovers.

4. THE MAIN AREAS
4.1 TheWelcome Page.

A classroom metaphor has been chosen for the main “wel-
come page” (see Figure 2). Rather than having a standard
text menu, images of a computer and its main components
are placed in the classroom. By clicking on any of these
images the user will be taken to the pages explaining that
component. A bookshelf containing books links to the quiz
pages, a world map to the Internet section, and the black-
board to the history pages.

Children are guided throughout by “Chip”, the animated
floppy disk that can be seen near the bottom right hand
corner of Figure 2. An element of fun is added by making
Chip ticklish — if the mouse pointer touches Chip he will
laugh or tell the user to stop tickling him!

4.2 Peripherals

Each of the main peripherals — keyboard, mouse, printer
and monitor has its own area in the CD-ROM. In each of
these areas the operation of the peripheral device, and its
role in the operation of the computer system is explained
using a combination of text, images sound and animation.



Welcome

| PERIPHERALS

OTHER _AREAS |
[ [

[Keyboard Mouse Printer Monitor

Internet History Quiz

Computet‘

[ ] SOFTWARE |

| HARDWARE
I I

Disks Memory

Data

CPU Operating

System Software

‘RAM
‘ROM

floppy
thard disk
‘CD

Figure 2: The Main Welcome Page

The printer area, for example, contains links to two anima-
tions illustrating the operation of laser and inkjet printers
(see Figure 3, which shows a bubble of ink forming in an
inkjet printer).

4.3 The Computer.
This is the largest section of the CD-ROM. The main areas
here are the CPU, the Data area and Memory.

The CPU. This section is based on the Little Man Com-
puter developed be Stuart Madnick at MIT in 1966 and
described in e.g. [7], and its extension, the Postroom Com-
puter [19, 9]. In this paradigm a “computer” consists of a
walled mailroom, 100 mailboxes numbered from 00 to 99
(the memory), a calculator (the Arithmetic Logic Unit), a
counter (the location counter) and input and output baskets.
The animation first shows the “Little Man” explaining what
each of the components does. He then explains that he has
a short list of basic instructions that he can execute. Chil-
dren can then choose from this list and the animation will
explain the relevant behaviour. Currently there is no facil-
ity for composing your own programs within this animation,
but we hope to integrate this with a simplified version of the
Postroom Computer undergraduate teaching aid.

‘buses

tbits & byteslinstructions

'f/e cycle

Figure 1: Layout of the CD-ROM

How an ink jet printer works.

Firing chamber

Steam bt
bubble

The steam bubble expands
and pushes the ink through
the nozzle.

Nozzle

ack
t0
chassroom

Figure 3: An Inkjet Printer

Data. The data area illustrates the (ASCII) encoding of a
keypress in a byte, and shows how the byte is composed of
bits. The roles of the data, control and address buses are
explained.

Memory. The difference between RAM and ROM is shown
metaphorically — the word ROM is shown engraved in stone,
while RAM is being wiped off a blackboard. Each subsec-
tion also contains a more extensive description of the uses
of each type of memory.

44 Other Areas

The Internet. A metaphor of posting a letter containing a
request for a specific web page was used here to explain what
“happens” when a web page is requested, and the problems
that may arise such as time out (due to congestion or com-
puter failure) and restricted access.

History. The history is presented as a simple time line.
Children can either progress through the timeline sequen-
tially or pick and choose time slices. Key events in the de-
velopment of the computer are presented for the time slice(s)
selected.



e D You fSpau?: © ;f: )

SCORE: 5000 &

POINTS Which of these is a type of bus en a

computer?

Instruction

Doubl

back
2]
. 020

Figure 4: The Quiz

The Quiz. The quiz consists of a selection of multiple
choice questions covering material from all sections of the
CD-ROM. “Silly” answers are included as a fun element —
see Figure 4. User involvement is also increased by adding
“congratulation” and “commiseration” sounds.

5. EVALUATION

During production alpha multimedia testing — testing the
functionality, interaction and navigation — was performed
by a small group of children who reviewed and evaluated
the product. Once the pilot CD-ROM was ready for re-
lease a group of potential users — children in the target age
group and their teachers — were used for an opportunis-
tic test. Data collection methods were by observation and
semi-structured interviewing of the participants while being
recorded on video.

The children were asked to work through the package and
give feedback. Before starting the package there was some
discussion with the children about their current knowledge
of “how computers work”. The majority of the children said
that they knew how a computer worked, but further ques-
tioning revealed that this meant that they knew how to use
them — e.g. how to log on to the Internet — not that they
understood computer architecture concepts. After using the
package the children were asked for their overall impressions
and whether they enjoyed this method of learning.

The quiz and animated aspects of the product were the most
popular with the children. Half of the children went straight
to the quiz and then realised that they had to actually go
through the package before being able to answer the ques-
tions. The colours, fonts etc. were chosen with ease and
speed of reading in mind. The children all enjoyed the in-
terface and liked the classroom metaphor. The bold colours
and larger fonts were popular and not considered patronis-
ing. The teachers found it bright and cheerful, and felt that
the animations — especially Chip — would catch the chil-
dren’s attention. All of the children said that they were
happy working with a computer program of this nature.
Most of them felt that it was better than traditional learn-
ing methods, though some felt that it should only be used

to complement traditional classroom learning.

Generally the product was well received by both the children
and the teachers. The most successful parts of the product
were clearly the animated components. There is some ev-
idence that they aided understanding and offered a clearer
explanation than is available on paper-based materials, or
even achievable by a teacher in a traditional classroom situ-
ation. The children had the most difficulty in understanding
the “Little Man Computer” section of the package, though
some of them did successfully remember (part of) the in-
struction set. Some of them stated that they would prefer
it if they could interact with the “Little Man Computer”
— i.e. create Little Man Computer programs. This would
almost certainly help to increase their understanding. As
mentioned above, we hope to integrate the Postroom Com-
puter with the CD-ROM to offer just this capability.

6. CONCLUSIONS

‘We have piloted a prototype of a teaching aid aimed at 7-11
year olds which allows them to explore the various compo-
nents of a computer. The CD-ROM is user oriented and
based on what children like and want. Interactivity is pro-
vided through animation, text and speech. It is designed to
provide a game like environment and to create opportuni-
ties for children to be involved in the learning process, and
to allow them to work things out for themselves. It is, of
course, intended to be enjoyable and to relate to the target
age group.

Our survey of teachers suggests strongly that there is a mar-
ket for this type of product, and the results of tests of the
pilot version are very encouraging. Children and teachers
were enthusiastic about the design and content of the soft-
ware.

Though our reasearch has been heavily aimed at the British
market we believe that the lessons we have learned are appli-
cable to a much wider market. We now hope to develop the
CD-ROM further, extending both the breadth (the target
age group) and the depth.

7. REFERENCES

[1] BBC'. Inside your computer. www.bbc.co.uk/
education/archive/multimedia_biz/insidel.shtml.

[2] BECTA’. Review: KeyBytes for Windows, 1998.
www.becta.org.uk/information/cd-roms/1998/
1259.html.

[3] BECTA?. Review: Techno Quest Computer Special —
Disk 1, Scuz Quest, 1998. wuw.becta.org.uk/
information/cd-roms/1998/1359.html.

[4] BECTA?. Review: Techno Quest Computer Special —
Disk 2, Bug Quest, 1998. www.becta.org.uk/
information/cd-roms/1998/1360.html.

[5] BECTA?. Survey of information and communications
technology in schools 1999, 2000. www.becta.org.uk/
news/keyictdocs/0100survey.html.

!British Broadcasting Corporation

*British Educational Communications and Technology
Agency



[6]

[7]

8

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Chandler. Young Learners and the Micro-computer.
Open University Press, 1984.

Irv Englander. The Architecture of Computer
Hardware and Systems Software. John Wiley & Sons,
New York, 2000. Second edition.

J. Holt. How Children Learn. Penguin Books, 1991.
2nd edition.

Hugh Osborne. The Postroom Computer: Teaching
introductory undergraduate computer architecture. In
Proceedings of the 88rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2002), 2002.

Informative Graphics Corp. PC Insight Demo.
www.kidsdomain. com/down/pc/pcinsightpl.html.

V. Lee. Children’s Learning in School. Open
University, 1990.

S. Papert. Mindstorms: Children, Computers and
Powerful Ideas. Harvester Wheatsheaf, 1981.

pjb Associates. Multimedia in education: The
transition from primary school to secondary school —
European Parliament STOA 1997, 2001.

www.pjb.co.uk/mmeduc.htm.

David Singleton. Age Factor in Second Language
Acquisition: A Critical Look at the Critical Period
Hypothests. Multilingual Matters, 1989.

P. Suppes. The uses of computers in education.
Scientific American, 215, 1966.

The Computer Museum. Educational activities
packet. www.tcm.org/html/resources/ed-packet/
epintro.html.

Ron White, Timothy Downs, and Stephen Adams.
How Computers Work. Que Publishing, 1999.

C. Yehezkel, W. Yurcik, and M. Pearson. Teaching
computer architecture with a computer-aided learning
environment: State-of-the-art simulators. In
Proceedings of International Conference on Simulation
and Multimedia in Engineering Education (ICSEE).
Society for Computer Simulation Press, 2001.

William Yurcik and Hugh Osborne. A crowd of Little
Man Computers: Visual computer simulator teaching
tools. In Proceedings of 2001 Winter Simulation
Conference, New York, 2001. ACM.



Update Plans: Pointers in Teaching Computer Architecture

Hugh Osborne and Jifi Mencak
School of Computing & Mathematics
University of Huddersfield
Huddersfield HD1 3DH, U.K.
{h.r.osborne,j.mencak}@hud.ac.uk

ABSTRACT

Pointers are intrinsic to Computer Science. Each field of
Computer Science seems to use its own more or less ad hoc
notation for describing pointers and operations on pointers,
thus impeding crossover of students’ skills from one area to
another.

This paper describes Update Plans, a “universal” pointer
specification language, and its application to teaching Com-
puter Architectures. Consistent use of Update Plans as a
supplement to traditional notations can greatly enhance stu-
dents’ ability to apply skills learned in Computer Architec-
ture courses to other pointer applications, and this is also
illustrated.

1. INTRODUCTION

Pointers are innate to computer science in general, and to
Computer Architectures in particular. Students will be con-
fronted with pointers even at an introductory level (although
possibly implicitly) in discussions of e.g. [indirect] addressing
modes, and again at a more advanced level — e.g. [vectored]
interrupts. Students often experience difficulty in recognis-
ing the same concepts when they encounter then in other ar-
eas of Computer Science: e.g. in data structures and in com-
piler construction to name just two. Each field of computer
science seems to have its own notations and conventions for
describing pointer structures — e.g. Register Transfer Lan-
guage in computer architectures, informal diagrams when
describing data structures, pseudo-code with explicit point-
ers in compiler construction. While this may arguably have
the advantage of providing notations particularly suited to
each application, it does impede a crossover of students’ un-
derstanding of pointer applications and operations from one
subject to another — it is quite common for students to un-
derstand the abstract notion of pointers in data structures
but to have difficulty in implementing them in a high-level
language, let alone relating such an implementation to ad-
dresses and indirection in low level code. What is needed is
a “universal” pointer notation that can supplement, if not
replace, the profusion of conventions currently in use, and
which emphasises the “low-level” nature of most pointer op-
erations while still allowing a high level of abstraction in
their description.

This paper describes Update Plans, a “universal” pointer
specification language, its application to teaching Computer
Architectures, and its role in facilitating crossover of stu-
dents’ skills. The Update Plan formalism can be used to

specify a wide range of pointer applications. Abstraction
mechanisms within the language allow the appropriate level
of information hiding, but in constrast to informal notations
the hidden information can be fully recovered from the Up-
date Plan specification.

The remainder of this paper is organised as follows. Sec-
tion 2 contains a brief introduction to Update Plans. This
paper is, however, not intended as a tutorial in Update
Plans, and the reader is referred to [4, 3, 5] for more informa-
tion. Sections 3 and 4 concentrate on the mechanics of Up-
date Plan descriptions in describing and teaching concrete
and abstract machine architectures. Section 5 illustrates
how the same formalism can be used to describe pointers
in abstract data types thus encouraging students to identify
the relationship between high level and low level operations
involving pointers. These three sections are again not in-
tended as tutorials in the particular pointer operations, but
as illustrations of the didactic application of Update Plans.
The aim of this paper is to show that Update Plan descrip-
tions are at least, if not more suitable than traditional meth-
ods as a tool for teaching pointers. Furthermore they can be
used in a wide range of areas while emphasising a Computer
Architecture perspective. The overall approach to teaching
pointers need not change — a change of tool, rather than
a change of method is being proposed here. Section 6 sum-
marises the use of Update Plans as an educational tool in
many fields of Computer Science, and discusses possible fur-
ther developments.

2. UPDATE PLANS

The Update Plans formalism was originally introduced [8] as
a ‘target language’ in the framework of the design of a trans-
lator generator. It has since been extended for the general
description of machines and algorithms, and as a tool for
completion of formal proofs of program implementations [4,
5]. It has also been used as a didactic tool at various uni-
versities.

The basic concept underlying the Update Plan formalism is
that of an update of a machine configuration, each possible
update being specified by an update rule.

An update plan is a set of update schemes, each of which may
contain unspecified values. A update scheme containing no
unspecified values is called an update rule. Update schemes
yield update rules by instantiation. A scheme consists of
a left-hand side and a right-hand side, both being sets of



locator expressions.

A locator expression is a triple, written a[€]3, where a and 3
are addresses or locators in one of a set of stores in an under-
lying machine model. Each store is a linear countably infi-
nite sequence of memory cells (e.g. bytes or machine words).
The above locator expression expresses the fact that a <
and that the cells between the addresses o and 3 contain (a
particular representation of) the value of £&. The notation
of a locator expression is chosen such that it looks like the
picture L€ T

An update scheme states that if it is applicable (i.e. if all
locator expressions in its left-hand side are satisfied), the
memory may be minimally updated such that thereafter all
locator expressions in its right-hand side are satisfied. The
left and right-hand side of an update scheme are separated
by an arrow (=) which optionally carries a guard (v )
which is an additional applicability condition.

For instance, the two-scheme update plan in Figure 1 imple-
ments Euclid’s algorithm for computing the greatest com-
mon divisor of the number initially between A and B and
that initially between B and C. Capitalised words denote
constants: A, B and C are fixed locators and x and y are
unspecified values. In fact, if at any stage of the computa-
tion the machine configuration contains A[9]B and B[6]C,
(only) the second update scheme can be instantiated to an
applicable update rule, whereupon the 9 is replaced by a
3. An unspecified value on the left hand side of an update
scheme can be considered a variable which obtains its value
by means of instantiation.

Simple notational conventions acknowledge the existence of
a programme counter at a (hidden) fixed locator (by con-
vention PC), and allow the omission of irrelevant addresses
and the combination of adjacent locator expressions. The
update schemes in figure 2 for example, which specify the
push and add instructions on some zero address machine are
examples of applications of these conventions. The locator
SP is the stack pointer.

The expressive power of Update Plans is greatly increased
by the use of a macro-like mechanism known as archetypes.
Using the archetype mechanism complicated pointer struc-
tures, families of such structures, and even infinite classes
of arbitrarily large structures may be replaced by a single
archetype call, thus making it possible to express many up-
date schemes as one.

Archetypes are inspired by macro mechanisms. Their pa-
rameter resolution system is purely “macro” in flavour, though
their expansion may be context driven, i.e. dependent on the
configuration in which the macro is expanded.

An archetype definition defines a left and right hand side
in the archetype body. When an archetype call is expanded
the left and right hand sides of its body are included in the
left and right hand sides respectively of the update scheme
in which the call appears. There is a parameter resolution
mechanism to ensure consistent replacement of archetype
parameters.

An example of an archetype definition, and of a possible ap-
plication is given in Figure 3. The archetype definition (1)
defines a pop wich pops the value x from the stack (addressed
through the stack pointer SP). In (2) this archetype is ap-
plied in an update scheme defining an ADD instruction that
will pop a value from the stack and add it to the value in
the accumulator (ACC). Finally (3) shows the same update
scheme, but with the pop archetype replaced by its expan-
sion. Note that the information hidden by the pop archetype
has now become explicit.

Larger examples of Update Plan specifications can be found
in, e.g., [2, 3, 5].

3. CONCRETE ARCHITECTURES

Consideration of pointers is unavoidable when teaching Com-
puter Architectures. Even the simplest addressing mode
— direct addressing — involves a pointer. The object rep-
resented by a direct addressed operand is the address at
which the walue of that operand can be found. For exam-
ple, in 68K assembler MOVE 1234, 5678 means “copy the
value at address 5678 to address 1234” — 1234 and 5678
are pointers to the data. More complex addressing modes —
e.g. register indirect — can involve multiple indirections and
even side effects — e.g. predecrement addressing mode. A
popular notation for explaining these indirections and side
effects is Register Transfer Language. An example is given
in Figure 4 (adapted from [1]). While this notation is rea-
sonably transparent, and is relatively succinct for a single
opcode and operand combination, it intermingles the effects
of the opcode and the addressing modes, requiring a sep-
arate description for each possible opcode and addressing
mode, leading to a combinatorial explosion of definitions as
the number of instructions and addressing modes increases.

The Update Plan formalism separates the definition of the
opcode from the definitions of addressing modes, making it
easier to teach these as separate concepts. For example part
of the definition of an operand in some assembly language
might be as shown in Figure 5. This defines the archetype
oprnd with two parameters. The first parameter, ea, is the
effective address of the operand; the second, v is the value
of the operand. Line (4) defines a register indirect address-
ing mode, with r as the register identifier (e.g. R6). The
locator expression r[eal states that the effective address
can be found in this register, while the locator expression
eal[v] describes the indirection needed to find the value v
at effective address ea. Line (5) provides an alternative def-
inition of an operand, this time in predecrement addressing
mode. Again r is the register identifier. Access to the effec-
tive address and value is similar to the previous case, except
that the value in the register must be decreased (moved left
across the value v) to give the effective address. The locator
expression r[ea] to the right of the guard (=) expresses
the update of the contents of the register. These two lines
would be part of a longer archetype definition defining all
possible addressing modes in terms of their effective address
and value.

Once the addressing modes have been defined they can be
used to define the effect of opcodes. For example, the ADD op-
code is defined in Figure 6. This definition explicitly shows
the effect of instruction execution on the programme counter



Figure 1: Euclid’s Algorithm for the Greatest Common Divisor, its Implementation in Update Plans, and an

Instantiation of an Update Scheme
while (z #y) {
if(e<y)y=y-u
else z =z — y;
}

return z;

AxBBlylc Hx<yl Bly—x|C. H
AlxBBly]c x>yl A[x—y]B. || A[9]B B[6]C — A[3]B.

Figure 2: PUSH and ADD Instructions Specified in Update Plans

PUSH x SP[q]

= SP[p| p[x]q.

ADD SP[q] [x y]g = SP[p] p[x +yla.

Figure 3: Definition, Application and Expansion of a pop Archetype

(Definition)
(Application) ADD pop(x) ACC[ly] =
(Expansion)  ADD SP[s] s[x]t ACC[y] —

pop(x) = SP[s] s[x]t = SP[t]. (1)

ACC[x +y]. (2)
SP[t] ACC[x +y]. (3)

Figure 4: RTL Definitions for Typical 68K Instructions

[Di(0:15)14-[Di(16:31)1, [Di(16:31)14-[Di(0:15)]

MOVE Di,Dj [Djl«[Dil]

MOVE P,Di [Dil«M(P)]

MOVE Di,N M(N) ]« [Di]

EX¢ Di,Dj [Temp]«[Di], [Di]J«[Djl, [Djl< [Temp]
SWAP Di

LEA  P,Ai [Ai]<«P

Figure 5: Definition of an Operand in Update Plans

oprnd(ea,v) =

ii..E.GIND T rlea] eafv] = . (4)
PREDEC r r[b] ea[v]b == rfea]. (5)

Figure 6: Definition of a Two Address ADD Instruction
PClpc] pClADD op(eas, x) op(eay, y)]ac — PClac] easlx + yl.

Figure 7: Alternative Definition of a Two Address ADD Instruction

ADD op(eas, x) op(eay, y)

(PC). The notational conventions mentioned in Section 2 also
allow an alternative form as shown in figure 7 in which the
emphasis is on the functionality of the instruction.

By separating the definitions of the opcodes from the defi-
nitions of the addressing modes not only has the specifica-
tion of the instruction set become much more compact and
manageable (a simple two address machine with only 16
opcodes and 8 addressing modes which would require 1,024
(16 x 8 x 8) RTL definitions for a full specification only needs
24 (16 + 8) lines in an Update Plan specification) but also it
becomes much easier to teach these two concepts indepen-
dently and in an incremental fashion. Note that the order of
presentation of these elements of the instruction set would
typically be reversed when presenting them to students. The
opcodes can be introduced using a reduced set of addressing
modes (e.g. only direct address) as shown in Figure 8, and
only when students have mastered this reduced instruction
set will the full set of addressing modes be introduced. This

= eag[x+y]

approach can be reinforced by the use of a suitable assem-
bler emulator, such as the Postroom Computer [6, 10], which
supports this incremental approach. The Postroom Com-
puter is presented to students using the Update Plan for-
malism to reinforce informal descriptions of the machine. It
also uses the Update Plan formalism to describe its internal
state when students trace execution of Postroom Computer
programmes. Experience has shown that students soon mas-
ter an (informal) understanding of the meaning of Update
Plan notation.

4. ABSTRACT ARCHITECTURES

Pointers are also unavoidable when teaching abstract ma-
chine architectures, whether the machine is for a procedural,
functional, logical or object oriented language. This section
presents an example from an implementation of a functional
language. A functional language implementation has been
chosen because the data structures in implementations of
functional languages are typically small, and very limited in



Figure 8: Definition of a Simple Two Address ADD Instruction

ADD ea; eay eax[x] eay[y]

number. The methods illustrated here could also be applied
to more complex abstract machines.

Peyton Jones [7] describes function evaluation by graph re-
duction using pointer reversal by a combination of informal
diagrams and a rather clumsy notation for describing the
pointer reversal itself, which uses the implicit function ‘Left’
which hides an essential indirection, requires inspection of
the corresponding diagram to show that the operation can
only be applied if the forward pointer ‘F’ points to an appli-
cation node, and needs an explicit statement of the simul-
taneity of the components of the pointer reversal operation
(see Figure 9 — adapted from [7]). Not only can pointer
reversal be expressed much more succinctly in Update Plans
(see Figure 10), but all of the hidden information in Figure 9
is now explicitly present in the description.

Note also that the implementational structure of an appli-
cation node is much clearer in the Update Plan specification
— an application node being a structure containing a con-
stant (APP) identifying it as an application node, and two
pointers (c and d on the left hand side, b and d on the right
hand side).

Relatively simple Update Plan specifications of the other
operations involved in graph reduction can be given, sup-
plementing an informal diagrammatical explanation, and
allowing students to experiment with the implementation.
A prototype implementation of (a subset of) Update Plans
is currently being used in an advanced level course on the
implementation of functional languages. Students can, for
example, be given Update Plan implementations of stan-
dard graph reduction operations and be asked to develop
a A-calculus to graph expression compiler, or they can be
asked to develop a compiler from \ expressions to Update
Plan specifications of supercombinators.

It should again be emphasised that Update Plan specifica-
tions are not proposed as a replacement for informal nota-
tions, but as a supplement. The advantages are threefold.
Update Plans have a formal semantics, making specifica-
tions precise. The existence of an implementation (albeit
currently limited) makes it possible for students to exper-
iment with the construction of graph manipulation primi-
tives. In addition, the students following this course have
encountered Update Plans earlier in their studies in an in-
troductory course in Computer Architectures, making the
crossover of skills easier.

5. ABSTRACT DATA TYPES

Data structures are another area of Computer Science where
pointers are rife — both explicitly in e.g. lists, stacks, queues,
trees etc., and implicitly in arrays, records, structures, ob-
jects, etc. This is illustrated here by using Update Plans to
describe binary trees and operations on them. This exam-
ple shows how the single rotate left operation in AVL trees
can be defined using (only) Update Plans. The most com-
mon way of explaining such structures and operations is by
a combination of informal diagram and (pseudo) code, as

= eax[x+y]

shown in Figure 11 (adapted from [9]). In the single rotate
left operation an unbalanced node having no children on the
left, but both a child and a grandchild on the right is bal-
anced by promoting the right hand child to the root node,
with the original root node as the new root node’s left hand
child.

In Update Plans the data structure can be defined as an
archetype. Figure 12 contains an example defining a binary
tree. The first archetype (6) defines the abstract structure of
a binary tree. This archetype can be read as: “A binary tree
is either the empty tree, or a node containing a key and two
subtrees”. Archetypes (7) and (8) then define the concrete
structure of binary trees, defining the empty tree to be the
NULL pointer, and a node to be a pointer to a data structure
containing a key, and two pointers to the node’s subtrees.
A definition of the single rotate left operation is given in
Figure 13. Note that this definition can be read as the tex-
tual representation of the tree diagram shown in Figure 11.
In other words, this definition of the operation implicitly
contains the pointers. In contrast to the usual style of ex-
planation of the operation as shown in Figure 11 there is,
however, no need to change the representation to make the
pointers explicit — simple expansion of the node archetypes
suffices, as shown in Figure 14. It should be emphasised that
this is the same update scheme as in Figure 13, only after
archetype expansion. The abstract data structure in Fig-
ure 13 has been transformed into a concrete representation
using pointers while staying in the same paradigm.

6. CONCLUSIONS

The previous three sections have demonstrated the appli-
cation of Update Plans to teaching Computer Architecture.
By using a unified notation that is not only applicable to
teaching Computer Architectures, but that is also suitable
for describing pointer applications in other areas of Com-
puter Science crossover of students’ skills and understanding
throughout the curriculum is greatly facilitated. Also, stu-
dents often find it difficult to relate the high level concept of
pointers to the low level concept of addresses. By using the
same formalism to describe both the relationship is made
explicit, strengthening students’ understanding of pointers
from a Computer Systems Architecture perspective.

Update Plans cannot completely replace the other meth-
ods discussed here, especially informal graph diagrams — a
picture is, after all, worth a thousand words, or even Up-
date Plans — but the formalism should be used to com-
plement and unify explanations of the réles of pointers in
Computer Science and to emphasise the low level nature of
most pointer operations.

The Update Plan formalism has been used successfully as a
descriptive tool in teaching introductory Computer Archi-
tectures. An implementation of a subset of Update Plans
is also available, and this is being used to provide more ad-
vanced students with hands-on experience — designing and
implementing their own instruction sets, and building and
using an abstract intermediate code machine.



Figure 9: Pointer Reversal in an Implementation of a Functional Language

=
B—b b
F = Left(F) T
Left(F) = B simultaneously || p . @ —» ¢ B—@— ¢
B = F l
d F—d

Figure 10: Updata Plan Specification of Pointer Reversal
F[£] B[b] £[APP ¢ d] = FJc] B[] £[APP b d].

Figure 11: Single Rotate Left in an AVL Tree

AVLNode
AVLNode

oldRoot = this;

newRoot = (AVLNode) right;
oldRoot.right = newRoot.left;
newRoot.left oldRoot;

return newRoot;

Figure 12: Defining a Binary Tree in Update Plans

tree() = empty().
= node(key, tree(), tree()). (6)
empty() = NULL. (7)
node(key, left,right) = a a[key left right]. (8)

Figure 13: The Single Rotate Left Operation on AVL trees
ROL oldroot(x, tree();,newroot(y, tree()s,,, tree(),,))
= newroot(y, oldroot(x, tree():, tree()s,)).

Figure 14: The Update Scheme from Figure 13 after Expansion of the node Archetypes
ROL oldroot oldroot|[x tree(); newroot] newroot[y tree(), tree()s]
—> newroot newroot[y oldroot tree()2,] oldroot[x tree():, tree()s].

7. REFERENCES [6] Hugh Osborne. The Postroom Computer: Teaching

[1] Alan Clements. The Principles of Computer

Hardware. Oxford University Press, 2000.
[2] Hugh Osborne. The semantics and syntax of update
schemes. In Code Generation — Concepts, Tools,
Techniques, Workshops in Computing. Springer
Verlag, 1992.

Hugh Osborne. Update Plans. In Proceedings of the
25th Hawaii International Conference on System
Sciences. IEEE Computer Society Press, 1992.

Hugh Osborne. Update Plans — A High Level Low
Level Specification Language. PhD thesis, University
of Nijmegen, Toernooiveld 1, Nijmegen, The
Netherlands, 1994.

[6] Hugh Osborne. Update Plans for parallel
architectures. In M. Kara, J.R. Davy, D. Goodeve,
and J. Nash, editors, Abstract Machine Models for
Parallel and Distributed Computing, pages 79-90,
Amsterdam, 1996. I0S Press.

[10]

introductory undergraduate computer architecture. In
Proceedings of the 38rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2002), 2002.

Simon Peyton Jones. The Implementation of
Functional Programming Languages. Prentice Hall,
1987.

Hans Meijer. Programmar: A Translator Generator.
PhD thesis, University of Nijmegen, Toernooiveld 1,
Nijmegen, The Netherlands, 1986.

Russel Winder and Graham Roberts. Developing Java
Software. John Wiley & Sons, 1998.

William Yurcik and Hugh Osborne. A crowd of Little
Man Computers: Visual computer simulator teaching
tools. In Proceedings of 2001 Winter Simulation
Conference, New York, 2001. ACM.



CASTLE:
COMPUTER ARCHITECTURE SELF-TESTING AND LEARNING SYSTEM

Aleksandar Milenkovic® Bosko Nikalic®, Jovan Djordjevic®
2Eledrical and Computer Engineaing Dept., University of Alabamain Huntsvill e
P Computer Engineaing Dept., Schod of Eledrical Engineeing, University of Belgrade
E-mail: { milenka@eceuah.edu, nbosko@etf.bg.ac.yu, jdjordjevic@kiklop.etf.bg.ac.yu}

Abstract. The paper introduces the CASTLE, a
Web-based system for Computer Architecture Self-
Testing and LEarning. The CASTLE offers self-testing
and learning facilities meant to be used by students at
home and/or in lab in the process of studying and
exam preparation. It also offers a rich set of facilities
to help the system administration and to provide
feedback to instructors. The core of the CASTLE tool
is developed using zero-cost environment, in such a
way that it could be easily modified and used for
teaching other courses.

| INTRODUCTION

The Internet has dramatically changed the way
instructors  teach  Computer  architedure and
organizaion, and the way students learn. Modern
software tods enable the development of Web-based
graphical animations to ill ustrate amplex topics [1],
advanced computer architedure CAD tods have
beame avail able via Web browsers[2], and coll edions
of course material including tests and exams can be
shared between instructors [3].

Web-based testing plays an important role in
distance learning. For example, the IEEE Computer
Society has receitly started to dfer to its members
various courses as a part of the Distance Learning
Campus [4]. We fed that “classc” clasgoom- and lab-
based courses could also benefit from the opportunity
of online testing and self-assesgnent and that is why
we are building the CASTLE, a Web based software
system for Computer Architedure Self-Testing and
Learning.

Previoudy we made some dforts in the similar
diredion by developing the CALKAS [5]. However, it
uses rather expensive mmmercial environment, and it
is primarily targeted to the assessment of the student
knowledge during labs.

The CASTLE offers the students an opportunity for
online testing on various topics in computer
architedure and organizaion, anytime, anywhere.
Using this tod, students can continuoudly reinforce
their clasgoom learning, and can get valuable feedback

about their course advancement. The CASTLE allows
students to choose the level of testing. At the beginning
they can start with elementary questions, and as they
progressthrough the murse they choose more complex
tests at the medium and advanced levels. Each question
is tagged with an explanation field, which includes a
full explanation or alink to the crresponding textbodk
or material on the Web.

The CASTLE alows ingtructors a Web-based
administration by using simple forms to insert, edit, or
delete information about students and questions. In
addition to that, the CASTLE can generate various
gtatigtics from the database providing the instructors
with valuable feedback about students advancement.
Using these statistics, instructors can identify what is
difficult for students to grasp. Often instructors have
groups of students with different background and
inhomogeneous knowledge. In such casesthe CASTLE
should help those with insufficient prerequisites to
catch up. Thanks to explanations it provides, the
CASTLE as a “virtual instructor” could improve the
overall quality of teaching since it gives the instructor
more time to spend on difficult topics.

The CASTLE is developed using Java Serviet/Java
Server pages technologies and MySQL as a database.
We have developed and tested the cre of the CASTLE
and now we are buil ding the database with questions.
The rest of the paper is organized as follows. In
Sedion 2 we describe the faciliti es offered by the
CASTLE. Sedion 3 gves a short overview of the
CASTLE internals. Sedion 4 concludes.

Il UsiINg CASTLE
The CASTLE offerstwo levels of functionality:

. At the user leve, it provides wif-testing
faciliti es to students, and

. At the administrator leve, it
administration faciliti es to instructors.

provides

The user level
The first step in working with CASTLE isto login:
a user enters her/his username and passwvord, and



activates Login button (Figure 1). The system checks
whether a user with that username exists in the
database of users and whether the password is correct.
If the login is successful, the system allows access to
salf-testing mode, and the Welcome screen appears
(Figure 3). New users are asked to register first (Figure

difficulty tag (Elementary, Medium, or Advanced). The
guestions appear one by one. For each question the
remaining time is counted-down in real time and
displayed on the screen (Figure 4). Questions may
include graphical content. The user answers the
guestions by activating the appropriate check box in
front of the answer deemed to be correct.

WELCOME TO CASTLE

Please enter your user name and password

Figure 1. Login screen.

Define time per question: [50 sec
Define number of questions: 5

Level of Testing:

© Elementary

© Medium
© Advanced

When you are ready, press button to start

Starttest

et 18 Lo et

Figure 3. Welcome screen.

WELCOME TO CASTLE 2

Figure 2. Register screen.

The Welcome screen offers the user possibility to
select the type of testing; the current version of the

CASTLE supports the following types.
Comprehensive, Processor Architecture, Memory

Hierarchy, and Multiprocessors. The user also defines
test duration (test time per question), the number of
guestions in the test, and the leve of testing. The
CASTLE currently supports three levels of testing:
Elementary, Medium, and Advanced.

The test is then activated using the Start test
button. The CASTLE generates randomly requested
number of questions with offered answers from the
database; al questions generated have the same

on rate for a branch with the following pattern: T, NT, T, NT, ...? A simple 2-bit saturation counter branch predictor is used. Assume the
‘eak Predict Taken”, and no branch interference.
T,
NT
Strong )
4 Weak Predict Taken
Predict Taken 0
T AT
fr
Weak Strong
X T Predict Not Taken
Predict Not Taken
NT

& Don't know
 100%

50%
€25%
©75%

Remalning time: [45
Submit test Fs

fimat s

30 18 Lo et

Figure 4. Test screen.

When the user has completed a question, even if the
time predetermined for giving an answer has not yet
expired, shefhe can submit the test by activating the
Submit test button. If the test has not been submitted
within the predetermined period of time, the CASTLE
stops the testing when the time expires and the user is
asked to submit the answer. The CASTLE checks
correctness of the given answer and generates a result
screen including the question, given and the correct
answer, and explanation for the correct answer (Figure
5). By activating the Next Question button the test
continues.



The information concening the mmpleted test,
such as the user’s identification number, the date, the
time, the generated questions, and the given answers,
are saved in the appropriate database tables. Hence
any relevant information concerning all tests taken by
any user can be oltained at any time.

A Rosults - Microsaft Intormet Explorer

Test in Computer Architecture
Result of Question 4

Question:

Calculate the average CPI for a processor ifthe execution of branch instructions takes 4 clock cycles and the execution of all other instructions takes § clock
eyeles. The frequency of branch instructions is 20%.

CCother ins) = 0.2% + 0.8%5 = 4.8 clock cycles

et 18 Lo et

Figure 5. Result screen.

When the user has completed the test she/he @n
get the final test report. This report contains the score
and atable with all questions from the test, the answers
given and the crred ones. At the end of the test, the
user can start new test sesson by activating New test
button.

The administrator level

At the administrator level ingtructors use the
CASTLE to maintain the database including
information regarding users, questions and offered
answers, and test sessons. The CASTLE provides
simple forms that can be used to enter new questions
and update the list with answers, modify the list of
offered answers, add, edit, and remove users. In
addition to that, the CASTLE alows instructors to
generate and print the itemized reports including
statistics - number of tests taken, percentage of corred
answers, etc., for each topic (e.g., Memory hierarchy),
and for each question. Finaly, the CASTLE allows
instructors to backup the whol e database.

The first step for an ingtructor is to login by
entering administrator username and password;
Administrators use the same Login screen as ordinary
users (Figure 1). After a successul login the Welcome
administrator screen appears (Figure 6). From this
screen the administrator can seled any of the avail able
functions: Insert User to add a new user, Edit User to
edit information about a user, Delete User to remove a
user from the database of users, Insert Question to add
a new question in the database, Edit Question to edit

relevant fields of a question, Delete Question to
remove a question from the database, Define Queries
& Printing Reports to create and print various
reports, and Backup to backup the database.

_Eduser |
e
Updato the datsbaso of quostion (sert/EGUDolote)

Insert quastion

Edit question

Deflne queries & printing reports (per student, per question. ...}
Backup the database

1]

et 18 Lo et

Figure 6. Administrator Welcome screen.

Insert Question and Insert User buttons bring
screens containing all relevant fieldsto be defined for a
new question and a new user, respedively. Figure 7
shows the form for entering a new question. The
instructor enters relevant fields such as the text of the
guestion, offered answers (up to four posshble answers),
Id for the mrred answer, Id for the area, the level of
difficulty, and the eplanation. All fidds are thedked
for consistency before the database is updated by
activating Submit button.

Input question details:

Areald: i

e )

1]

et 18 Lo et

Figure 7. Insert Question screen.

Edit Question and Edit User forms require the
guestionID and username to be eitered by the
instructor, respedively. Complete record appears on
the screen, and all fields can be danged. Changes
beaome visible by activating the Submit button.
Similarly, the ingtructor can remove a user or a



guestion using Delete User and Delete Question
forms.

By activating Define Queries & Printing Reports
button instructor opens a new form where shefhe
selects a query, such as global statistics, and statistics
per area, per question and per user. The result screen
will contain required information, including statistic
charts (Figure 8). The instructor prints the report by
activating the Print button.

| Adiress [#] htp:/localhost 8080/ appsenviet/ CalculteStatitics =] o

Percent of Correct Answers of All Tests Taken

Back

Incorrect: 53

Doxi't know: 35

Camect: 12

/e

&) Dore [ [ JE5 Cocl ranet

Figure 8. Statistics screen.

[1l INTERNALSOF THE CASTLE

Primary requests for the development environment
were to support all facilities of the CASTLE as well as
to minimize the cost. We use a zero cost environment
based on Java Servlet and JavaServer Pages (JSP)
technologies [6]. As a Web server we use Tomcat [7], a
free open-source implementation of Java Servlet and
JavaServer Pages technologies developed under the
Jakarta project at the Apache Software Foundation. We
use MySQL [8], a free, open source database available
for many computing platforms. It represents the most
affordable solution for relational database services
available today. For communication between Java
servlets and the database we use, a free JDBC driver
mm.mysgl-2.0.4-bin.jar [9].

Figure 9 shows the development environment and
illustrates the data flow. We decided to implement a
rather ssimple graphical interface, so the CASTLE can
be accessed without any delay even over 56K modem
connections.

E Tomeat Java Classes JDBC o
C =" Web Server [ (incl. Servlets) Driver D’Z‘Vabase

Web Browser

HTML/XML JsP

Figure 9. Development Environment.

IV CONCLUSION

This paper introduces the CASTLE, a Web-based
system for testing in computer architecdure and
organizaion. It allows gudents to test their knowledge
continuously throughout the curse giving them full
control over the number of questions they want to take,
test difficulty, and course topics. In addition to that the
CASTLE facilitates the system administration and
provide valuable feedback about course advancement to
ingtructors during the @urse. The development
environment guarantees dmple user interface
flexibility, and searity of data, availahility,
maintainability and upgadeability.

The primary short-term goa is to expand the
current number of questions and to support different
guestion forms in additi on to multiple choice The next
step will be to gpen the gates of the CASTLE to
broader community, to all interested to improve their
knowledge in computer architedure.

ACKNOWLEDGEMENTS

This work is partialy supported by the UAH
Provost’s officethrough an Instructional Grant.

REFERENCES

[1] J. Djordjevic, A. Milenkovic, N. Grbanovic,
“An Integrated Environment for Teaching
Computer Architedure,” IEEE Micro, Val. 20,
No.3, pp. 38-47, May/June 2000

[2] N. Kapadia, R. Figueiredo, J. Fortes, “PUNCH:
Web Portal For Running Tods,” IEEE Micro,
Val. 20, No. 3, pp. 38-47, May/June 200Q

[3] E. Gehringer, T. Louca, “Using the Computer
Architedure Course Database,” IEEE TCCA
Newsl etter, pp. 85-89, September 200Q

[4] http://www.computer.org/Distance_earning

[5] J. Djordjevic, A. Milenkovic, |. Todorovic, and
D. Marinov, “‘CALKAS. A Computer
Architedure Learning and Knowledge
Asssgnent System,” |IEEE TCCA Newdletter,
pp. 26-29, June 2000

[6] http://java.sun.com/j2se/

[7 http://jakarta.apache.org/site/binindex.html

[8] http://www.mysgl.com/

[9] http://mmmysgl.sourceforge.net/




Development of a digital instrument as a motivational component in teaching

embedded computers

Gracian Trivifio', Felipe Fernandez

*Universidad Politécnica, Madrid, Spain, gtrivino@fi.upm.es
Universidad Politécnica, Madrid, Spain, felipe.fernandez@es.bosch.com

Abstract

Nowadays it is frequent that, at the first levels of Com+
puter Engineering studies, the students have acquired
some practical experience developing software projects.
However, they have little or none experience facing up
the project of designing and developing a simple comt
puter electronic module.

On the other hand, due to the strong development of the
area and its continuous presence in the media, students
are especially motivated towards robotics and, in gen-
eral, towards systems that can interact with the physical
environment.

According to these circumstances, this paper describes
the strategy followed to introduce a new subject de-
nominated “Digital Instrumentation and Data acquisi-
tion”. This subject is an optional part of the curriculum
area dedicated to Computers Architecture in the Faculty
of Computer Engineering at the Polytechnic University
of Madrid (Spain).

1. Introduction

Two years ago, we faced up the challenge of designing
the layout of a new subject in the area of Computers
Architecture. In teaching embedded computers, it is
especially clear that the goals of teaching are not only a
set of theoretical concepts. Together with them, you
need to teach practical procedures, and to teach attitudes
encouraging the students to develop a personal interest
in studying the topics related with the subject.
Considering the characteristics of the current curricu-
lum, the students acquire during the first courses some
capabilities to develop software projects while they
have little or none experience designing and developing
computer electronic circuits. One elemental rule in
teaching consists of using the available knowledge in
the students’ minds as the basis to build the new knowi-
edge structures. Therefore, afirst ideawas to find away
of using this capability for software development as one
of the basis of the new subject structure.

On the other hand, the new subject was going to be one
more in the set of optional subjects that are available for
the students choice. Then it was necessary to think
about special motivations, the marketing strategy that

would encourage the student to introduce our subject in

his/her course configuration.

During last years, an increasing interest among students

on topics related with robotics has been detected. More

specifically, students are interested in computers that

are able to interact with the physical environment.

Therefore, a second idea was to use this interest as a
motivation to convince the students to enrol in our sub-

ject.

We decided to name this undergraduate course “Digital

Instrumentation and Data acquisition”. Under this de-

nomination, our intention was to cover a space detected

in our curriculum of the Computers Architecture area. A

classification of the didactical contents of the new sub-
jectisthefollowing:

Theoretical contents

- Different types of sensors making emphasis in the
applied physical principles.

- Differential amplifiers, instrumentation amplifiers,

A-D converters.

- Instruments, instrumentation systems, standard in-

strumentation platforms (GPIB, VXI, PXI)

- Instrumentation languages, instrumentation software

environment.

Practical contents

- Design and building of an electronic circuit for data
acquisition based in microcontrollers.

- Design and building of electronics circuits to handle

the signal provided by different sensors.

- Design and building of software programs handling

this hardware to create digital instruments.

The complete subject program can be found in the sub-
ject Internet web page [1]. The remainder of this paper
is aimed to describe different aspects of the resources

developed to support the teaching of the practical con-

tents.

2. Practical Project

As a part of their learning activities, the students of
“Digital Instrumentation and Data Acquisition” must
develop a practical project that consists of building a
digital instrument.

Through the analysis, design and building of a digital
instrument the student learns practical knowledge that



complements the corresponding theoretical concepts
and procedures.
When we faced up the development of some resources
to support the students during the practical project
development, we considered some special requirements
having in account not only ateaching strategy but also
an adequate marketing strategy:

- The student must have the possibility of using his/her
own personal computer (PC) as an important comp o-
nent of the practical project.

Theideaisto usethe fact of that most of the activity of
students developing software is currently performed
using their personal computer.

- The whole hardware of the practical project must be
compact and small enough to be portable.

This is not only, because that could make more conm-
fortable the project development, but also, because the
students’ interest in thistype of practical projects allows
using the project itself as a marketing reclaim. The
student will carry the circuit board with him/her having
the possibility of talking about it and showing it to fel-
lows.

- After the practical project is finished, the system
must be able to be used for new projects. Consequently,
all the resources used must remain available to the stu-
dent. If the practical project hardware is of student’s
property, it will remain available not only for other
projects at the university but also to develop his/her
own home projects. To make this possible, it is desir-
able to maintain the whole project as low cost as possi-
ble.

3. Hardwareresources

The main support of the practical project is a printed
circuit board that we have called iFOTON. This circuit
contains a microcontroller with few additional elec-
tronic devices and a free mounting area where it is pos-
sible to solder additional components. Figure 1 shows a
iFOTON block diagram.

This circuit includes all that is necessary to make easy
the development of an electronic digital instrument.
Figure 2 shows a photo of the PCB with all the elec-
tronic components mounted. A brief description of
iFOTON main featuresisthe following:

Microcontroller

The PIC16F873/76 microcontroller from Microchip [2]

has been chosen. This family of devices has an excellent

cost-benefit rate and its use in the market has been
growing up during the last years. This microcontroller
has a set of interesting characteristics that we are only to
enumerate: It has a RISC architecture, 4K of flash pro-
gram memory, 193 bytes of RAM, 128 bytes of

EEPROM. Moreover, the encapsulated peripheral de-

vices are: A/D converter of 10 bits, 3 timers, PWM

modules, communications modules (USART, 12C) and

3 parallel digital input output ports.

Serial port

It is the main mechanism of communication between

iFOTON and the PC. The USART provided by the

microcontroller has been used. A Maxim MAX232
serial signal adapter has been used in order to convert
the TTL signal provided by this peripheral to the RS232

protocol logical level [3].

Programming port

An important advantage of the selected microcontroller

is the so-called “In Circuit Programming” characteristic

[4]. This alows, using only a5 volts power supply and

handling a limited set of connections (4), to read and

write the microcontroller program memory without
extracting it from the circuit socket.

The PC standard parallel port is used to handle these

connections. This port fulfils the IEEE 1284 (SPP, EPP,

ECP) standard signalling method for a bi-directional

parallel peripheral interface for personal computers [5].

To make the connection the student must build the ade-

quate cable following the instructions provided with the

iFOTON documentation.

Input output port

The microcontroller provides three configurable input-

output ports that have been situated near the free

mounting area:

- All of them can be configured as digital inputs.
They have associated internal programmable pull-
ups and the possibility of associating encapsulated
devicesto interrupt processing and to perform pulse
wide measurement.

- All of them can be selected as digital outputs. They
have 25 mA sink/source current capability.

- Five pins of them can be configured as analogical

Paralel| port
p| Programming port
|
PC I | Power supply _

R 8232: Microcontroller
‘_I’ Seria port

|

I e e e e e e e e e - —

) 1
Input Free mounting :
Output aren 4_:_ Environment
port _|_>
1
iIFOTON 1

Figure 1. iFOTON Block diagram



inputs: These inputs share the multiplexed A/D
converter.

Power supply

IFOTON uses the DC power supply that is generally
provided with the PC loudspeakers. This device has a
jack connector that provides 9 volts where the central
connection is connected to ground. Then a simple 7805
voltage regulator and two capacitors are enough to
complete the circuit power supply.

Serial Port

Programming Port

Power supply
l Input-Output Port

/

Figure 2. iIFOTON PCB

4. Software resources

A set of software tools has been developed to support
the design and building of practical projects with iFO-
TON: a Programmer, a Project configuration control,
and an Interpreter of commands. The first two of them
are executed in the student PC and the third one in the
iFOTON microcontroller.

Code Programmer

This is a software tool that converts iIFOTON in a m-
crocontroller programmer [6]. This program uses the
connection between the PC and the iFOTON Program-
ming Port to alow the user reading and writing the
microcontroller program memory. The object file to be
programmed must be HEX formatted [7]. This format is
generated for most of the assemblers and compilers
available in the market.

Project Configuration Control

Together with the Code Programmer, a simple Project
Configuration Controller is provided. This program
allows creating a files structure for every Practical
Project. It creates in the PC disk a directory with the
project name containing a set of mandatory files: R-
quirements, Design, Diagrams and Software source.
The Project Configuration Controller asks the user to
associate these files with the corresponding software
tool used to generate them.

Using iIFOTON a fairly amount of different practical
projects could be developed. The idea of this tool is to
get a standardised set of documents for all these proj-
ects. On the one hand, this will make them easier to be
analysed and evaluated by the teacher, and on the other
hand, thiswill help to build a projects database easier to
reuse.

Interpreter of commands

Taking into account the availability of the microcon-
troller programmer, a first approach in order to build a
digital instrument could be to develop software to be
loaded in the microcontroller memory. This alows
building a stand-alone instrument. However, as men-
tioned above, the possibility of allowing the student to
develop software to be executed in his/her personal
compuiter is desirable. This avoids the need of knowing
details about the microcontroller programming features.
In order to make this possible, an Interpreter of Com-
mands, that has been called iF, has been designed and
implemented. This software, loaded in the microcon-
troller memory, alows managing the iFOTON input-
output ports using commands, which are sent and -
ceived viathe serial port.

Header ‘g
Command code | Access to ports is performed using
two characters:
First: “L"” means Read, “E”
means Write

Second: “D” means Digital,

“A” means Analogical
There are other special commands:

“S’ means Scanner

“M” means Stepper Motor

control
Etc.
iFOTON address | This allows connecting several
iFOTON systems to the same
serial bus
Port address Meaning the specific pin con-
cerned
Data Used with writing commands
Final code ‘L

Table 1. Commands format

To simplify the design of the Interpreter, a set of e
strictions have been introduced assigning specific func-
tions to every iFOTON Input-Output Port. The port A,
pines 1 to 5 in the iIFOTON Input-Output Port, is used
as analogical input. The port B, pines 6 to 13, is used as
digital input. And, port C, pines 14 to 22, is used a
digital output.

Therefore, by executing the iF interpreter in iFOTON
and running a terminal emulator as the Microsoft
HyperTerminal in the PC, we can use the keyboard to
send commands and the screen to read the answers.



1K *
BO ~——  LDR
1
AO
Al 1KE| | +5
]

A2 LM35

.......... 1

Figure 3. Sensor connections

A command is a string of ASCII characters with the
format described in table 1.

The following are some examples of using the iF com-
mands:

“$LAO0O;" reads the analogical value of voltagein pin 0
of port A. The answer could be $0127; a value in the
range 0 -1025 meaning a value in the range 0 - 5000
mvV.

“$LDO02" readsthe digital valuein pin 2 of port B.

The answer could be $0; meaning a low digital TTL
level input.

“$EDO050;” writes the digital value 0 in the pin 5 of port
C.

As far as commands that are more specific are consid-
ered useful, they are implemented expanding in this
way theiF interpreter possibil ities.

5. Documentation

Most of the documentation that is required to undertake
the practical projects is provided to the students using
the iFOTON web pagein Internet [8].

The aim is to provide not only the necessary informe-
tion to allow the students to solve their projects but also
to help the advanced students to get detailed informa-
tion and to explore new possibilities of use.

This set of documents includes iIFOTON description,
iFOTON building manual, iF commands description
and some examples of practical projects. The hyper-
textual documentation includes links to the main com-
pany providers of the electronic components used.
Logically this information must be in continuous evolu-
tion.

6. Examples of practical projects

6.1. Environment data acquisition

This Practical Project consists of representing in the
PC screen the data obtained from the following sensors:
a push button, the position of a potentiometer, the room
temperature, the light intensity in the room, and the
atmospheric pressure.

Warias i ssn iFoton]

Caridad 4 Luc L. Prsaalen dul
= ¥ puhadar

o o -

£ [ b T e | (o] O
= i

Fasswans steneageshng | 1S40 8 e

= —— |
E fe w o & o w1 E .
e pra— e, sima ez im0
[ Ima A
R —

3""' (= e e e e osm e ok e e e
Ly '3
; [ e
EI e r::r'-lll a [T <.

Figure 4. Instrument user interface

All the necessary electronic components can be allo-
cated in the free soldering area. The chosen temperature
sensor was the LM35 from National that can be con-
nected directly to an analogical port. A LDR sensor was
used to measure the light intensity. Figure 3 shows the
simple circuits that must be mounted in the free solder-
ing areato handle these sensors.

The MPX2200A sensor from Motorola was chosen for
absolute pressure sensing. The provided signal by this
sensor needs to be amplified. The students must analyse
different instrumentation amplifier circuits [9] and build
one of them to handle this sensor signal.

Once the hardware components have been mounted, all
the measures can be obtained directly using iF com-
mands.

The software part of this Practical Project is aimed at
learning how to program with a specific software tool
for the development of the so-called virtual instruments.
The students must learn to design and build one of these
instruments using the visual language LabView from
National Instruments [10]. They can use an available
free cost Student Version of this program [11].

Figure 4 shows an example of this Practical Project
user interface that has been developed using LabView.

6.2. Design and building of a simple Digital Analyser

The project consists of building a simple Digital Ana-
lyser with only one input and limited buffer of memory
and resolution. The design of this second example of
practical project is based on using the special iF com-
mand “$S’. The Digital Analyser probe is connected to
pins C1 and CO that must be tied together. The “$S’

command uses the microcontroller capabilities for pulse
wide measurement. It obtains in microseconds the time
the digital signal remains high and the time the signal
remains low. Using these values, the answer of this
command is atext string that contains 40 values of time
intervals starting with the first change of level. For
example “$U:64554C: 473U:50244C: 101..." where U:
means up level, 64554 are the microseconds that the
signal remains high, C: means down level, and so on.



emcala 10D =
LI e e |

10 il | 300 Al 1

£ai 708 B0e LA

[+ Weible ol da narear |14

anche de s narearfui Sensds I

o]

Inbapanim I

| Capturm mfd Cancalar |

Figure 5. Digital Analyser user interface

Students will use these data as input to the PC software
module.

For this practical project, students are required to de-
velop the software using a generic programming tool as
the C++ programming language. Using, for example, a
tool as Microsoft Visual C++ software development
environment, the design of a graphical user interface is
not very difficult.

To test the Digital Analyser the student is asked to con-
nect to the probe the signal provided by an Infrared
Sensor (TFM5360 from TEMIC). When this sensor
captures the signal emitted by a TV infrared remote
control, it providesa TTL signal formed by a sequence
of pulses.

Figure 5 shows an example of a Digital Analyser user
interface. The screen shows the response obtained after
receiving asignal from a TV PHILLIPS infrared remote
control.

7. Conclusions

The following conclusions have been obtained after
have experimented the new subject pedagogical struc-
ture for two courses.

“Digital Instrumentation and Data acquisition” is a
subject especially orientated to students interested in
having a double skill in hardware and software.

An important number of students of software would like
to study and build hardware as well. They appreciate the
possibility of building a physical system as opposite to
developing systems exclusively made with software
components. In fact, we think that the Practical Project
is one of the causes for that, in this period of two years,
the number of students that has chosen our subject has
been duplicated.

iFOTON has demonstrated to be useful to support the
students Practical Projects and also as a basis to de-

velop some others prototypes of data acquisition and
control systems. It is meaningful that we have received
from Internet some demands for purchasing iFOTON.
The developed set of resources provides a powerful tool
for teaching digital instrumentation. However, we can
make an additional effort improving the Project Con-
figuration Manager. If we make an additional develop-
ment, it will be possible to create alibrary of hardware-
software reusable modules. This library will be avail-
able in Internet.

References

[1] http://www.dtf.fi.upm.es/~gtrivino/iad.html

[2] PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Micro-
controllers. Document DS30292B Microchip (1999).

[3] http://www.dtf.fi.upm.es/~gtrivino/IFOTON
/1798.pdf

[4] EEPROM Memory Programming Specification.
Document DS39025E M icrochip (2000).

[5] IEEE Standard Signaling Method for a Bi-
directional Paralel Peripheral Interface for Persona
Computers. |EEE 1284-2000.

[6] Spur, R. A PC-Based Development Programmer for
the PIC16C84. Application Note AN589, Microchip,
1999

[7] Richey, R. (1998): Downloading HEX files to
PIC16F87X PIC Microcontrollers. TB025. Microchip.
[8] http://www.dtf.fi.upm.es/~gtrivino/IFOTON

[9] Paton B.E. Sensors, Transducers, and LabVIEW.
Prentice Hall, 1999

[10] Bishop R.H. Learning with LabView. Addison-
Wesley, 1998

[11] Jamal R., Pichlick H. LabVIEW applications and
solutions Prentice Hall, 1999



ILP inthe Undergraduate Curriculum

Daniel Tabak
ECE Dept., George Mason University,
Fairfax, VA 22030-4444
Td. (703) 993-1598, FAX (703) 993-1601
e-mail: dtabak@osf1.gmu.edu

ABSTRACT

The paper discusses the teaching of instruc-

tion level parallelism (ILP) in undergraduate
electrical engineering (EE) and computer en-
gineering (CpE) curricula. An argument is

made for justifying the teaching of this topic,
usually taught in graduate courses, at the un-
dergraduate level. A detailed account of the

way this topic is actually taught at the

author’s University is given. The paper dis-
cusses the specific ILP subjects, presented to
the students, along with the technical litera-
ture sources used.

1. Introduction.

The study of instruction level parallelism
(ILP) has been relegated primarily to text-
books intended for graduate studies [1]. Itis

for the BS degree in CpE, and it is a technical
elective for the BS in EE.

It has been realized by the author, who devel-
oped this course from scratch, that students
graduating with the BS degree and going into
industry (in most cases) or to graduate studies,
should be knowledgeable not only of the basic
engineering principles of computer organiza-
tion and architecture, but of the most recent
design techniques and practices, implemented
in modern processors. For this reason, the
course content has been constantly changed
and revised from year to year (sometime,

from semester to semester), to reflect the per-
petual innovations in computer design.

As ILP began to be one of the main topics of
research and practice of microarchitecture, it
was introduced, in a timely manner, into the

also the practice in many Universities to teach senior course on computer design. Recently,

this topic at the graduate level in most cases.
At the same time, it should be realized that
practically all modern computers, be they
RISC or CISC, are implementing ILP on a
constantly growing scale. Some of the latest
products, worth mentioning, are Intel Pentium
4, Intel and Hewlett-Packard (HP) 1A-64 ar-
chitecture Itanium, AMD Hammer (64-bit
Intel x86, or IA-32, architecture), Sun Mi-
crosystems UltraSPARC, Silicon Graphics
Inc.(SGI) MIPS R210000, and others.

The author’s department of Electrical and
Computer Engineering (ECE) at the George
Mason University (GMU) has two engineer-
ing curricula: electrical engineering (EE) and
computer engineering (CpE), leading to all

the subject of ILP also started to appear in
textbooks intended primarily for undergradu-
ate curricula, such as [2], chapter 8 and [3],
chapter 5. The details of the ILP topics, cov-
ered in this course, are described in this paper.
The course program and its literary sources
are presented in the next section. Section 3
lists the examples of actual ILP processors,
presented to the students. Section 4 includes
concluding comments.

2. ILPinthe Computer Design Course.

Prior to going into ILP, the students are ex-
posed to a very detailed study of scalar pipe-
lining. The primary textbook of the course is
[1]. It was used in this course since its first

three degrees (BS, MS, Ph.D.). The author hasedition in 1989. Chapter 3 in [1] has a very
been teaching for many years a senior course exhaustive coverage of pipelining. A good

on computer design. This course is required

coverage of pipelining can also be found in
[2], chapter 8, and [3], chapters 4 and 5.



After going over the basic principles of pipe-
lining, using the examplesin [1], chapter 3,
the students are exposed to what can go
wrong in pipelines; namely, to the possible
pipeline hazards:

e Structural hazards
e Datahazards
e Control hazards

The above hazards, and some of their possible
remedies, are discussed in detail. It is later
pointed out that these hazards are only more
seriousin case of ILP.

Subsequently to pipelining, the discussion of
ILPisinitiated, using chapter 4 of [1] and
other sources [4-6]. Sources [4,5] were cho-
sen because they constitute extensive surveys
on the subject with rdatively large references
lists. Report [6] was included because it con-
tains very useful material on branch predic-
tion, not available in such concentrated form
elsewhere. In addition, material was taken
from [7-9]. These are some of the earliest ILP
publications, containing basic material. Su-
perscalar, superpipeined, and very largein-
struction word (VLIW) operations are de-
fined. However, the course concentrates pri-
marily on superscalar operation, because of its
prevalent implementation in industry. With
the advent of the Intel-HP |A-64 architecture,
more weight to VLIW may begivenin the
future.

Initially, problems involved with data de-
pendence in ILP operations are discussed in
detail. The concepts of name dependence, an-
tidependence, output dependence, and control
dependence, are defined, and some examples
are given. The examples are taken both from
[1] and some are supplied by theinstructor. In
addition, the following terms, associated with
this topic, are defined and pointed out in the
examples:

* Rear After Write — RAW
 Write After Read — WAR
*  Write After Write — WAW

Subsequently, the following methods, ap-
proaches, and special data structures, having
to do with data dependence, are studied in
detail:

* Register renaming

* Speculative execution

» Out-of-order execution

» Scoreboarding

* Reorder buffer (ROB)

* Reservation stations (RS)
» Trace caching

All of the above topics are well covered and
exemplified in chapter 4 of [1]. Other sources,
such as [4,5,7] are also used. It is pointed out
to the students that instead of using an RS in
front of each functional unit (FU), one can use
one central window with more entries, to for-
ward operands to all FUs [7]. Some proces-
sors are indeed implementing this option.

Some topics in chapter 4 of [1], having a
strong software “flavor”, such as loop unroll-
ing, are skipped. It has been the experience of
the author, that engineering majors do not
willingly accept topics involving program-
ming. Had the course been given to computer
science majors, the above topics would also
be included.

Problems due to branches in ILP, particularly
those dealing with the conditional ones, are
handled next. The topics of speculative and
out-of-order execution are raised again. In
addition, the following topics and data struc-
tures are studied:

» Branch prediction (local, global, bi-
modal)

* Branch target buffer (BTB)

» History table (HT)

» Counter structure (Counts)

This material is also covered in chapter 4 of
[1]. In addition, references [4-7] are used. Of
particular importance on this topic is the re-
port [6].



Thetopic of data predictionis not coveredin
the undergraduate curriculum, since it belongs
in the realm of basic research, as opposed to
current industrial practice. It isrdegatedto a
subsequent graduate coursein computer ar-
chitecture, along with other more advanced
topics (such as explicitly paralld instruction
computing - EPIC, for instance).

3. Examplesof ILP Systems

Examples of actual processors, both of the
RISC and CISC type, implementing ILP, are
presented to the students. Special data struc-
tures and methods, discussed in the previous
section, are pointed out to the students, as
they are encountered in the processor exam-
ples. Some of the examples are brought up
during the discussion of various topics in sec-
tion 2. Reference [1] contains a number of
examples. Reference [4] contains examples of
SGI MIPS R10000, Compaq (Digital) Alpha
21164 (actually used in the primary comput-
ing system on GMU campus), and AMD KB5.
A number of ILP examples (including the
R10000 and Alpha 21164) can befound in
[10]. Another source to which students are
directed is the Internet (websites such as
www.intel.com, developer.inte.com,

www. extremetech.com and others).

The main ILP implementation example, illus-
trated in detail in this course, is the Intel-HP
|A-64 architecture with its first product, the
Itanium. Most of this material comes from the
Intel and HP websites on the Internet.

In conjunction with the study of the |A-64
architecture, the students are familiarized with
the concept of predication, along with illus-
trative examples of itsimplementation. The
concepts of EPIC [11,12] are briefly covered.
The details of EPIC are relegated to a subse-
guent graduate course on computer architec-
ture. In the Itanium example, ILP features,
discussed in general earlier, such asregister
renaming, scoreboarding, branch prediction,
and multiple FUs, are pointed out to the stu-
dents.

TheIntel 1A-32 architecture products are also
included in the examples, particularly the lat-
est Pentium 4. Also here as for the Itanium,
the ILP features such as out-of-order execu-
tion, trace caching, branch prediction, and
multiple FUs, are stressed. The multiple reg-
ister files (128 registers) in both Itanium and
the Pentium 4 are pointed out to the students.
In the Pentium 4, those are of course rename
registers along with the old x86 architecture 8
“general purpose” registers (not quite “gen-
eral”, because of their special tasks).

Other examples, such as the Alpha architec-
ture processors (actually used on the GMU
campus), the Sun UltraSPARC, and the SGI
MIPS R10000, are also covered.

4. Concluding comments

Because of the prevalence of ILP implemen-
tation in industrial products, it is obvious that
the topic should be included in undergraduate
curricula, preparing engineers and computer
specialist for the information technology in-
dustry. A sample of a possible undergraduate
coverage of ILP, as practiced in a senior EE
and CpE course at GMU, has been presented.
This program has been constantly revised and
modified in the past few years, to follow up
the developments of the state of the art and
engineering practice. This development and
constant revision of the course is intended to
continue.

REFERENCES

1. J.L.Hennessy, D.A.Pattersddom-
puter Architecture: A Quantitative
Approach, 2 ed., M.Kaufmann, San
Francisco, CA, 1996.

2. C.Hamacher, Z.Vranesic, S.Zaky,
Computer Organization, 5" ed.,
McGraw Hill, NY, 2002.

3. J.P.HayesComputer Architecture
and Organization, 3° ed., McGraw
Hill, NY, 1998.

4. J.E.Smith, G.S.Sohi, The Microar-
chitecture of Superscalar Processors,
Proc.lEEE, vol.83, no.12, pp.1609-
1624, Dec.1995.



A.Moshovos, G.S.Sohi, Microarchi-
tecture Innovations, Proc.|EEE,
vol.89, no.11, pp.1560-1575,
Nov.2001.

S.McFarling, Combining Branch Pre-
dictors, WRL Technical Note, TN-36,
June 1993.

M .Johnson, Superscalar Design,
Prentice Hall, Englewood Cliffs, NJ,
1990.

N.P.Jouppi, D.W.Wall, Available In-
struction-Level Paralldism for Super-
scalar and Superpipdined Machines,
In Proc. ASPLOS 111, pp.272-282,
Boston, MA, April 1989.

9.

10.

11.

12.

N.P.Jouppi, The Nonuniform Distri-
bution of Instruction-Level and Ma-
chine Parallelism and its Effect on
Performance, |EEE Trans. on Com-
puters, vol.38, n0.12, pp.1645-1658,
Dec.1989.

D.Tabak, RISC Systems and Applica-
tions, RSP, UK and Wiley, NY, 1996.
M.S.Schlansker, B.R.Rau, EPIC: Ex-
plicitly Paralld Instruction Comput-
ing, |EEE Spectrum, vol.33, no.2,
pp.37-45, Feb.2000.

M.S.Schlansker, B.R.Rau, EPIC: An
Architecturefor Instruction-L evel
Parallel Processors, HP Laboratories
Report, HPL-1999-111, Feb.2000.



PECTOPAH: Promoting Education in Computer
Technology using an Open-ended Pedagogically
Adaptable Hierarchy

Hugh Osborne, Shirley Crossley and Jifi Mencak
School of Computing & Mathematics

University of Huddersfield
Huddersfield HD1 3DH, U.K.
{h.r.osborne,j.mencak}@hud.ac.uk
shirleycrossley@blueyonder.co.uk

1. TEACHING COMPUTER ARCHITECTURE

1.1 Computer SystemsAr chitecture

An understanding of Computer Systems Architecture (CSA)
is essential to an understanding of Computer Science. There
is however a tendency, at all levels, in teaching Information
and Communications Technology (ICT) to neglect CSA, but
teaching ICT without teaching CSA is like teaching Russian
without teaching the Cyrillic alphabet — students may be-
come reasonably fluent in the application of abstract high
level skills (e.g. they know that the Russian for restaurant is
restoran), but lack the basic skills needed to maintain and
extend those skills (e.g. they cannot identify PECTOPAH
as being the “real” Russian for restaurant). There are two
major reasons for the neglect of CSA in teaching ICT. There
is a misconception of the effect of technological change, and
there is a tendency to use inappropriate didactic tools.

1.2 The Role of TechnologicalChange

“With IT technology developing so rapidly, is it really worth
trying to teach something that will be out of date within a
very short time?” Asrapid as the developments have been it
is the high level applications of IT that have changed — the
basic principles of CSA are essentially the same as they were
50 years ago. Learning these basic principles allows students
to build their understanding of high level IT applications on
their knowledge of the basic principles of digital computers,
confident that these principles are unlikely to change quickly
and that they will be able to apply the same understanding
to further developments and thus maintain a state of the art
knowledge.

1.3 Usingthe Right Tools

CSA is traditionally considered to have a high learning thresh-
old. This is due to the difficulty of teaching it in an incre-
mental and hands-on fashion. For CSA hands-on experience
should be provided by writing low level programmes, but low
level programming already requires a solid grounding in as-
pects of CSA| e.g. internal data representation, the memory
hierarchy, interaction with peripheral devices, etc.

This perceived difficulty is again a misconception, due to
the use of inappropriate tools. A common approach is to
use the inbuilt assembly language of some real machine to
provide hands-on experience. These languages are not de-

William Yurcik
Dept. of Applied Computer Science
lllinois State University
Normal
lllinois
USA
wjyurci@ilstu.edu

signed as didactic tools, but as programming tools for ex-
perienced users who already have a thorough understanding
of CSA, making such languages hard to understand, and
making it hard for students to separate the (manufacturer
specific) incidental from the (subject wide) essential. The
frequently cryptic documentation only exacerbates the prob-
lems students have. Using such a tool to learn CSA is akin
to trying to learn Russian using only a Russian/English-
English /Russian dictionary — a very useful tool in skilled
hands, but inappropriate as a beginner’s guide.

This abstract describes three tools that together provide a
progressive hierarchy of teaching aids thta can be used at
many levels of teaching, providing students with a seam-
less incremental toolbox that can be used throughout their
education.

The remainder of this abstract is organised as follows: Sec-
tion 2 describes the teaching philosophy behind the tool-
box; in Section 3 the three components of the toolbox are
described; Section 4 discusses the use of these tools; and
section 5 is a summary of their integration in the toolbox.

2. INCREMENTAL TEACHING

The aim of any good course must be to introduce students to
new concepts in an incremental fashion. The subject mat-
ter must be analysed and a plan of delivery developed so
that the learning threshold is at all times as low as possi-
ble. Learning of concepts is strongly reinforced by “hands-
on” experience, and this should be introduced as early as
possible — any course in which many weeks of background
introduction are required before students can undertake re-
alistic exercises is likely to be perceived as “difficult” or “too
theoretical”.

Low learning thresholds by no means exclude high learning
expectations. It is essential that the teacher has high expec-
tations of the students’ learning, and communicates these
to the students. Students perform to expectations, so high
expectations bring out the best in achievement.

These two aims are strongly related to the need to struc-
ture courses so as to enable students of the widest possible
range of abilities to profit to the maximum of their capa-
bilities from the material on offer. A well structured course



will provide students with knowledge and skills at various
levels. The course should contain enough advanced material
to challenge the more able student, allowing them the op-
portunity to develop and prove their ability, while ensuring
that the basics are covered in sufficient detail for the less
able to provide them with the basic knowledge expected of
them.

Incremental teaching is also the ideal on a longer timescale.
Students making the transition from, for example, secondary
to tertiary education often experience a “fault line” where
there is a mismatch between their prior knowledge and ex-
perience and the prerequisites assumed by their new insti-
tution. While such problems are to some extent unavoid-
able, the development of national curricula and the provision
of integrated tools and methodologies can help to alleviate
them.

3. APPROPRIATE TOOLS FOR CSA EDU-

CATION
3.1 Primary andSecondaryEducation—“How

Computers Really Work”
There is a shortage of appropriate material for teaching
late elementary and secondary school pupils the essentials of
Computer Systems Architecture. “How Computers Really
Work” is a pilot interactive CD-ROM for teaching CAS to
primary and seondary school children. Students are guided
throughout by “Chip”, an animated floppy disk. There are
areas on the CD covering peripherals, computer hardware
and software, the internet and the history of computing.
There is also a quiz consisting of multiple choice questions
covering material from all other sections of the CD. The
largest area of the CD is Computer Architecture area deal-
ing with the CPU, memory and data. The description of the
CPU is based on the Postroom Computer (see section 3.2).

3.2 Intr oductory UndergraduateLevel—*“The

Postroom Computer”

The problem of teaching low level programming at an intro-
ductory undergraduate level was addressed as early as 1965
by Stuart Madnick and John Donovan (see e.g. [3]). In the
Little Man Computer (LMC) they provided an extremely
simplified model of low level programming and computer
architecture. The LMC model has proven to be of lasting
popularity, as the number of LMC emulation programmes
currently in existence, 35 years after it was originally pro-
posed, shows (see, e.g., [11] or [10] for a survey).

The Postroom Computer (PC) [8, 9] is an extended emula-
tion of the LMC model, in which the emphasis is on flex-
ibility and generality. It is designed to introduce aspects
of CSA and low-level programming in an incremental way.
The extensions are designed to provide a range of computing
models within the LMC/PC paradigm. As they are intro-
duced they can be related both to the LMC/PC paradigm
and to “real” machines. The PC provides a powerful and
flexible tool for teaching CSA. By adding orthogonal exten-
sions to Madnick and Donovan’s basic LMC aspects of CSA
can be introduced in a stepwise fashion, never overwhelm-
ing students with details, yet leading eventually to a full
understanding of the principles of CSA.

The PC also introduces students to a more formal descrip-
tion (Update Plans, see section 3.3) of computer systems

architectures.

3.3 AdvancedUndergraduate/Postgraduate—

“Update Plans"
Update Plans (UP) is a formalism for the description of ab-
stract machines and algorithms. UP is particularly suitable
as a specification language for the description of large classes
of computer systems architectures.

UP has didactic uses in many areas of Computer Science
other than CSA — for example data structures and com-
piler construction. The common denominator in all these
applications is that of a pointer. Pointers are intrinsic to
Computer Science. Each field of Computer Science seems
to use its own more or less ad hoc notation for describing
pointers and operations on pointers, thus impeding crossover
of students’ skills from one area to another. UP is a “uni-
versal” pointer specification language. Consistent use of UP
as a supplement to the traditional notations can greatly en-
hance students’ ability to apply skills learned in one domain
to other pointer applications.

4. USING THE TOOLS

4.1 How ComputersReally Work

A pilot version of the interactive CD-ROM was tested on a
group of children and their teachers. The children all en-
joyed the package and liked the classroom metaphor used
in the CD-ROM. The teachers found it bright and cheer-
ful, and felt that the animations would catch the children’s
attention. The children did have some difficulty in under-
standing the Postroom Computer section. However, in the
pilot version, there was no facility for hands-on program-
ming of the Postroom Computer. Fully integrating a user
friendly GUI to the Postroom Computer would undoubtedly
greatly enhance the usefulness of this tool.

4.2 The Postroom Computer

The PC is supported by both online documentation[1] and
a fully integrated system of course materials [2], including a
range of exercises allowing students of all levels to advance
their knowledge and skills.

Experience has shown that after one semester (12 weeks),
with one hour of lectures and one hour of supervised prac-
tical exercises per week, first year first semester undergrad-
uates with no prior knowledge of the subject demonstrate
a good understanding of the subject matter and can suc-
cessfully undertake a range of ambitious low level program-
ming exercises of a level normally considered to be too ad-
vanced for introductory CSA courses. The students typically
achieve a higher level of understanding of the principles of
CSA than usual at this level of instruction.

4.3 Update Plans

UP was not originally developed as a teaching aid, but as
a theoretical tool. It has been the target of academic re-
search [4, 5, 6, 7], which has shown that the formalism is a
valuable aid for the description and analysis of a wide range
of computer systems architectures. UP has also been used
as a teaching aid at various universities, and has shown its
worth in helping students to understand how the compo-
nents of computers, both hardware and software, interact.
An implementation of a subset of Update Plans is currently



being used as a teaching aid for an advanced course on the
implementation of functional languages.

5. THE TOOLBOX

Each of the three components described is a useful tool in its
own right. Together they provide a long term incremental
tool for teaching CSA.

How Computers Really Work provides a basic intro-
duction to CSA, including a first contact with the Postroom
Computer model.

The Postroom Computer can be used as an incremen-
tal hands-on teaching aid for introductory undergraduate
CSA. No prior exposure of the students to the Postroom
Computer is required for successful deployment of this tool,
though it would of course be an advantage. As well as in-
troducing students to the important concepts of CSA, the
Postroom Computer model will also probably be their first
introduction to precise and formal descriptions of computer
systems structures, using Update Plans.

Update Plans provide a tool for further development of
student’s understanding of CSA, allowing them to develop
and test their own models of advanced computer systems ar-
chitectures. Update Plans are also applicable to many other
areas of computer science (e.g. data structures and compiler
construction), thus facilitating crossover of students’ skills
and understanding. Further applications of Update Plans
can be developed to encourage this crossover, and to pro-
vide an open-ended tool in teaching computer science.

6. REFERENCES
[1] http://scom.hud.ac.uk/staff/scomhro/Courses/
PostroomComputer/.

[2] http:
//scom.hud.ac.uk/staff/scomhro/Courses/CFS155/.

[3] Irv Englander. The Architecture of Computer
Hardware and Systems Software. John Wiley & Sons,
New York, 2000. Second edition.

[4] Hugh Osborne. The semantics and syntax of update
schemes. In Code Generation — Concepts, Tools,
Techniques, Workshops in Computing. Springer
Verlag, 1992.

[5] Hugh Osborne. Update Plans. In Proceedings of the
25th Hawaii International Conference on System
Sciences. IEEE Computer Society Press, 1992.

[6] Hugh Osborne. Update Plans — A High Level Low
Level Specification Language. PhD thesis, University
of Nijmegen, 1994. http://scom.hud.ac.uk/staff/
scomhro/Papers/PhD/phd.html.

[7] Hugh Osborne. Update Plans for parallel
architectures. In M. Kara, J.R. Davy, D. Goodeve,
and J. Nash, editors, Abstract Machine Models for
Parallel and Distributed Computing. I0S Press, 1996.

[8] Hugh Osborne. The Postroom Computer. ACM
Journal of Educational Resources in Computing, 2(1),
March 2002.

[9] Hugh Osborne. The Postroom Computer: Teaching
introductory undergraduate computer architecture. In
Proceedings of the 83rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2002), 2002.

[10] Gregory S. Wolfe, William Yurcik, Hugh Osborne, and
Mark Holliday. Teaching computer
organization/architecture with limited resources using
simulators. In Proceedings of the 83rd ACM Technical
Symposium on Computer Science Education (SIGCSE
2002), 2002.

[11] William Yurcik and Hugh Osborne. A crowd of Little
Man Computers: Visual computer simulator teaching
tools. In Proceedings of 2001 Winter Simulation
Conference, New York, 2001. ACM.



Read,Use,Simulate, Experiment and Build : An Integrated
Approachfor TeachingComputer Ar chitecture

loannis Papaefstathiou and Christos P. Sotiriou

Department of Computer Science,
University of Crete,
P.O. Box 1385, Heraklion, Crete, GR 711 10, Greece.
{ygp,sotiriou} @ics.forth.gr

Abstract

In this paper we present an integrated approach for teach-
ing undergraduates Computer Architecture. Our ap-
proach consists of five steps: “read”, which corresponds
to studying the textbook theory, “use”, which corre-
sponds to using a simulator with appropriate graphical
features to visualise the application of the theory, “sim-
ulate”, which corresponds to developing an architectural
simulation, “experiment”, which corresponds to modify-
ing the architectural simulation and observing the impact
that changes make to performance, and finally “build”,
which corresponds to developing a low-level hardware
model in a standard Hardware Description Language. In
our experience, going down to the gate-level is of great
importance, as students often find difficult to visualise
how different architectural approaches affect the actual
hardware (both datapath and control). By following this
five-step approach in our teaching we observed a signifi-
cant increase in both student performance and interest in
Computer Architecture and hardware design.

1 Intr oduction

The subject of Computer Architecture is widely recog-
nised as a significant and essential part of the undergrad-
uate syllabus of university degrees related to computer or
hardware design. One of the main problems with teach-
ing Computer Architecture, is that students should not
only understand the textbook theory, but more impor-
tantly its application in real systems and the impact that
different architectural approaches have on the complex-
ity and the performance of a system.

Thus, to make the teaching process more effective we
have chosen to use an educational approach which we
based on five steps: Read, Use, Simulate, Experiment
and Build. In this paper we describe these five teach-

ing steps and focus on the ones we believe are yet un-
common, however have been very effective in our expe-
rience.

2 “Read”. TextbookTheory

Our Computer Architecture teaching is based on the
Hennessy and Patterson Computer Architecture text-
book, “Computer Architecture: A Quantitative Ap-
proach” [1], currently recognised as the most extensive
and complete reference on the subject. Our course is
tought in the last year of the Computer Science under-
graduate degree, i.e. year 4, and runs for a duration of 14
weeks. As our teaching philosophy relies on combining
theory with practice, we prefer to give students practi-
cal experience than a vast amount of theory. Thus, in 14
weeks we cover the first five chapters of the book, both
in terms of theory and practice.

3 “Use”: HASE Simulator

After the “Read” stage, students are given simple exer-
cises on a graphical simulator. Our simulator of choice
is the HASE [2] environment. HASE (Hierarchical com-
puter Architecture design and Simulation Environment)
is a graphical design, simulation and visualisation envi-
ronment that can be used for both teaching and research.
We use the DLX HASE model developed at the Univer-
sity of Edinburgh. HASE allows students to visualise
both the overall structure of the DLX architecture and
the execution of instructions by observing the step-by-
step progress of individual events. HASE also allows for
students to explore the impact of architectural parame-
ters to the performace of the architecture, as students can
change these using only the GUI environment (Graphical
User Interface) and then re-run the simulation.



Eile Library Edit Build Simulate Experiment Tools

Design Validate Bulld Simulate Experiment

Project : DLX_v2.3
Directory : /home/hase/Developmentidbv2.3

Instruction

ACTIVE

Instruction|
F—"| Decode [§
ACTIVE HELD ] P ACTIVE

\3:0 | ADDI_R3_R1_3
I SUBI_R4_R2_3|

o
=i QNN
» EO
= (AT

DLX with Parallel Function Units

Simulate Status: Read in 1034 events.

S

Figure 1: The HASE DLX Model

The DLX HASE exercises require students to write
DLX assembly code and execute it on the HASE envi-
ronment. With the help of the simulation environment
students can measure the execution time, study the exe-
cution of each instruction in detail (passing through each
pipeline stage) and the impact of architectural parame-
ters. Students are asked to reason about the execution
time of their program and to optimise their code based on
their reasoning. They can experiment with different code
schedules and diffrerent parameters and evaluate the ex-
ecution time with the aim of finding the best possible
cases.

Since using HASE as part of our teaching, rather than
the standard pen-and-paper ones, we observed a signif-
icant increase in the students understanding and perfor-
mance in the written examinations. This is probably due
to the fact that by getting hands-on experience of the the-
ory covered, students gain deeper and more thorough un-
derstanding.

4 “Simulate and Experiment”: De-
velop a Simulator

The next stage of the course requires for the students
to implement their own architectural simulation using
a standard Hardware Description language (HDL), i.e.
Verilog in our case. In this stage the implementation of

the architecture is to be at the behavioural level. The stu-
dents are asked to implement a RISC CPU called ARCP.
The reason we chose an alternative to the DLX archi-
tecture was to give students something more challeng-
ing than simply re-implementing the DLX, which they
already are familiar with at this stage from the HASE
simulations.

4.1 ARCP - A 2-wayIssueAr chitecture for
Teaching

The ARCP architecture is based on the DLX, and has a
very similar instruction set, however it is slightly more
complicated, being 2-way superscalar. ARCP fetches
two instructions at the same time from its instruction
memory, which should be aligned and independent of
each other for reasons of simplicity (students are given
only 6 weeks of term for completing the whole project).

The main characteristics of the ARC architecture are :

e 64 General Purpose Registers.

e 32-bit address and word lengths.

e byte addressable, big-endian architecture.

e support for two data types: words (32-bits) and bytes (8-bits).

e 2-way fetch and execution of independent instructions; the
independence of instructions must be ensured by the com-
piler/assembly programmer.

e only one control instruction (branch or call instruction) is al-
lowed in an instruction pair and it must be placed in the first
of the two instructions.

o only one memory reference instruction is allows in an instruction
pair and it must be placed in the second of the two instructions.

e any number of arithmetic/logical operations are allowed.

e same memory used for instructions and data and self-modifying
code is not allowed.

e memory can only be accessed using load or store instructions.
e Dbranches are not delayed.
o register O is hardwired to 0.

e there as no condition codes; comparison instructions write a 1
(for true) or a O (for false) at a desstination register.

e conditional branches are PC-relative while unconditionals (call
instructions) may be PC-relative or register-indirect; uncondi-
tionals store their current address in their destination register.

4.1.1 ARCP Instruction formats

The three different instruction formats and the format of
an instruction pair are shown in Figure 2.

4.1.2 ARCP Instructions

All supported instructions along with their opcodes and
formats are shown in Figure 3.

Most of these instructions are straightforward and
found in the majority of RISC style architectures. The



[ 4MS bits ] 3 LS opcodebits |
[ opcode [ 000 [ 001 [ 010 [ 011 | 100 | 101 | 110 | 111
0000 add addi sub subi i mul mul i cngti

R | R | R | |
0001 cmeq | cneqi cmme | cmmei cnge | cngei cm t crm ti
R | R | R | R |
0010 and andi or ori xor Xor i gcp cnl ei
R | R | R | R |
0011 shru | shrui shrs | shrsi shl shli set hi
R | R | R | L
0100 | dbu | dbs I dw sth stw
| | | | |
0101 breq br ne br ge brit callr cal |
L L L L R L

Figure 3: ARCP Instructions and Opcodes

Instruction Pair Format:

Arithmetic/Logic or Control Transfer ‘ Arithmetic/Logic or Load/Store

32 32

Single Instruction Formats:

R: ‘ Opcode ‘ R, ‘ Ry ‘ R, ‘ ‘
7 6 6 6 7

I ‘ Opcode ‘ R, ‘ Ry ‘ Imm ‘
7 6 6 13

L: ‘ Opcode ‘ R, ‘ Imm o ‘

7 6

Figure 2: ARCP Instruction Formats

only unusual ones are the sybi i and gcp instructions.
The sybi i instruction corresponds to a subtract imme-
diate inverse operation, i.e. subtracts the register operand
from the immediate, thus inverting the order of the sub-
traction. The gcp instruction corresponds to a guarded
copy operation. A guarded copy operates using three
registers and copies the source register into the destina-
tion if the third register, the guard, is not equal to zero.
Guarded copy instructions can be used for implementing
if-then-else blocks without branches and therefore can
improve the efficiency and performance of the pipelin-

ing.

4.2 ARCP Simulation and Evaluation

In the “Simulate and Experiment” phase of the project
the students are asked to build a behavioral simulation
of this CPU and collect a set of measurements based on
a number of small benchmark programs. Some of these
benchmarks are provided by the lecturers, whereas the
rest are to be developed by the students and are to be
representative of typical applications. In our view, let-
ting the student deal with the problem of finding the best
benchmarks for evaluating the performance of the pro-
cessor is really important, as it makes them really think
hard of all the underlying issues involved. To help stu-
dents achieve this, our research group has developed sim-

ple compilers and assemblers which students can use to
produce their benchmarks.

The measurements that we are asking the students to
provide (and we believe they are the most important for
such a simulation) are the following:

e number of useful
NOOP).

instructions executed (non

number of instruction pairs executed.
average number of useful instructions.
average number of memory reads per pair.

average number of memory writes per pair; the last
two are important for understanding the use of the
memory hierarchy and the impact of having differ-
ent data and instruction memories.

number of taken and not-taken branches.

percentage of useful instructions for each of the fol-
lowing groups: add/sub/mul, compare, and/or/xor,
shift, gcp, load/store, branch, subroutine-call and
jump.

Towards the end of the course students are asked to
write a report which describes possible optimisations on
the above architecture based on their simulation results.
They are also asked to run new experiments on their
architecture so as to support their claims for the possi-
ble optimisations. We believe that this idea of students
proposing possible optimisations given an initial archi-
tecture is a crucial skill that a Computer Architecture stu-
dent should acquire.



5 “Build™ Implementing the

ARCP CPU in an HDL

The last stage of the course involves the development
of the ARCP CPU, using synthesisable and structural
HDL code based on a set of pre-implemented “library”
components which we have developed for this exercise.
The ARCP instruction set has been designed with em-
phasis on straightforward mapping to a gate-level cir-
cuit description. The students are asked to implement
the ARCP CPU using a five stage pipeline, similar to the
DLX pipeline of the textbook. This is shown in Figure 4.

Register Read Data
Fetch Instr. Decode ALU
PC+Imm

Reg. Write

Memory

Figure 4: ARCP CPU Pipeline

We provide students with the following pre-
implemented library of components to use in their
ARCP CPU:

e a 6-port Register File.

e separate Data and Instruction Memories with a
bandwidth of 64 bits/clock cycle.

e two 32-bits ALUs.

e any number of multiplexers, flip-flops and de-
coders.

The ARCP CPU control logic is to be implemented
in synthesisable or at least “almost” synthesizable HDL;
for this purpose students are provided with guidelines on
producing synthesizable Verilog Code. We ask students
to identify all possible data and control hazards and to
try and reduce them using data forwarding. Whenever
forwarding cannot eliminate a hazard, their control logic
should insert wait states, i.e. “bubbles” in the pipeline.
As students have only 3 weeks to implement this stage
of the course, to save time they are provided with a
schematic of a reference datapath. Figures 5, 7, 6 show
the schematics for stages 1, 2 and stages 3,4 and 5 of the
ARCP pipeline respectively.

The ARCP datapath schematics shown include some
of the required control signals to give students a hint
of how to implement the control logic for the pipeline
stages and for forwarding data. During the past few years
of running this course we have experimented with these
schematics, in some years showing some of the control
signals in these schematics, whereas in other years we
did not. We found that students took about 50% more
time to complete the implementation when they were not
given any of the control signals in these schematics.

STAGE-1

wait

I
l
I
i
|
fer irvalid2

l
irB1| 1 |irB2
l

)
! .

mxtpel | || pet Instruction imemB
! Cache imemA
|

pet

I
I

I

I

I

I

I

I

I

I

I

: wait
I I
I I

i i dstPC
pclplus8 ]

xfer

nxtpcl

Figure 5: Stage 1 of the pipeline

After completing their implementation students must
verify the correctness of their low-level implementation
by using their architectural simulator developed in the
“Simulate and Experiment” stages as a “Golden Model”
and comparing the operation of the two on the same pro-
gram code. In this way, students acquire another neces-
sary skill for hardware design, verification against high-
level models.

To make good use of their implementation and to
make them realize that detailed hardware models can be
used whenever detailed results are required, we ask them
to calculate the speedup of this architecture compared to
a reference non-pipelined architecture we provide them.

Finally, the students are to provide a report on how dif-
ferent architectural approaches affect the hardware im-
plementation. To help them realise the complexity of the
task we suggest that they alter their implemented dat-
apath so as to implement their proposed optimisations,
which they already implemented in their architectural
simulation. By doing this, it is easily made obvious
how complex it can be to implement a new optimisation
which might take almost no time to incorporated in the
architectural simulation.



STAGE-3

T
i dstEnabB3, dstRegB3 i 1 dstEnabB4, dstRegB4.

1+6

STAGE-4 , STAGE-5

|
| [dstEnabes

T dstRegB5

1— mdforw3

I
I

I

I

I

aluBmode3 !

I

L

| dstEnabA3, dsfRegA3
|
I

dstEnabAS
dstRegAS

resultB4. I resultBS

4, dsiRegAl4

aluBinA3

| | 2LS bits
I I
| | aluBinB3 B u
I ]
I I
: i Data mDputda
' Addr Dout
i
I
|
I

align
Din sign-extend

mDoutdb

mDin3a

mDin3b

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
|
T
I
I
I
I
I
I

aluAinB3 i
L
I
I
I
I
I
i
I

resultAd
aluA3 I resultAS
I
avainas | A :

Figure 6: Stages 3, 4 and 5 of the pipeline

6 Conclusion

In this paper an integrated approach for teaching Com-
puter Architecture was presented, which is currently
used at our University, and has been found to be very
effective. Its main advantages are the following:

1. Itincreases the interest of the students in Computer
Architecture and hardware in general. There was a
significant increase in the number of students con-
centrating on Hardware after we have adopted this
approach either by taken their undergraduate thesis
on a hardware subject or enroll on a hardware or
semi-hardware oriented postgraduate program.

2. It gives the student a thoroughly comprehension of
the main subjects of Computer Architecture

3. Itenhances their performance in the exams which is
probably due to the fact that they get a lot of hands-
on experience on every aspect of Computer Archi-
tecture.

4. It provides them with skills that are very useful
when designing hardware and not only when inves-
tigating the architecture of a system.

STAGE-2
wait |y wait mdfojw2 [ mdforw3
! wait dstEnabB2. dstEnabB:
valid2 dstEnaly | dstEnabA’
] opcodeB Control
I opcodeA PLA
! murite2
mread3
| quardA
needrAa, needrAb
! guards needrBa, needrBb
I tAa !
selPCdst e T
tAb i dstEnabB4, dstReqBA
i IBdst Bypass Logic dstEnabB3. dstRegB:
I Ba dstEnabAd, dstRegAd 1
' pelAdst 1B & Comparators dStEnabA3_ dstRegA3 1
! selrAa, selrAb !
| selrBa, selrBb |
' selBinB, selAinB, xferMode I
i dstReqB? | | dstRegB3
' GsRegA2 i 1] dstRegAd
I 1
| align& mmB13 !
dSIENGDAS, dstReqAS
o sign-ext. | immBL3shiftedZ
irB2 — —— L o mMBLOshifted 3 GStEnabBS, dsiReaBS
— uards i
! ga |1 b ‘
! l ‘ 82 test !
18 rfBa

aluBinA3

18b e ||} regBa
aluBinA2
1Ba selBinB

aluginB2

HBb aluBinB3

San regBb

Register

mDin2 mDin3a

tha I aluB3
] resultBa

. = resultB5
align & File 1= resultAs

T resultAd
aluA3

sign-ext

selAinB

i
aluaingz_| 1| aluaings

0 regAb |

o ) rfAb [ I

.
I

regha aluAinA2 1 | aluainas
v ) rAa 1
|

immA13

pel

xfer

Figure 7: Stage 2 of the pipeline

This approach is, we believe, ideal for a course that is
taken by students that might want to focus on hardware,
or have already made such a decision and they would like
to get a first idea of how a system is initially designed,
then simulated and finally built and tested. Its main dis-
advantage is, we believe, that it relatively increases the
work needed for the course and might not be that appro-
priate for cases where just an introduction to Computer
Architecture is needed (maybe because there are a great
number of more specialized hardware design courses in
the syllabus).

References

[1] J. L. Hennessy and D. A. Patterson, Computer Ar-
chitecture: A Quantitative Approach. Morgan Kauf-
mann, 1990.

[2] P. S. Coe, F. W. Howell, R. N. Ibbett, and L. M.
Williams, “A Hierarchical Computer Architecture
Design and Simulation Environment,” ACM Trans-
actions on Modelling and Computer Smulation,
vol. 8, Oct. 1998.



An Integrated Laboratory
for Computer Architecture and Networking

Takamichi Tateoka, Mitsugu Suzuki, Kenji Kono, Youichi Maeda, amdik&be

Department of Computer Science
The University of Electro-Communications

Tokyo, 182-8585 Japan
Email: cnp@acao. cs. uec. ac. | p

Abstract a computer system, tradeoffs between hardware and soft-
ware must be well understood and the characteristics of
Processors, compilers, and networks — important mateapplications executed on the system need to be carefully
rials covered by computer science curricula — are of-examined. Adjusting interfaces between system compo-
ten treated independently in laboratories associated witlments is also required. Thus taking a broad view of entire
corresponding lecture courses. An integrated laboratorgystem is mandatory. For students to acquire the view,
called CNP for juniors majoring in computer science atseparate components need to be integrated into a com-
the University of Electro-Communications has been de-plete system in a laboratory.
veloped and is now under way, where a networking pro- A design problem across areas can effectively be
tocol stack implemented by students is translated into obsolved in a short term by teamworking, where the prob-
ject codes by a compiler implemented by students, whicem is divided into parts and works by team members are
in turn are executed on a processor implemented also byhared and combined. Providing students with opportu-
students. The goals of the integrated laboratory are tanities to have experiences of such teamworking in univer-
deal with modern and attractive materials, to provide stu-sity laboratories dealing with design and implementation
dents with opportunities of collaborating in constructing of both hardware and software for modern and attractive
a large system, as well as to have students share a feelirgplications is of key importance.
of accomplishments among them. Responses from stu- An integrated laboratory called CNP for juniors ma-
dents approved our intention and verified the effective-joring in computer science at the University of Electro-
ness. In this paper, we describe the design and develoggommunications (UEC) has been developed and is now
ment of baseline components to be integrated, laboratoryinder way, where a networking protocol stack (called
organizations and schedules, and results and evaluatiorsnyIP) implemented by students is translated into ob-
of the laboratory. ject codes by a compiler (called Tiny C) implemented
by students, which in turn are executed on a proces-
sor (called MinIPS) implemented also by students. The
1 Introduction whole system integrated by students in the laboratory is
called TinyJ.
Processors, compilers, and computer networks are im- Students are organized into several teams. Members
portant materials covered by computer science curriculaof a team cooperatively perform the laboratory experi-
They are often treated independently in laboratories asments. The goals of the CNP laboratory are for each stu-
sociated with corresponding lecture courses. Many redent to understand the interfaces between system mod-
ports on laboratories dealing with microprocessor de-ules, to design and implement an assigned one, to in-
sign and implementation have been published (eg.[1])tegrate cooperatively the components into a system, as
Exercises on compiler design are too common to menwell as to discuss and adjust their specifications.
tion. Some reports on computer networking laboratory In the following, Section 2 describes laboratory de-
exist[2], although it has been recognized in the Com-sign and developments of baseline components to be im-
puting community that academic institutions should treatplemented and integrated by students. Related courses
computer networking to more fully extents[5]. offered to students are also stated in this section. Section
However, in order for improving cost performance of 3 describes the details of the laboratory including stu-



S ubPestack )

book. PL8 (Language translation system) is covered by
an elective junior course, where a simplified C compiler
Tiny C[8] is introduced and designed. Fundamentals of

s (TN IRy

OS are introduced in a requisite course but the topics
are intensively treated in an elective junior course. Top-
ics in Net-Centric Computing are treated in an elective
senior course, where principles of communication net-
works with OSI layered architecture are introduced.

The CNP is offered as a requisite junior laboratory
course. Since we can not expect special knowledges
given by elective lectures or lectures offered in future
courses, when necessary we provide students with practi-
cal lectures required to complete the assignments in lab-
oratory hours.

Communicate with
UDP/IP Protocol

T o Y |
I o 1) RIS

Linux

(" 3 M oprocessor )
S MR PS)

13INY3H1T

Figure 1: lllustration of the integrated laboratory.

2.2 MinlPS Computer System

dent organization and schedule of the laborator r .
9  of the laboratory cou SeRequwements for the processor to be developed are: 1)To

Section 4 gives results and evaluations of the Iaboratoryb - d mod ducational .
Section 5 closes with a summary and future works. € simple and modern as an educational processor given

to computer science juniors; 2)To have enough perfor-
mance that allows building a computer system using the
processor as a CPU core in Tiny J System; 3)To conform
to the processor dealt with by [6] used as a textbook in
the corresponding lecture course.

Requirements for the computer system based on the
The laboratory is designed to amalgamate UDP/IP proprocessor are: 1)To accommodate a communication port
tocol stack, a C compiler, and a 32bit RISC processorthrough which the protocol stack transmits and receives
Students integrate these materials into a complete sygpackets; 2)To equip with enough amounts of memory for
tem (Tiny J) to construct a complete small computer sysfprogramming TinylP; 3)To have functions for loading
tem which is capable of communicating with Linux OS programs and acting as a console.
through Internet standard UDP/IP protocol. A simple We utilize a SRAM based FPGA as the implementing
protocol stack (TinylP) coded in a simplified C language device used by students. It makes students to redesign
is translated into object codes by a compiler (Tiny C) im- the processor any times without care of making errors.
plemented by students, which in turn are executed on @n evaluation board, system-on-a-programmable-chip
processor (MinIPS) implemented also by students. ThSOPC) Development Board by Altera, equips with an
overview of the integrated laboratory is illustrated in Fig- FPGA which is capable of realizing 400,000 gate logic
ure 1. circuits using Logic Elements (LEs) and 20 KB memory

We design the laboratory so that students can designjsing Embedded System Blocks (ESBs). The board also
implement, and modify all parts of the system compo-equips with Synchronous SRAM (SSRAM), RS232C,
nents. Students, however, are not assigned to desigand Ethernet transceiver, which enable to organize a sys-
every submodule because of restricted laboratory hourdem meeting the requirements with no other hardware
We provide students with information enough for them to supplements. For those reasons we have chosen to uti-
inspect any part. For example HDL descriptions of pe-lize the SOPC Board for implementing the system.
ripherals used for console function and source codes of We do not use any commercially available intellec-
original compiler which are to be extended by studentstual properties for FPGA configurations such as Ether-
are given to them. net controllers because intellectual properties would in-

We summarize related lectures and laboratories refertroduce black boxes. Thus all the prototype modules in-
ring to the Computing Curricula 2001 by IEEE CS[5]. cluding the peripherals have been designed by ourselves.
Lectures covering AR1 to AR5 of Architecture and Or- Although students are not assigned to design the periph-
ganization and PL1 to PL6 of Programming Languageerals, our descriptions are given to students so that who-
are offered as core, accompanied with correspondingver interested is ready for reading.
labs. AR6 (Functional organization) is covered by an The organization we have designed is shown in Figure
elective sophomore course, where [6] is used as a tex2.

2 Design and Developments

2.1 Laboratory Design



is initially executed for loading programs upon turning
on the power. The monitor is loaded through the boot
loader. It provides such console functions as display-
i|  Instruction Cache Data Cache : ing the memory contents, loading programs and data into
256W°"“|1k5yw) ' 256W°|'d(1k8y‘e) memory, displaying the contents of registers, modifying

MinIPS
.(32bit RISC Processor) s

the contents of program counter, and handling interrupts

BUS

1 | | | as well as dispatching the corresponding processes.
Boot Loader || onroller | ool et Using Quartus Il ver.1.1, a development software tool
-------------- e R e ey by Altera, we describe and compile the designin Verilog-
wordx2 | XCVR o HDL, configuring the FPGA on the SOPC board. About

57% of the LE resources have been used for the con-
figuration. The compilation requires about 25 minutes
Figure 2: MinIPS system organization. (Enclosed with with a platform of Pentium4 1.7GHz CPU with RDRAM
dashed box is the part implemented on an FPGA.) 512MB memory. The MinIPS system is operating at a
clock rate of 16.5MHz.

The MiInIPS processor[3] is a 32 bit RISC which con-
forms with MIPS[6]. The MinlPS instruction set is re-

duced to a minimum. For example, multiplication and Requirements for the language compiler to be developed
division are not provided as machine instructions but arezre: 1)To be simple enough to understand; 2)To have
compiled to subroutine calls. The block diagram of the gnough ability that allows compiling network protocol
processor is shown in Figure 3. Conforming to the text-siack and applications for TinyJ System: 3)To conform
book, the structure is composed of five pipeline stagesio compiler design lectured in the corresponding lecture
instruction fetch (IF), instruction decode (ID), execution ¢qyrse.

(EX), memory access (MEM), and write back (WB). A Tijny C[8]is a small subset of C language developed by
forwarding unit (FW Unif) is equipped. The load delay pyof, Watanabe as an illustrative compiler for his com-
is one, and the branch delay is also one. The MinlPS,jier course. It almost meets our requirements except
processor conforms to the textbook butitis simpler. oy |acking of support for some operators such as bitwise

Although the MinIPS processor is based on Harvardoperators. We supplemented support for unary address
Architecture, it does not allow fetching instruction and operator (&), bitwise operators &”,“| ), modulo op-
data simultaneously because the memory is not physierator(‘96) and shift operators ¢<”, “>>") into Tiny C.
cally divided into instruction and data submemories. AsThe supplemented version is denoted by Tiny C hereafter
a solution to the problem we provide instruction and ynless otherwise noted.
data caches which we implement using ESB memories e also introduced minor modifications into SPIM
on FPGA. Two SSRAM chips each of 256k words ca- emulator[6] to use it as a MinIPS emulator. The mod-
paCity mounted on the SOPC board are utilized for thEificationS include appending a memory image shap-
main memory. It has enough capacity for programmingshot function which is used as a substitution for as-
TinylP. sembler and linker to obtain MinIPS object codes.

The specification of the RS232C controller is basedSigned multiplication and division routines were added
on the simulator SPIM[6], enabling a smooth shift from into “t r ap. handl er” containing startup codes for
simulations to executions on real machine. We use théMinIPS, since MinIPS does not support these instruc-
RS232C for program loading and console function. tions.

For the communication port, we adopt the commonly
used Ethernet where a link layer address is provided
As the physical layer a PHY chip on the SOPC is uti-
lized. Descriptions of the link layer for controlling the Requirements for the protocol stack to be developed are:
PHY has been developed by ourselves[4] and given ta1)To be simple enough to understand and easy to de-
students. The interface is driven by hardware interruptsscribe in Tiny C with simple syntax; 2)To be realistic
since polling is not a practical method for receiving Eth- and practical so that students feel a sense of accomplish-
ernet packets. ments; 3)To be educational so that students understand

For loading programs and acting as a console, two profeatures and benefits of the protocol with layered archi-
grams, boot loader and monitor, are provided. The bootecture; 4)To be extensible so that students can append
loader is stored in a ROM area implemented on ESB. Ittheir own ideas to the protocol; 5)To be independent of

2.3 Tiny C Compiler

24 TinylP protocol stack



EPC Exception

Regi ster
Ur

:\f next PCle hext Pt ype 8 sel T
« 0x10003000 JunpTar get sel ecter Add M
— — u

x

next PCsel

4 target B cond)__ i medeate -
test /Bcond
T | imediate Add =y shant
5 n
: E trl M
= A ;
3| &rs RRL ROL - B " Ment oReg
& Ll RRe u 2 Lo o
2 Regi ster| [T0]X Iy u
) e * m| Menwite = "
—> W RD2 HHM c g
g U < Dat a s
o ? il T Cache o
] 12 E
cache RegW i t ef] : Shel W RD o2
PC—o—>| — Instruction = :
- L i iqte 1 Le| addr 3
Oont_r ol — : :
. uni t sl o [} o
RegDst MenRead
Exception rt M
Control rd u
Uni t 31 ﬂ L _—‘

Figure 3: Block diagram of MinIPS processor.

hardware so as to allow testing before the processor bang new features to the stack, making the stack extensi-

comes available. ble. Hardware dependent routines are collected into one
To simplify the protocol stack, we use Internet Proto- module far dwar e. c), resulting in portability to new

col (IP) as a network layer, and User Datagram Protocohardware.

(UDP) as a transport layer. We do not support packet The core routine of the stack consists of about 800

fragmentation, Address Resolution Protocol (ARP), norlines in C language with additional 400 lines of instruc-

Internet Control Message Protocol (ICMP) processing.tive comments. Tiny C version consists of about 500

In spite of the limited functions, it is still capable of lines since some features such as generic FIFO routines

communicating with standard IP such as the one implewere omitted.

mented in the Linux kernel. We also supplied a TinylP compatible library for stan-
We provide students with two versions of the imple- dard UDP/IP stacks on Linux. Students can build and

mentations: one written in standard C language to illus-execute application programs before completion of their

trate the design of the protocol stack, the other written inown stacks.

Tiny C to be integrated into Tiny J System. Both of them  We developed a monitoring toek her peep which

have almost the same structure except that the latter callsllows observing ethernet frames in hexadecimal num-

for works on differences between standard C and Tiny Cbers (and ascii characters). It is similarttopdunp

compilers. We basically describe the former in this sec-command on Linux with x option except thagt her -

tion. peep displays ethernet headers. It displays whole ether-
The stack consists of ten modules whose functionsnet frames in simple format.

and calling flows are shown in Figure 4. They are de-

scribed in separate C source files with well-defined in-

terfaces. Receiving functions are driven by interrupts.3 I ntegrated L aboratory

The method of using interrupt mechanism is practical

and keeps the control flow simple and conforming to theThe laboratory course offered in second semester of ju-

OSl seven-layer model. The structure facilitates appendnior year started from year 2001. Hours assigned to the



appl i cation

Ty -udpapi . c

i Interface layer for
_/this IP protocol suite

i udpapi _send() udei _receive()

e util.c ' / Yo

: , ; ; ! 1 buffering of

v utility functions | ! | , 1 received messages

N o : N A B
- '

udpjenqueue()

SR _udp_out put. ¢ !
ubp ( udp_out put () : : udp_i nput () 3 (L;ijt-lz?&:z sulation
encapsulatior, p_outy n \ p1 P o p
PR ip_output.c PR ip_input.c
P ; ] vop
encapsulatiorl, Fp_outpyt() % Fp_input ) / decapsulation
PSR -eth_output.c P -eth_input.c
Ethernet}l | / . \} Ethernet
encapsulatiori, eth_out put () eth input() _/ decapsulation
5 hardware. c
! . ' Interface for
' hardwar e_out put () har dwar e_i nput () !

/hardware layer

Interrupt /\/

Figure 4: Functions and their calling flows of TinylP modules.

course are divided into two periods each consisting ofcan still be understood. They are assigned to supplement
12 three-hour classes. The laboratory course completate incomplete design with proper descriptions. For such

within individual periods. In each period 30 students takemodules as the RS232C and Ethernet controllers, de-
the course. Thus 60 students in total participate in thescriptions are given to students so as to enable them to
laboratory during the semester. verify that the processor is operating.

In each period students are grouped into five teams For testing and verifying the design several tools are
each of six students. A team consists of N (network-provided: 1)A graphical simulator embedded in Quar-
ing), C (compiler), and P (processor) subgroups who argus has been used throughout the experiments; 2)LEDs
in charge of working on corresponding sub-laboratoriesequipped on the board are used in the preliminary exper-
and cooperatively develop a complete Tiny J system. iments as well as for monitoring states of programming

In the P sub-laboratory students proceed along the folexecution; 3)The boot loader given to students has been
lowing steps: 1)Learning how to use design tools; 2)De-éffective in checking whether the MinIPS system works
signing small submodules; 3)Designing arithmetic logic as a whole; 4)Test programs such as calculating prime
unit; 4)Designing pipelined processor; 5)Compiling the numbers in Tiny C are given to students for more exten-
MinIPS system and verifying the function. sive debugging.

For coordinating them with other sub-laboratory as- Discussions among team members on the specification
signees, we fix a minimum specification given to stu-of MinIPS are expected. For example, extra instructions
dents. After getting familiarized with the development may be added to MinIPS instruction set if an agreement
tools, students first design simple modules such as multiis reached between C and P assignees.
plexors and adders, and then gradually shift to designing Students start the C sub-laboratory by tracing the
more complex modules. When completing all the necesparser in the original Tiny C source code to draw a chart
sary modules, they start designing the entire processor. jllustrating the syntax of the language processed by the

In designing the processor they are not assigned to dezompiler. Then they are assigned to refine the origi-
scribe the whole of the processor. Instead, they are givenal Tiny C compiler so as to accept additional operators
a processor description with several parts taken out irand literals required to implement TinylP. The assign-
such a way that the behavior of the pipelined processoments are the necessary supplements described in the



previous section. Discussions among team members oteveloped by team members into a complete Tiny J Sys-
the specification of their Tiny C is expected also in this tem. The integration follows the steps: 1)N, C, and P
sub-laboratory. Agreements in the team members magubgroups demonstrate respectively that TinylP is run-
lead to changing the specification of their final version ning on Linux, that Tiny C generates code executable on
of Tiny C. MinIPS emulator, and that the MinIPS processor works

In the N sub-laboratory students proceed alongby executing LED blinking program. 2)They synthesize
the following steps: 1)Writing simple applications; MinIPS and load the TinylP compiled by Tiny C. 3)They
2)Analyzing ethernet frames; 3)implementing and en-execute an echo server on Tiny J System and confirm that
hancing TinyIP for Linux; 4)implementing TinylP in it can communicate with an echo client on the Linux box.
Tiny C for MinIPS; 5)Combining TinyIP with other sub- Screens displaying UDP/IP communications between
laboratories. The fourth and the last are steps for théVlinlPS and Linux are shown in Figure 5. A window
CNP integration requiring collabrations of team mem- of the MinIPS console displays loading and execution
bers. The integration steps are to be led by N assigneesof TinyJ object codes for the echo server. The Linux

Students start the N sub-laboratory from learning ba-screen displays execution of the echo client on a window
sic network architecture and writing some simple appli- while monitoring the communications st her peep
cations. They connect two Linux boxes with an etherneton the other window. The echo server in this figure turns
cross cable, configuring a LAN isolated from the cam-upper/lower cases of received alphabets in transmission
pus network. We provide a TinylP compatible library for ease of verification.
for Linux and a sample application with detailed docu-
ments. They utilize the library to write client and server
programs satisfying echo protocol[7]. The programs are4  Results and Discussions
used as applications later in Tiny J.

Next they learn how the frame is encapsulated and det the P sub-laboratory, according to steps reached by in-
capsulated. They capture and analyze ethernet frameividual students, we gave hints at early stages to adjust
produced by standard UDP/IP stack wéhher peep their paces. In the first and second periods, eight of ten
command. They also get a good reference of workingand ten of ten assignees completed the P sub-laboratory,
UDP/IP frames. respectively. Even students who could not complete the

Students then proceed to implementing TinyIP in stan-laboratory expressed in their reports a strong sense of ac-
dard C. We provide a template of TinylP implementation complishments.
missing core functions such as encapsulation and decap- We accepted seventeen reports from the C assignees.
sulation of ethernet, IP, and UDP frames. For verifying All of them completed all the requisite assignments,
the implementation they connect two Linux boxes: one isand twelve students tried the optional enhancements.
configured to use standard UDP/IP stacks while the otheExamples of the enhancements made by students are:
is to use TinylP. On both boxes they execute their clientadding pre-increment/pre-decrement operators; extend-
and server applications developed at the first step. Theing the lexical analyzer so as to accept various sorts of
enhance their TinylP implementation by adding someinteger literals.
features such as ICMP and ARP, and/or by making im-  All of the twenty N assignees succeeded in imple-
provements on memory consumption. menting TinyIP stacks for Linux. They enhanced their

After discussions among team members to fix the finaltacks for Linux in various ways. Table 1 shows the en-
language specification of Tiny C, they implement TinylP hancements and the numbers of students who tried and
in TinyC for MinIPS. They are given a template of finished the enhancements. Some of them made multiple
TinylP implementation in TinyC and write the miss- enhancements.
ing code in accordance with Tiny C specifications. They Tools for checking individual components, for testing
compile and test their implementations in the following effects caused by interactions between components, and
three environments: 1)gcc for compilation and Linux for for verifying Tiny J integration as a system are required.
execution; 2)Tiny C for compilation and MinIPS emula- Although some of them have been provided for students
tor for execution; 3)Tiny C for compilation and MinIPS  as mentioned in the previous section, the testing environ-
real hardware for execution. In the first environment, ment is still poor as a whole. Particularly in verifying the
they can test TinylP stack independently of Tiny C andintegration, it is not easy for students to create programs
MinIPS. In the second environment, they can test TinylPfor checking expected behaviors, because situations cov-
stack and Tiny C independently of MinIPS real hard- ering exhaustive failures are difficult to produce. If we
ware. provided better test tools, they could verify their imple-

Finally in the third environment they integrate results mentations more easily.



] login SEEEEEER 5 ; £1] [e] monitor windous

[root@localhost "]# Lfcunhg eth0 inet 192,168,201.1 [r‘nnt@ln:alhnst ~]# ifconfig ethO

[root@localhost “]# arp -5 192,168.201.3 00:40305:51:0F 148 Link encap:Ethernet HWaddr 00:01:03:12E:42:0R
ol [PO0t@L0calhost “1# sock -u 192,168.201.3 echo inet addr;182.168,201,1 Brast:192,168,201,235 Mask:253,255.255.0
Hello, Internet, UNNING MULTICAST MTU:1500 Metricsl

- (hELLO, iNTERNET,

rrors:0 dropped:0 overruns:0 frawe:0
7 errors:0 droppedt0 overrunst0 carriertl

callisions:0 troueuelen: 100

Interrupt: Base address:0x7000

[root@localhost “1# etherpeen etn0
ernel filter, protocol ALL, rau packet socket

0000 00 40 05 51 df 48 00 01 03 e AZ Da 08 00 45 00

@7 Q7 H
- 0010} 00 24 00 56 00 09 40 13 61 03 cb o8 < 01 |:0 aS
W ndow for ; 903040600070019 %9‘4és§s‘a‘ sf‘z‘
. b= =) =3 ic BC C
ECHO client O e I B Hello
P 49 o7 €5 75 o 68 7 2903
: ntoe +

rone

100 0103 20 42 03 00 40 05 51 d 43 03 %9 45 09

306 23 060600 oo 40 11 67 EacO a8 :903 :o aS

e 01 000704 o oo 19 P OOEB 45 4545 Af 2
° o7 g o

1920 BB ﬂe 54 45 EZ ﬂe AE 54 Ze Ua 00

10008E04 BFEE0040
10008EQK BFE70044

T0008ECC 8FB40038

10008E 10 BFBS003C W ndow f or
1000E 14 8FB20050 |

10008E18 BFE30034 - et her peep
1000BE1C BFBOOD24

10008E20 8FB1002C
1000BE24 27BDO060

10008EZ8 D3EQQ00E
10008EZC 00000000

cnd>
o> jump 10004000 . SF?I'EEH of
TirylP Li nux box

Received: Hello, Internet. Screen of
Sant: NELLO, iNTERNET. M nl PS Consol e

Figure 5: Screens displaying UDP/IP communications between MinIPS and Linux.

is considered to be another proof that CNP laboratory is

Table 1: Enhancements made by students. successful in giving the students a sense of accomplish-

Features # of students
e ment.
who tried (finished) S tudents in the first period. h lained

Optimizing memory usagé 8(8) " tot;]ne sdgd entsmd e t|rs geno” , hO\;ve\t/re]:r, contw)p aine
IP fragment transmission 4(2) at they did not understand well what other subgroups

. were doing. This suggests a need of some devices for
IP fragment reception 3(2) tudents to be more aware of other subar
ARP request 7(6) students to be more aware of other subgroups.
ARP reply 5(5) From the.suggestlon as well as our experiences on
ICMP echo reply 4(3) the first period of the CNP laboratory, we introduced
ICMP port unreachable 2(2) progress check sheet, a sheet to record the progress of

each member in a team. Three columns of the sheet list
steps of P, C, and N sub-laboratories in time sequence. A
We asked students to fill out a questionary providedrow of the sheet shows the current progress of the mem-
by us to evaluate the laboratory from a student’s point ofbers in a team. They put the date when they have finished
view. A summary of the answers collected from P as-& step. All the students in the same team share a sheet
signees after the first period of the laboratory is shownand can see what other subgroups are currently working
in Figure 6. The results show that it took long time for on. We expected that by sharing the sheet they will feel a
students to complete the laboratory compared to regulagense of cooperations, stimulating more active commu-
36 hours: for example, 10 to 15 extra hours needed fonications. We also intended by the sheet that students
60% of the P assignees. However, we can see that 90@ptain a cross-cutting view of the Tiny J system.
of the students understood the laboratory and 100% of Students in the second period answered that the
them enjoyed it. Almost the same responses have beeprogress check sheet helped them be aware of other sub-
obtained about levels of understanding and attractivenesgroups and understand what they are doing. They also
from other sub-laboratory assignees. In spite of the largeanswered that they were able to collaborate smoothly
and tough laboratory, three teams out of five were sucwith other subgroups thanks to the check sheet. Proba-
cessful in the integration of C, N, and P components. Webly due to the boosted collaboration, all of the five teams
observed many scenes where shouts for joy arose frowere successful in the CNP integration in the second
around upon succeeding in the CNP integration. Thisperiod, which is one of the distinguished improvements



easy (0%)
somewhat easy (0%)

normal
(10%)

difficult

somewhat difficult
(70%)

Levels of difficulty

less than 2 hours (0%)
5to 10 hours  (0%)

to 5 hours (10%)

over
15 hours
(30%)

10 to 15 hours
(60%)

Extra hours required

contributed to maintaining laboratory equipments. We
also thank to members of Abe lab. for developing many
peripherals for Tiny J. Special thanks are due to students
who challenged the laboratory with great interests and
contributed to many improvements.

References

[1] R. B. Brown, R. J. Lomax, G. Carichner, and A. J. Drake.
Microprocessor design project in an introductory VLSI

for self-studying

bad  (0%) [2]
not so good (0%)
usual  (0%)

very little (0%)
a little (0%)

ordinaril
(10%),

good

very well
(40%)

(50%)

well
(40%)

[4]

excellent

(60%)

Levels of understanding Levels of attractiveness (5]

Figure 6: Summary of the questionary.

] ) [6]
from the first period.

[71
8]
An integrated laboratory dealing with computer net-
works, compiler design, and computer organization has
been developed. In the laboratory, students understood
the assigned components and their interfaces with other
components. After discussing and adjusting their speci-
fications, they designed and implemented these compo-
nents, and integrated them cooperatively into a system.
The goals of the integrated laboratory have been proven
to be fulfiled from the response of students who per-
formed the laboratory, approving our intention of the lab-
oratory and verifying its effectiveness.

Several improvements have been made to encourage
students’ cooperations. But we are aware of a lack of
testing methodology. Two approaches are considered:
1) giving them a set of test suites; 2) teaching the way
of testing. Both approaches are to be brought into the
laboratory, which belong to future works.

5 Conclusions

Acknowledgements

The authors are grateful to Prof. Tan Watanabe at UEC,
the original TinyC inventor, who has been supporting our
work with many respects. Mr. Masato Naraoka at UEC

course.|EEE Trans. of Education, 43(3):353-361, 2000.

D. Kassabian and A. Albicki. A protocol test system for
the study of sliding window protocols on networked UNIX
computers|EEE Trans. Education, 38(4):328-334, 1995.

[3] T. Katsu, D. Oosuga, M. Tsuruta, and K. Abe. Design and

implementation of a 32 bit RISC processor MinIP&ull.
of the Univ. of Electro-Comm., 10(2):71-78, 1997.

K. Morita and K. Abe. Implementation of UDP/IP protocol
stack on FPGA and its performance evaluation.Pinoc.
IPSJ General Conf. Special5, pages 157—-158.

The Joint Task Force on Computing Curricula IEEE-
CS and ACM. Computing Curricula - Final Draft.
http://www.computer.org/education/cc2001/final/
index.htm, December 2001.

D. A. Patterson and J. L. Hennessgomputer Organiza-
tion & Design: The Hardware/Software Interface, Second
Edition. Morgan Kaufmann Pub., 1998.

J. Postel. Echo protocol. RFC 862, May 1983.
T. WatanabeComposng a compiler. Asakura Pub., 1998.



A lab cour se of Computer Organization

J. Redl, J. Sahuquillo, A. Pont, L. Lemusand A. Robles
{jorge, jsahuqui, apont, lemus, arobles} @disca.upv.es

Computer Science School

Department of Computer Engineering
Technical University of Vaencia (Spain)

Abstract

Lecturetopicsin Computer Organization courses
offered by different Universitiesaround theworld
do not differ significantly. This is because, in

general, lecturersusethe sametextbooksand are
inspired by common curriculum sources.
However, lab courses and project assignments
require more and more expensive resources
(computers, assemblers or assembler simulators,
logic circuit simulators, ...) This fact, together

with the rapid advance of these tools, causes lab
courses to widely differ among universities.

This paper summarizes the lab course on
Computer Organization offered this year at the
Technical University of Valencia, Spain. The
course is composed by several experiences and
jobs, each one aimed at working on one specific
topic. Our goal isnot onlyto introduce the tackled
topics, but also to discuss some characteristics of
the tools. All the tools used are freely available,
which is a must for the students to be more
motivated and to be able to extend their work
using their own computers at home.

1. Introduction and motivation

The Technical University of Vaencia offers a
three-year Bachelor degree course in Computer
Engineering. A modification of the curriculum has
recently been undertaken to adapt it to the new

trends and  professona  outlines.  The
recommendations  from  the IEEE/ACM

Computing Curriculum 2001, as well as curricula
from some relevant Spanish and foreign
universities have influenced the new design. The
course includes 60 lab hours (25% of the total),
distributed dong two core courses in the first and

second year. Each course is attended by more than
800 students, which strongly impacts on the lab
organization and the type of experiments. Up to 40
sudents attend each lab session, working in
groups of two people. Theoretica lectures are
attended by up to 120 students.

To properly design the lab course it is hecessary to
consider the contents of the theoretical courses, the
academic year when they are given and, specidly
in our context, the high number of students, which
this is not a trivia task. One of the main problems
is to choose appropriate tools for the lab
experiences. An excessive use of abstract
smulators is a risk because some of them
(specidly those very didactic) are quite far from
the real world. On the other hand, the contents of
the Computer Organization subjects are very
difficult to implement in a practical way without
additiona technical knowledge. Findly, the tools
and equipment needed for the lab sessions tend to
be expensive.

Some universities propose lab courses based only
on a part of the subject (generally the part whose
contents are easier to practice in the lab) and they
do not cover, in a practicd way, the whole
theoretical contents. The main reason is usudly
the lack of appropriate toolsto do it.

The structure of this paper is the following: section
3 briefly describes the theoreticd course of
Computer Organization; section 4 details the lab
course, both describing the experiences and the
needed tools; section 5 presents the time schedule
of the theoretical and lab courses. Finally, section
6 summarizes our conclusions.



2. Computer theor etical

course

Organization

The Computer Organization course is a core
subject of the Computer Engineering degree. This
course is given adong the first and second year of
the degree, having assigned up to 180 lecture
hours in dl (90 lecture hours each year).
Evaduation is performed in an annua basis.

The main god of this course is to introduce the
students to the organization of computer systems
through the study of each one of the functiona
units that compose them. Topics include data
representation, digita logic, assembly language,
smple processors, memory unit, input/output unit,
aithmetic-logic  unit, basic pipdining, and
advanced processors.

Tables 1 and 2 show the themes into which each
topic is broken down and the number of hours
assigned to them. This information corresponds to
the syllabus of the first and second year courses,
respectively.

Syllabus  (First year)
Topic Themes Hours
Introduction | 1. Introduction to computer 2
systems
Data 2. Data representation 9
representati
on
3. Basic concepts of digital 12
- .| systems
Digital logic 4. Combinational systems 10
5. Sequential systems: Flip- 4
flops
6. Sequential systems: 8
Registers and counters
7. Introduction to assembly 10
Assembly | language
language 8. Assembly programming 6
9. Procedures 6
10. Datapath 10
Simple 11. Control unit: Hardwired 8
processors | realization
12. Control unit: 5
Microprogrammed realization
Total hours| 90

Table 1. Syllabus of the first year course on Computer
Organization.

Syllabus  (Second year)
Topic Themes Hours
13. Memory system 3
Memory unit | 14. Memory system design 10
15. Memory hierarchy 10
16. Input/output devices 9
Input/Output | 17. Input/Output management 12
unit 18. Buses 4
19. Integer arithmetic unit: 6
Arithmetic- | Adders and subtracters
Logic unit 20. Integer arithmetic unit: 8
Multiplication and division
21. Floating-point arithmetic 4
unit
Basi 22. Introduction to the 6
asiC pipelining
pipelining o
23. Pipelined processor 12
24. Examples of contemporary 4
Advanced processors
processors .
25. Introduction to 2
multiprocessor systems
Total hours 90

Table 2. Syllabus of the second year course on Computer
Organization.

3. Thelab course

We propose a selection of experiences on
Computer Organization, aimed at covering the
classca computer functional units. processor,
memory, and input/output system. The lab course
goas complement those of the classroom course.
We have designed and selected some experiences,
trying to balance the course time among the
mentioned functional units according to ther
importance. The aim is to acquire an elementary
but complete knowledge about Computer
Organization as wdl as its basc working
principles and underlying design aspects. We aso
discuss the selection of a set of free software tools
that alow those students requiring additional time,
or those who show further interest, to continue
their work at home.

The described experiences are organized in lab
sessions, each taking two hours of work.

3.1 Experiences
Experience 1. Assembler

Three lab sessions are dedicated to implement
simple assembly language programs. The topics
are assembly instructions (bare machine) and
pseudoingtructions,  ingtruction  coding,  data
representation, and functions in  assembly



language, exercisng the MIPS register usage
convention.

The first sesson is an introduction to the PCSpim
interpreter [spim02] that simulates how the
assembler works for the MIPS architecture. The
session lab is addressed to give the students
practice with several features of the tool, and to
strengthen some topics studied a the classroom,
like character, integer and floating point
representation, as well as memory data alignment.

The second session has three types of exercises.
The firg one deds with the instruction coding.
Students must codify some assembly language
ingtructions and check if their results match to
those given by the tool. The second one is
addressed to check the results of some instructions
that use predefined target registers (e.g., LO and
HI for integer divison and multiplication
instructions). The last one is addressed to running
a program that performs the scalar product of two
vectors. Students must run the program and
answer some questions. i) to determine which
function it peforms, i) to identify the
pseudoingtructions of the program, and iii) to
explain why the assembler not aways codifies a
given pseudointruction by using the same machine
ingtructions (e.g., the load address instruction).

In the last session, the students must break down
the scdar product program in two parts. man
program and procedure. The programs must be
implemented by using the callee-saved as the
procedure call convention.

Experience 2: The Processor

Three lab sessions are dedicated to the study of the
central processing unit (CPU). The main goa of
these sessions is to develop a smple CPU (no
pipelining) that executes a reduced instruction set -
a subset of the MIPS architecture [Patterson97].
The different CPU elements are interconnected by
means of busses. The instructions include severa
arithmetic and logic operations, load and store,
and different types of branch instructions,
induding unconditiona, conditiond and jumps to
subprograms.  These ingtructions permit  to
implement smple, though fully operaing sample
programs that can be traced during their execution,
dlowing the student to follow their steps in the
datapath and the activation of the relevant control

sgnals. We use the Xilinx schematic editor and
functiond smulation tools to implement and test
the resulting circuitry [Xilinx01].

The firg session is an introduction to the tool
itsdlf, as thisis the firg time it is used. During this
session, a register file is implemented and tested. It
takes a long time to develop the whole register
file, therefore an amost complete version is
supplied for the students to complete and test it,
according to a set of predefined experiments. The
second session deals with a complete datapath,
including a Program Counter, Arithmetic and
Logic Unit, the memory interface and severa
auxiliary registers and very smple operators like
fixed shifters and a sign extender. Mogt of these
units are supplied in advance and the work © do
congsts in interconnecting units and testing the
resulting datapath by  executing isolated
instructions. The third session completes the CPU
implementation with a Control Unit (CU). It is
based on a phase counter and the needed
combinationd logic to generate the 24 control
signals required by the datapath. The students are
required to complete the design of the CU by
implementing a couple of control signals and then
put it together with the datapath. The memory
circuit contains a smple program with aloop that
has to be tested.

Experience 3: Memory Design

This experience is organized in three sessions. The
common goa of dl is them is to understand how
the memory system in a computer is designed,
from the basic cell to the congtruction of memory
modules based on smaller eements and including
the decoding and sdection system. For this
pupose we use the smulation environment
Xillinx astoal.

This firg lab sesson deds with the internd
structure of memory circuits. The students must
design a smal memory unit (16x1 hit). We

propose this small size for practical reasons. the
memory structure designed is dso valid for larger

memories, the only difference is the number of
edementary cells and the size of the decoding
circuits.

In the second session, we give the students a
predesigned 32Kbytes RAM element, in order to
build a 256 Kbytes memory module. The students



must pay special attention to access different types
of data (bytes or 16 bits words). For checking
purposes we supply a module that acts ikea CPU,
generating addresses and byte selection lines.

In this session, we supply a circuit that Smulates a
memory system composed by 4 different modules
and a checking element that acts as an address
generator. With al these circuits the students must
implement different memory maps.

Experience 4. Cache Design

The god of this session lab is to understand why
cache memories are the basic and ineludible
mechanism that computers incorporate to reduce
memory accesses latency.

We give the gudents a small testing program
written in C language (in similar manner to D.
Patterson  [Patterson01]), to experimentaly
determine the parameters of the computer's
caches.

To perform the experiments the program defines
an array of 1 mega integer elements size, and
different scenarios are modeled. Each scenario is
determined both by the amount of eements that
are accessed (1K elements, 2K elements, ...) and
by the stride (1, 2, 4, ..., 512K). The program has a
main loop that runs repeatedly many times in
which the elements of the scenario are accessed to
measure the data access time. Then, al the
resulting times are averaged. The loop execution
time is rdatively long (approximately 1 second) in
order to get precision in the measure process.

From the results, the students must firstly notice
the number of cache levels Then, for each cache
level they must determine: i) the block size, i) the
st associativity, i) the cache dgze, iv)
approximately how fast the cache hit is, and v)
approximately how fast the cache miss is. Some
other parameters about the memory hierarchy like
the page size and the page fault pendty are also
determined.

Experience 5: Theinput/output system

The main objective of this experience is to practice
the basc methods of synchronization: <taus
checking (polling) and interrupts. To achieve this,
the students develop simple interactive programs
by using the input/output available facilities.

In the first session, we present a hypothetic case of
communication between a MIPS R2000 processor
and two tasic 1/0 devices. the keyboard and the
printer. A smulator acts like these two devices
mapped in memory positions. Both are character-
oriented devices. The PC keyboard is used as the
input device while data output is displayed in a
window that simulates the printer. The students
must write a smal program in MIPS R2000
assembly language to read characters from the
keyboard and print them in the printer. The
program must use polling for synchronization and
program-controlled for data transfer.

In the second part the students have the
opportunity to practice interrupt handling in a red
computer (PC compatible). They aso can access
the PC memory and 1/0 maps. We propose them
two typica problems to solve: first, sudents must
modify some of the system interrupts (clock and
keyboard are the proposed ones) writing the
appropriate routines to handle them. In a second
sep, they must extend the service given by an
exiging interrupt handler by linking the system
routine with their own handler.

Experience 6: Circuits to Support Integer
Arithmetic

The main objective of this experience is to design
smple integer arithmetic circuits and to modify
them to achieve better performance by using
pipdining techniques. This experience is
organized in three sessons. In the first one, the
students must implement a 16 bit adder/subtracter
for integer numbers by using 4 bit carry lookahead
adders (CLAS). The basic circuits (haf and full
adders) that form the CLA must aso be
implemented. Next, they develop a fast multiplier
for two 6 bit unsigned numbers by using a Wallace
tree. For this purpose, they build and interconnect
carry save adders. The last stage of the Wallace
tree is built by usng the dready implemented
CLAs. To complete the fast multiplier, the
sudents must build a partiad product generation
circuit that takes the two integer operands as
inputs and generates the six partia products to
feed the Wallace tree. Findly, they have to split
this multiplier circuit into pipeline stages. For this
am, the students must identify the pipeline stages
and establish the suitable clock period to improve
the circuit speedup. The students must simulate



and measure the response time. Moreover, they
must calculate the speedup the pipdine achieves.

Experience 7: Pipelined Processor

The goas pursued in this lab sesson are to
understand the concept of pipeining, identify
hazards, redize how hazards affect performance,
and to know how the different solutions for
conflict solving are implemented.

A program that simulates the behavior of a
pipelined DLX processor [DLXide] is used. The
DLX processor [DLX02] exhibits a smilar
architecture to that of MIPS. In the smulator,
ingtruction execution can be tracked in a time
diagram, cycle by cycle, therefore it alows to
follow their walk through the different stages. The
smulator permits aso to define a particular
technique for hazard solving, including bubble
insertions, forwarding, predict-not-taken branches
and delayed branches. The datapath (shown by the
smulator) appears modified according to the
technique applied. Control sgnads, memory and
register contents and some statistics are also made
avalable by the simulator, which permits to
extract some conclusions based on quantitative
data.

A smple but illustrative assembler program is
supplied for the students to trace its execution in
the pipdined datapath. First, they must solve
dependencies by inserting bubbles and then
counting the resulting CPl. Secondly, more
effective techniques such as forwarding and
branch prediction are exercised, dlowing to
observe how these techniques work and to
compare results with the previous experiments.

4.2 Thetools

For the experiences described in the previous
subsection, we are currently using different tools.
Below, we briefly describe how we use them and
how they alow us to reach the goas of the lab
experiences.

1. Logical board. It is basicdly a circuit
board with some logic gates and flip-flops
that can be interconnected by means of
wires and connectors. The board aso
dlows for commercia integrated circuits
to be added, thus increasing the number of
different exercises that can be tackled. By

using red circuits and wires, the student
redizes the difficulties in implementing
rea circuits (bad connections, collison of
outputs, etc.) which are more difficult to
detected when logicd simulators are used.
The logicad board is used for the most
basic circuits, leaving the complex ones to
be smulated.

MIPS simulator PCSpim. For assembly
language experiences, we use this free
MIPS simulator to implement and trace
smple programs. The smulator is
complete enough for the intended
purposes and makes it straightforward to
work in assembly language without
having to deal with particularities of the
platform. On the other hand, it represents
an important economical saving, as PC's
are available in dl of our labs, differently
to MIPSbased computers.

Xilinx schematic editor and simulation
tools. The Xilinx Foundation is an
gpplication framework for programming
logical devices with logica functions of
different levels of complexity, from very
smple combinationa  functions  to
virtually any larger project with both
combinational and sequential components,
alowing for tristate devices as well as
conventional ones. The tool is complex, if
used as awhole, but for the purposes of
the course, we only need to be able to
specify a circuit and to smulate it. The
Xilinx tool offers severd ways of
specifying a circuit, namely a Hardware
Description Language, a Finite State
Machine and a Schematic Editor. The last
one is the most appropriate for our
students, since this is the common way of
describing circuits in the classroom as
well. On the other hand, the smulator is a
powerful tool that allows us to track the
behavior of the specified circuit in
connection with the schematic editor.
Despite the complexity of the whole
gpplication, our students quickly learn
where to click to carry on their work,
snce the working plaform is wdl
bounded from the very beginning of the
corresponding lab exercises. This tool has



proven to be vey sutable for
implementing our smplified RISC
datapath and for the control unit as well. It
is also used in the exercises related with
memory modules.

4. DLXide is a amulation tool of the DLX
computer. This smulation tool has been
developed by lecturers from the Computer
Engineering department of the Technical
University of Vaencia with the aim of
providing a suitable environment for
performing pipelining experiences. The
smulator is able to smulate the pipdining
execution unit of the DLX computer in a
cycle-by-cycle basis, dso showing how
the indructions progress through the
pipeining stages. For smplicity, it only
supports the integer instructions of the
DLX architecture. The tool permits to edit,
assemble, and execute a DLX assembly
program. There exist separate cache
memories for instructions and data. User
can initidize and modify both machine
registers and data memory contents, which
are displayed in two separate windows.
Moreover, it is possble to display the
instruction memory contents and the
ingtruction addressed by the program
counter. Through the configuration
window, the user can edablish the
mechanism used for hazard solving among
the following techniques. salls, predict-
not taken, delay-dot 1, and delay-dot 3
for solving control hazards, and stalls and
forwarding for solving data dependencies.
Step-by-step smulation shows how each
mechanism solves the hazards. The
smulator runs on MS Windows and Linux
operating systems.

5. 2. Coordinating theoretical and lab cour ses

The first and the second year theoretical courses
are 30 weeks long organized in two weekly
sessions 1.5 hours long, where both theory and

problems aspects are lectured. Sessions take place
in classrooms of 160 students capacity.

The lab courses have the same duration as the
theoreticd and their timing must be synchronized.

These courses are organized in two types of weeks
(A and B), s0 that the type of the week
aternatively changes from A to B and vice-versa
Students must attend to the lab sessions in those
weeks they are registered in. Sessions are two
hours long every two weeks and take place in labs
of 40 students capacity. This has proven to be
more suitable than having weekly sessons of 1
hour.

Table 3 shows the planning of the theoretical and
the lab course of thefirst year. Numbers on the top
row refers to the week number. Central row shows
the planning (theoretical and problem sessions) of
the themes. The first 15 weeks focus on the study
of both the data representation and the digitd logic
topics (T3, T4, T5 and T6) mentioned above.
Next, 7 weeks and a half are dedicated to the study
of both machine and assembly languages. The
remaining weeks are addressed to implement a
smple datgpath and its control unit (both
hardwired and microprogrammed). The bottom
row refers to the lab sessions. As it can be seen,
lab sessions begin at the same time as classroom
sessions. Some times; e.g., when studying smple
data paths, the lab session starts a little bit before
the theoretica topic is gudied at classroom. This
does not cause any inconvenient, because that time
is devoted to study how the tool (Xilinx in this
case) works.

Table 4 shows the temporal planning for the
second year course detailed above. In this case, no
overlap appears between the theoretical and the
lab course.

WEEK NUMBER

1 |2 |3 |4 |5 |6 |7|8 |9|1o|11 12|13|14|15
T2 T3 T4 T5 T6
P 1] P 2 [P 3

16| 17| 18|19|20|21|22|23|24|25| 26 27|28|29|30

T7 T8 | T9 T10 T11 | T12

P 4 | P 5

Table 3. Planning of classroom and lab sessions of the first
year course. Legend: P refers to practical experience and T to
topic.




WEEK NUMBER

I

2 |3 |4 |5 |e|7 |8|9 10 |11|12|13|14|15|1e

T2 T3 T4 5 |T6

Pl A

17|18

19|2o|21|22 23|24 25|26|27|28 29|30

T7

T8 19 |T1I0 |T11 12 |3

]

P4 [ P5

Table 4. Planning of classroom and lab sessions of the second
year course. Legend: P refers to practical experience and T to

topic.

6. Conclusons

In this

paper we have presented a lab course on

computer organization, and we conclude that a
complete course needs the following requirements:

1

A set of tools of a very different nature
(essembler, logica circuit smulator,
pipeline simulator) to cover the whole
theoretical course.

It isimportant that the tools be as close as
possible to a professional tool (e.g. we are
currently using the educational version of
a professiona tool.)

It is necessary to devote an important
amount of time to learn how the tools
work, therefore it is important to chose
tools also used in other subjects ( e. g. the
Xilinx framework is used in Logicd
Design courses too.)

7. References
[Patterson97] D. A. Patterson and J. L.

Hennessy, Computer organization
and design: the hardware/software
Interfface, Morgan Kaufmann
publishers, 2 edition, 1997.

[Patterson01] D.A. Patterson, Course CS61C1C:

[Spim02]

[Xilinx01]

[DLX02]

[DLXide]

Machine Structures, UC Berkeley,

http://inst.eecs.berkeley.edu/~cs61
c/fabl/caendar/week13/1ab10/,
Fdl 2001

J. Larus, SPIM: aMIPS
R2000/R3000 smulator,
http://www.cs.wisc.edu/larus/spim
html, 2002.

Jan Van der Spiegd. Xilinx Web
page.

http:/iwww. prenhall.com/xilinx/,
2001

Computer Systems Laboratory,
FTP Site for Interesting Software,
http://max.stanford.edu/max/pub/h
ennessy-patterson.software/max-

hennessypatterson.software.html

P. Lépez. DLXide web page.
http://Aww.gap.upv.es/people/plo
pez/english.html



A Survey of Web Resources for Teaching Computer Architecture

William Yurcik
lllinois State University
wjyurci@ilstu.edu

Abstract

The use of Web resources is becoming a core
part of teaching computer architecture. In this
paper we identify five notable Web sites that
specialize in teaching tools for computer
architecture instructors and discuss the role they
can play in facilitating learning. While these
Web sites contain a wide range of valuable
resources, there remain gaps in what is available
online. Community support appears meager for
making tools and resources available. We
conclude that the computer-architecture
community faces challenges both in the content
of Web-based materials (accurate and
appropriate information) and the process
(making information known and available to
academic community).

1.0 Introduction

Computer architecture is a difficult subject both
to teach and learn for a plethora of reasons
including—

« the dynamic nature of the subject, the
lifecycle of current computer
technology is arguably less than three
years and decreasing rapidly

» the ever-expanding amount of relevant
material, as new techniques are being
developed continuously to build upon
existing techniques

« the need for to understand disparate
subjects, from electronic circuits to
digital logic to assembly-language
programming to system design, as well
as higher level programming and
discrete math and performance analysis
and ...

» itslab component, requiring the design
and execution of both hardware and
software experiments, and

« increasingly higher levels of abstraction
hiding more and more lower-level
details.

Edward F. Gehringer
North Carolina State University
efg@ncsu.edu

Of course, computer architecture is not the only
course facing these challenges, but it may be the
one course that faces all of them simultaneously.
One academic study of this situation found that
even experienced computer architecture
instructors found they are not confident or
current in some topics considered core to the
course [2]. Novice instructors and instructors
teaching outside of their specialty area are in a
worse situation.

Collectively, however, the computer architecture
community possesses an impressive array of
knowledge, experience, and tools for teaching
the subject. In recent years, many of these
resources have been migrating to the Web.

Finding the right resource for teaching a specific
topic is problematic, so this paper seeks to
provide an orientation to the current state-of-the-
art in computer architecture education resources
on the Web. The remainder of this paper is
organized as follows: Section 2 describes in
some depth the five major Web sites containing
computer architecture educational resources.
Sections 3 and 4 focus on the contrasting
resource needs of new and experienced
instructors in computer architecture. Section 5
attempts to identify gaps in what is available on
the Web versus the needs of instructors and
Section 6 seeks to understand why this gap
exists. We close with a summary and
conclusions.

2.0 Computer Architecture
Education Web Sites

Reference 2 highlights the fractured state of
computer architecture education, but there have
been several attempts to address this problem via
community effort. This section describes five
significant computer-architecture education sites
that contain valuable resources for the
community. A survey of these Web sites also
reveals unexpected insights into the current state
of computer architecture education.



2.1 Computer Architecture and Assembly
Language (CAALE)
<http://www.sosresearch.org/caale/>

An NSF-sponsored working group on
“Distributed Expertise for Teaching Computer
Organization” convened at the July 2000
Innovation and Technology in Computer Science
Education (ITiCSE) conference in Helsinki
Finland under the direction of Lillian (Boots)
Cassel of Villanova University and Deepak
Kumar of Bryn Mawr College. The two tangible
products of this working group are the CAALE
Web site and the seminal collaborative paper that
identifies both current problems and potential
future solutions for facilitating better computer-
architecture education [2].

The goal of CAALE is to serve as a repository
for Web-accessible resources identified by the
working group, such as links to courses, people,
textbooks, simulators, papers, organizations,
relevant news items, career information, and
conferences. Currently, CAALE is unevenly
developed with many links containing no
content. Work continues to populate the Web
site.

CAALE makes its primary contribution with its
comprehensive list and categorization of
textbooks and simulators. Response to the
CAALE simulator list especially has been
immediate, continuous, and growing. It has
facilitated data-mining of simulator resources, as
presented in two recent papers [5,6]. Future plans
include enhancing the interactivity of the Web
site using XML integrated with database
processing to enable queries to the Web site for
information.

2.2 WWW Computer Architecture Page
<http://www.cs.wisc.edu/~arch/www/>

A long-time fixture in the computer architecture
community has been the WWW Computer
Architecture Page that is hosted at the University
of Wisconsin-Madison (and mirrored in India
and Japan). Though focused mainly on research,
it contains downloadable versions of many
simulators and compilers that could be used
across a range of educational levels. The
extensive content on the Web site include links
to architecture projects, organizations, and tools
such as simulators, compilers, benchmarks, and
traces. It also has links to commercial

organizations, online publications, books, and
newsgroups.

The WWW Computer Architecture Page makes
its primary contribution with its comprehensive
list of researchers, research groups, and
conferences. This site is a one-stop virtual
location for learning about the state of the art in
computer architecture research, especially that
emanating from educational institutions.

2.3 NETCARE
<http://punch.ecn.purdue.edu/Netcare/>

NETCARE (NETwork-computer for Computer
Architecture Research and Education) is a Web-
accessible distributed infrastructure of software
tools and computing resources developed at
Purdue University. It provides a common
environment for testing, sharing, and evaluating
tools for teaching and research in computer
architecture and programming. It allows users to
actually run tools in conventional Web browsers.

NETCARE was developed to address many of
the hurdles mentioned in the introduction.
Instructors need to obtain access to the hardware
resources that meet their requirements, and then
install it. They also need to support it, by
disseminating documentation and answering
guestions, and develop educational content, such
as tutorials and homework assignments.
NETCARE performs all of these functions; small
classes are able to use NETCARE facilities
directly, while instructors of large classes can
load the NETCARE software onto their own
server.

Another important feature of NETCARE is its
user interfaces. Research simulators often come
with text-based interfaces. NETCARE wraps
these in graphical interfaces that are tailored to
the needs of novice users. This has the
advantage of presenting a number of tools with
similar interfaces, thus facilitating the task of
learning to use them.

NETCARE currently provides 16 tools for
computer architecture, including the
uniprocessor simulators Daisy, DLX-View,
Shade, SimpleScalar, MySimpleScalar, XSpim,
and 68HC12 Simulator; the multiprocessor
simulators HPAM Sim, RSIM, WWT2, and
WWT2H, and cache simulators CacheSim5,
CACTI, and DinerolV. Accounts may be



requested by filling out a form at the NETCARE
home page.

2.4 Computer Architecture Course Database
< http://cd.csc.ncsu.edu>

In addition to simulation projects, computer
architecture courses include other homework
problems and, of course, exams. These materials
are also potentially reusable. The Computer
Architecture Course Database currently contains
about 1000 problems suitable for use on
homework or tests, many with solutions. The
goal of the project is to encourage instructors to
share materials. When an instructor grants
permission, material is downloaded from the
Web and semiautomatically loaded into the
database, where it can be located by keyword or
fulltext search. Anyone with an account on the
system is granted the right to reuse the material
in his or her own classes, but not to republish it.

Because it has proved to be much easier to
induce instructors to use the database than to get
them to contribute material, an alternative means
of finding material has been provided in the form
of a search engine that searches computer
architecture sites at educational institutions
around the world. A single request can search
both the database and the Web. While material
retrieved from the Web may not be freely reused,
it is possible to seek permission from the
copyright holder (usually the instructor who
established the site). Accounts may be requested
by e-mail to efg@ncsu.edu.

2.5 SIGMicro
<http://www.acis.ufl.edu/~microweb/>

ACM SIGMicro, the Special Interest Group on
Microarchitecture, launched a Web site in 2001.
Called the Computer Microarchitecture Center, it
contains an education section with a listing of
microarchitecture courses and course Websites.
It also has links to most of the other resources
mentioned in this paper. An interesting section
is the new Reviews area, which is intended to
contain reviews of educational tools and
documents. This area is awaiting its first entry.
It also contains pointers to the proceedings of
several past WCAEs.

3.0 Resources for New Instructors

New instructors, and experienced instructors
teaching outside of their area of expertise, desire
directed teaching resources focused on getting
started and survival skills in the classroom such
as—

*  Web syllabi of similar courses at
different universities

» identification of textbooks bundled with
teaching aides (slides, test banks,
software)

» homework, project, and test problems
with solutions

» visual and intuitive simulations of
computer architecture concepts to
promote active learning

» contact information for other computer
architecture instructors (support group)

Current Web sites can provide many of these
resources efficiently if the new instructor knows
where to look.

New instructors need to learn (1) “best practices”
for teaching computer-architecture topics, and
(2) the resources that are available for them to
use and tailor to their own teaching environment.
The first goal (best practices) could be addressed
by cross-referencing resources so that it is
possible to see which textbooks, simulators, etc.
are used by which types of courses, and which
ways of teaching particular topics have become
the “consensus” approach of the discipline. The
second goal (breadth of resources) can be
addressed by encouraging the worldwide
computer architecture to place innovative
resources on the Web and make them available
to anyone over the Internet.

4.0 Resources for Experienced
Instructors

After teaching a course for a few semesters, an
instructor is likely to have a repertoire of

lectures. The main challenges at this point are
developing new homework assignments, labs,
and exams. For homework assignments and
exam questions, the Computer Architecture
Course Database can be very helpful. It contains
many guestions on the Hennessy/Patterson texts,
and microarchitecture in general, with caches



being the most widely covered topic. However,
more contributions are being sought, as detailed
in Section 6.

For lab projects, experienced instructors might
consider the simulators available through
NETCARE and CAALE. WCAE has published
several papers related to simulators. Eight of
these are still available on the Web. Two of
these are targeted at the DLX architecture used
in Hennessy and Pattersoif€®@mputer
Architecture: A Quantitative ApproadHi]: Dan
Hyde’s VHDL approach [8] and the DLX-view
[9] simulator. Two of them use the MIPS
architecture, a SimpleScalar enhancement from
Manijikian [10] and Mipslt from Brorsson [11].
One targets Patt & Patel’'s LC-2 architecture
[12]. The others are RSIM, a simulator for ILP-
based shared memory multiprocessors and
uniprocessors [13], SATSim, a superscalar
architecture trace simulator using interactive
animation [14], and esim, a design language
simpler than VHDL, implemented in Tcl, in
which students can build and simulate digital
modules [15].

Experienced instructors also face the challenge
of remaining current in the field. While some
teaching resources lend themselves as a base
upon which to build the future, many new tools
will need to be developed from scratch. This
makes tool development environments for
experienced instructors an important area of
investment.

5.0 What is Missing?

While the Web sites we have identified contain
invaluable educational content, there are still

critical voids that need to be addressed. The most

glaring omissions include:

e ateaching computer architecture virtual
support group

e implementation experience with the
new ACM/ABET Computing Criteria
2001 for computer architecture-related
courses

» apooling of teaching resources, with
Web sites being one forum but not
necessarily the only forum

While progress has been made, it must be

accelerated. Novice educators must be guided to

teaching resources and experienced educators
can become disconnected from current
mainstream teaching resources. In both
instances Websites can provide a glue to
maintain healthy teaching relationships and
professional growth in the field.

6.0 The Tragedy of the Commons

In his classic 1968 paper, “Tragedy of the
Commons” [4], Garrett Hardin illustrates that an
open resource owned collectively and shared by
all (a "commons") will be exploited by free-
riders until depletion. Without the property
rights of ownership, there is little or no incentive
to contribute to care of the commons.

We apply this metaphor to Web site content for
teaching computer architecture - there are few
incentives beyond altruism to share teaching
resources. Most instructors do not contribute
and yet gain from the hard work of a select few.
There is a need to either increase incentives to
share resources or make it easier to do so.

In our work on the Computer Architecture
Course Database, we found that only 29 of 73
instructors contacted agreed to contribute their
materials in electronic format to our database [3].
Those who declined to contribute were asked
why. We heard from about a dozen of them.
Their concerns were divided about equally into
two categories.

1) Copyright concernsSome instructors
could not contribute because their
materials had borrowed heavily from
copyrighted works, such as textbooks,
making their course materials
“derivative works.” Others were
writing textbooks and wanted to include
their course materials, but feared that
making their material available in
advance would compromise the market
for their books.

2) Diffidence. Many other instructors
were concerned that their materials
were not polished enough, either
because they were teaching a course for
the first time, or because they had not
been able to devote enough attention to
it. This concern has also been noted by
Cassel [1]. Her advice is, “Get over it!”
Only by access to shared materials can



we eliminate this perception of
inadequacy.

To give instructors an incentive to contribute, a
feature is currently being added to the Computer
Architecture Course Database to track how often
specific items have been downloaded. A high
reuse count will indicate a problem or lecture
that other instructors find quite useful. This
would be one of the few quantitative measures of
teaching contributions (beyond student course
evaluations), and could help buttress cases for
tenure and promotion.

7.0 Summary

This paper reviews several computer-architecture
education Web sites found valuable to both
novice and experienced instructors. The goal is
to provide instructors both a general educational
introduction to the broad field of computer
architecture as well as detailed resources for
more in-depth inquiry. While valuable resources
do exist, making them known and available to
educators has been problematic. In addition, the
field is a moving target such that new ideas and
technology are being continually introduced
making collective sharing of appropriate
resource materials a difficult task. There is
hope, however, in that the five developing Web
sites noted in this paper represent a diversity of
accessible teaching resources in both depth and
breadth and may be complemented by additional
Web sites in the future.

8.0 Acknowledgments

The CAALE Web site is supported in part by the
following grant from the National Science
Foundation (NSF) USA: #99-51352 from NSF-
DUE-CCLI/EMD. The Computer Architecture
Course Database is supported by the NSF
Course, Curriculum, and Laboratory
Improvement program under grant DUE #99-
50318.

9.0 References

[1] Cassel, L., SIGCSE award luncheon address,
32nd SIGCSE Technical Conference on
Computer Science EducatigRebruary 24,
2001.
<http://lcassel.csc.villanova.edu/sigcse.ppt>

[2] Cassel, L., Kumar, D. et. al. "Distributed
Expertise for Teaching Computer Organization
and Architecture,ACM SIGCSE Bulletinvol.

33 No. 2, June 2001, pp. 111-126.

[3] Gehringer, E., and Louca, T., "Building a
Database and Search Engine For Reuse of Course
Materials,"Proceedings of Frontiers in
Education2001 (ASEE/IEEE), Session F3C.

[4] Hardin, G. "The Tragedy of the Commons,"
ScienceVol. 162, 1968, pp. 1243-1248.

[5] Wolffe, G. S., Yurcik, W., Osborne, H., and M.A.
Holliday. "Teaching Computer
Organization/Architecture With Limited
Resources Using Simulators," SIGCSE 2002,
33rd Technical Symposium on Computer Science
Education SIGCSE BulletinVol. 34, No. 1,

March 2002, pp. 176-180.

[6] Yurcik, W., Wolffe, G.S., and M.A. Holliday. "A
Survey of Simulators Used in Computer
Organization/Architecture Course§ummer
Computer Simulation Conference (SCSC),
Society for Computer Simulation, 2001.

[71 Hennessy, John L., and Patterson, David A.,
Computer Architecture: A Quantitative
Approach Morgan Kaufman, 1997.

[8] Hyde, Daniel C., “Using Verilog HDL to teach
computer architecture concept&foc. WCAE
98, Workshop on Computer Architecture
Education June 27, 1998, Barcelona, Spain.
Tools available at
http://www.eg.bucknell.edu/~cs320/Fall2001/veri
log.html

[9] Zhang, Yiong, and Adams, George B., “An
Interactive, Visual Simulator for the DLX
Pipeline,”Proceedings WCAE;3rd Workshop
on Computer Architecture Educatip8an
Antonio, TX, Feb. 2, 1997. Published IBEE
Computer Architecture Technical Committee
Newsletter September 1997, pp. 25-31. Tool
available at
http://yara.ecn.purdue.edu/~teamaaa/dIxview

[10] Manjikian, Nairag, “Enhancements and
applications of the SimpleScalar simulator for
undergraduate and graduate computer
architecture educationProceedings WCAE
2000 Workshop on Computer Architecture
Education Vancouver, BC, June 10, 2000.
Published inEEE Computer Architecture
Technical Committee Newslett&eptember
2000, pp. 34-41. Tool available at
http://www.cs.wisc.edu/~mscalar/simplescalar.ht
ml

[11] Brorsson, Mats, “Mipslt: A simulation and
development environment using animation for



computer architecture educatidfroceedings
WCAE 2002Workshop on Computer
Architecture EducationpAnchorage, AK, May
26, 2002, pp. 65-72. Tool available at
http://www.embe.nu/mipsit

[12] Cohen, Albert, “Digital LC-2: From bits and

bytes to a Little Computer,Proceedings WCAE
2002 Workshop on Computer Architecture
Education Anchorage, AK, May 26, 2002, pp.
61-64. Tool available at http://www-
rocg.inria.fr/~acohen/teach/diglc2.html

[13] Pai, V. S., Ranganathan, P., and Adve, S. V.,

“RSIM: An execution-driven simulator for ILP-
based shared-memory multiprocessors and
uniprocessors,Proceedings WCAE;3rd
Workshop on Computer Architecture Education
San Antonio, TX, Feb. 2, 1997. Published in
IEEE Computer Architecture Technical
Committee NewsletteBeptember 1997, pp. 32—
38. Tool available at http://www-
ece.rice.edu/~rsim/dist.html

[14] Wolff, Mark, and Wills, Linda, “SATSIim: A

superscalar architecture trace simulator using
interactive animation,Proceedings WCAE 2000
Workshop on Computer Architecture Education
Vancouver, BC, June 10, 2000. Published in
IEEE Computer Architecture Technical
Committee NewsletteBeptember 2000, pp. 27—
33. Tool available at
http://www.ece.gatech.edu/research/pica/SATSi
m/satsim.html

[15] Miller, Ethan and Squire, Jon, “esim: A structural

design language and simulator for computer
architecture educationProceedings WCAE
200Q Workshop on Computer Architecture
Education Vancouver, BC, June 10, 2000.
Published inEEE Computer Architecture
Technical Committee Newslett&eptember
2000, pp. 42-48. Tool available at
http://www.cs.umbc.edu/~squire/esim.shtml



