Read,Use,Simulate, Experiment and Build : An Integrated
Approachfor TeachingComputer Ar chitecture

loannisPapaefstathioandChristosP. Sotiriou

Departmenbf ComputerScience,
Universityof Crete,
P.O.Box 1385,Heraklion,Crete, GR 71110, Greece.
{ygp,sotiriou} @ics.forth.gr

Abstract

In thispapemwe presenanintegratedapproactior teach-
ing undegraduatesComputer Architecture. Our ap-
proachconsistof five steps:“read”, which corresponds
to studying the textbook theory “use”, which corre-
spondsto using a simulatorwith appropriategraphical
featuresto visualisethe applicationof the theory “sim-
ulate”, which corresponds$o developinganarchitectural
simulation,“experiment”,which correspondso modify-
ing thearchitecturakimulationandobservingheimpact
that changesmalke to performanceandfinally “build”,
which correspondgo developing a low-level hardware
modelin a standardHardwareDescriptionLanguageln
our experience going down to the gate-level is of great
importance,as studentsoften find difficult to visualise
how differentarchitecturalapproachesffect the actual
hardware (both datapattandcontrol). By following this
five-stepapproachn ourteachingwe obseneda signifi-
cantincreasen bothstudentperformancendinterestin
ComputerArchitectureandhardwaredesign.

1 Intr oduction

The subjectof ComputerArchitectureis widely recog-
nisedasa significantandessentiapartof theundegrad-
uatesyllabusof universitydegreegelatedto computeror
hardwaredesign.Oneof the main problemswith teach-
ing ComputerArchitecture,is that studentsshould not
only understanadhe textbook theory but more impor-
tantly its applicationin real systemsandtheimpactthat
differentarchitecturabpproache$iave on the comple-
ity andthe performanceof a system.

Thus,to make theteachingprocessnoreeffective we
have chosento usean educationalapproachwhich we
basedon five steps: Read, Use, Simulate,Experiment
and Build. In this paperwe describethesefive teach-

ing stepsandfocuson the oneswe believe areyet un-
common,however have beenvery effective in our expe-
rience.

2 “Read”. TextbookTheory

Our ComputerArchitecture teachingis basedon the
Hennessyand Patterson Computer Architecture text-
book, “Computer Architecture: A Quantitatve Ap-
proach”[1], currentlyrecognisedasthe mostextensive
and completereferenceon the subject. Our courseis
toughtin the last yearof the ComputerScienceunder
graduatalegree,i.e. year4, andrunsfor adurationof 14
weeks.As our teachingphilosophyrelieson combining
theorywith practice,we preferto give studentspracti-
cal experiencethana vastamountof theory Thus,in 14
weekswe cover the first five chaptersof the book, both
in termsof theoryandpractice.

3 “Use”: HASE Simulator

After the “Read” stage,studentsare given simple exer-
ciseson a graphicalsimulator Our simulatorof choice
istheHASE[2] ernvironment.HASE (Hierarchicalcom-
puter Architecturedesignand SimulationEnvironment)
is a graphicaldesign,simulationandvisualisationenvi-
ronmentthatcanbe usedfor bothteachingandresearch.
We usethe DLX HASE modeldevelopedat the Univer-
sity of Edinburgh. HASE allows studentsto visualise
both the overall structureof the DLX architectureand
the executionof instructionsby observingthe step-by-
stepprogresof individual events.HASE alsoallows for
studentgto explore the impactof architecturalparame-
tersto theperformaceof thearchitectureasstudentsan
changehesausingonly theGUI ervironment(Graphical
Userlnterface)andthenre-runthe simulation.

Eile Library Edit Build Simulate Experiment Tools

Design Validate Bulld Simulate Experiment

Project : DLX_v2.3
Directory : /home/hase/Developmentidbv2.3

Instruction Data

ACTIVE

Instruction|
F—"| Decode [§
ACTIVE HELD

o
s
BX4

EX3

EX2

-
™
=

DLX with Parallel Function Units

Simulate Status: Read in 1034 events.

S

Figurel: TheHASE DLX Model

The DLX HASE exercisesrequire studentsto write
DLX assemblycodeand executeit on the HASE ervi-
ronment. With the help of the simulationenvironment
studentcanmeasurdhe executiontime, studythe exe-
cutionof eachinstructionin detail (passinghrougheach
pipeline stage)and the impactof architecturalparame-
ters. Studentsare asled to reasonaboutthe execution
time of their programandto optimisetheircodebasen
theirreasoningThey canexperimentwith differentcode
scheduleanddiffrerentparameterandevaluatethe ex-
ecutiontime with the aim of finding the bestpossible
cases.

SinceusingHASE aspartof ourteachingyatherthan
the standardpen-and-papeones,we obsened a signif-
icantincreasein the studentaunderstandingnd perfor
mancein the written examinations.Thisis probablydue
to thefactthatby gettinghands-orexperienceof thethe-
ory covered studentgaindeepeandmorethoroughun-
derstanding.

4 “Simulate and Experiment”: De-
velop a Simulator

The next stageof the courserequiresfor the students
to implementtheir own architecturalsimulation using
a standardHardware Descriptionlanguage(HDL), i.e.
Verilog in our case.In this stagethe implementatiorof

thearchitectures to beatthebehaiourallevel. Thestu-
dentsareaskedto implementa RISCCPUcalledARCP
The reasonwe chosean alternative to the DLX archi-
tecturewasto give studentssomethingmore challeng-
ing than simply re-implementingthe DLX, which they
alreadyare familiar with at this stagefrom the HASE
simulations.

4.1 ARCP - A 2-wayIssueAr chitecture for
Teaching

The ARCP architecturds basedon the DLX, andhasa
very similar instructionset, however it is slightly more
complicated,being 2-way superscalar ARCP fetches
two instructionsat the sametime from its instruction
memory which should be aligned and independenbf
eachotherfor reasonof simplicity (studentsare given
only 6 weeksof termfor completingthewhole project).

Themaincharacteristicef the ARC architecturere:

e 64 GeneraPurposeRajisters.

e 32-bitaddresandword lengths.

e byteaddressablédyig-endianarchitecture.

e supportfor two datatypes:words(32-bits)andbytes(8-bits).

e 2-way fetch and execution of independent instructions; the
independenceof instructions must be ensuredby the com-
piler/assemblyrogrammer

e only one control instruction (branchor call instruction)is al-
lowed in an instructionpair and it mustbe placedin the first
of thetwo instructions.

e only onememoryreferenceénstructionis allows in aninstruction
pair andit mustbeplacedin the secondf thetwo instructions.

e ary numberof arithmetic/logicabperationsreallowed.

¢ samememoryusedfor instructionsanddataandself-modifying
codeis notallowed.

¢ memorycanonly beaccessedsingloador storeinstructions.
e branchesrenotdelayed.
o register0 is hardwiredto 0.

e thereasno condition codes;comparisoninstructionswrite a 1
(for true)or a0 (for false)ata desstinatiomegister

e conditionalbranchesare PC-relatve while unconditional(call
instructions)may be PC-relatve or registerindirect; uncondi-
tionalsstoretheir currentaddressn their destinatiorregister

4.1.1 ARCP Instruction formats

Thethreedifferentinstructionformatsandthe formatof
aninstructionpair areshavn in Figure2.

4.1.2 ARCP Instructions

All supportednstructionsalongwith their opcodesand
formatsareshown in Figure3.

Most of theseinstructionsare straightforvard and
found in the majority of RISC style architectures.The

[4MS bits] 3 LS opcodebits |
[opcode [000 [001 [010 [011 | 100 | 101 | 110 | 111 |
0000 add addi sub subi i mul mul i cngti

R | R | R | |
0001 cmeq | cneqi cmme | cmmei cnge | cngei cm t crm ti
R I R I R I R I
0010 and andi or ori xor Xor i gcp cnl ei
R | R | R | R |
0011 shru | shrui shrs | shrsi shl shli set hi
R I R I R I L
0100 | dbu | dbs I dw sth stw
| | | | |
0101 breq br ne br ge brit callr cal |
L L L L R L

Figure3: ARCPInstructionsandOpcodes

Instruction Pair Format:

Avrithmetic/Logic or Control Transfer ‘ Arithmetic/Logic or Load/Store

32 32

Single Instruction Formats:

a ‘

R: ‘ Opcode ‘
7

6

It ‘ Opcode ‘
7

Ra
6

L: ‘ Opcode ‘
7

Ra |
6

Imm |
19

Figure2: ARCPInstructionFormats

only unusualonesarethesybi i andgcp instructions.
Thesybi i instructioncorresponds$o a subtracimme-
diateinverseoperationj.e. subtractsheregisteroperand
from the immediate thusinvertingthe orderof the sub-
traction. The gcp instructioncorresponds$o a guarded
copy operation. A guardedcopy operatesusing three
registersand copiesthe sourceregisterinto the destina-
tion if the third register the guard,is not equalto zero.
Guardectopy instructionscanbeusedfor implementing
if-then-elseblocks without branchesand thereforecan
improve the efficiengy and performanceof the pipelin-

ing.

4.2 ARCP Simulation and Evaluation

In the “Simulate and Experiment”phaseof the project
the studentsare asked to build a behaioral simulation
of this CPU andcollecta setof measurementsasedon
a numberof smallbenchmarkprograms.Someof these
benchmarksare provided by the lecturers,whereashe
restare to be developedby the studentsand are to be
representatie of typical applications. In our view, let-
ting the studendealwith the problemof finding the best
benchmarkdor evaluatingthe performanceof the pro-
cessoiis really important,asit makesthemreally think
hard of all the underlyingissuesinvolved. To help stu-
dentsachievethis, ourresearclyrouphasdevelopedsim-

ple compilersandassemblersvhich studentanuseto
producetheir benchmarks.

The measurementhat we areaskingthe studentgo
provide (andwe believe they arethe mostimportantfor
suchasimulation)arethefollowing:

e number of useful instructions executed (non
NOOP).

numberof instructionpairsexecuted.

e averagenumberof usefulinstructions.

averagenumberof memoryreadsper pair.

averagenumberof memorywrites per pair; thelast
two areimportantfor understandinghe useof the
memoryhierarchyandtheimpactof having differ-
entdataandinstructionmemories.

numberof takenandnot-takenbranches.

percentagef usefulinstructionsfor eachof thefol-
lowing groups: add/sub/mulcompare and/or/xor
shift, gcp, load/store,branch, subroutine-calland
jump.

Towardsthe end of the coursestudentsare asled to
write a reportwhich describegossibleoptimisationson
the above architecturebasedon their simulationresults.
They are also asled to run newv experimentson their
architectureso asto supporttheir claimsfor the possi-
ble optimisations.We believe thatthis ideaof students
proposingpossibleoptimisationsgiven an initial archi-
tecturels acrucialskill thataComputerArchitecturestu-
dentshouldacquire.

5 “Build™ Implementing the

ARCP CPU in an HDL

The last stageof the courseinvolves the development
of the ARCP CPU, using synthesisableand structural
HDL codebasedon a setof pre-implementedlibrary”
componentsvhich we have developedfor this exercise.
The ARCP instructionsethasbeendesignedwith em-
phasison straightforvard mappingto a gate-level cir-
cuit description. The studentsare asled to implement
the ARCP CPUusingafive stagepipeline,similarto the
DLX pipelineof thetextbook. Thisis shovnin Figure4.

Register Read Data
Fetch Instr. Decode ALU
PC+Imm

Reg. Write
Memory

Figured4: ARCPCPUPIpeline

We provide students with the following pre-
implementedlibrary of componentsto use in their
ARCPCPU:

a6-portReyisterFile.

separateData and Instruction Memories with a
bandwidthof 64 bits/clockcycle.

two 32-bitsALUSs.

ary number of multiplexers, flip-flops and de-
coders.

The ARCP CPU control logic is to be implemented
in synthesisabler atleast‘almost” synthesizabléiDL;
for this purposestudentsireprovidedwith guidelineson
producingsynthesizabl&/erilog Code. We askstudents
to identify all possibledataand control hazardsandto
try andreducethem using dataforwarding. Whenever
forwardingcannoteliminatea hazardtheir controllogic
shouldinsertwait states,.e. “bubbles”in the pipeline.
As studentshave only 3 weeksto implementthis stage
of the course,to sare time they are provided with a
schematiof areferencedatapath.Figures5, 7, 6 shav
theschematicsor stagesdl, 2 andstages3,4and5 of the
ARCP pipelinerespectiely.

The ARCP datapathschematicshovn include some
of the requiredcontrol signalsto give studentsa hint
of how to implementthe control logic for the pipeline
stagesindfor forwardingdata.Duringthepastfew years
of runningthis coursewe have experimentedwith these
schematicsin someyearsshaving someof the control
signalsin theseschematicsyhereasin otheryearswe
did not. We found that studentsook about50% more
timeto completetheimplementatiorwhenthey werenot
givenary of the controlsignalsin theseschematics.

STAGE-1

wait

i
i
i
j
|
der irvalid2

l
irB1| 1 |irB2
l

Instruction imemB

Cache

imemA

I
I
I
I
I
I
I]
I]
I T
I I
I I
: wait :
I I
I I
1 , dstPC
I I —
I

+8 ! xfer
i

pclplus8

nxtpcl

Figureb: Stagel of thepipeline

After completingtheir implementatiorstudentsmust
verify the correctnes®f their low-level implementation
by using their architecturalsimulator developedin the
“SimulateandExperiment’stagesasa “Golden Model”
andcomparinghe operatiorof thetwo onthe samepro-
gramcode. In this way, studentsacquireanothemeces-
saryskill for hardwaredesign,verificationagainstigh-
level models.

To make good use of their implementationand to
malke themrealizethat detailedhardwaremodelscanbe
usedwheneverdetailedresultsarerequired we askthem
to calculatethe speedupf this architecturecomparedo
areferencenon-pipelinedarchitecturave provide them.

Finally, thestudentsreto provideareportonhow dif-
ferentarchitecturalapproachesffect the hardwareim-
plementationTo helpthemrealisethe complexity of the
task we suggestthat they alter their implementeddat-
apathso asto implementtheir proposedoptimisations,
which they alreadyimplementedin their architectural
simulation. By doing this, it is easily made obvious
how complex it canbeto implementa new optimisation
which might take almostno time to incorporatedn the
architecturakimulation.

‘ STAGE-3 ‘ STAGE-4 STAGE-5
D dstEnabB3, dstRegB3 I lnstEnabBA. dstRegB4 A
Lo L D: s

| msigned3 | msigned4

T mbyte3 1 mbytea
mwrite3 “H - mwrited
mread3 mreada

md!urw3

I
I
I
|
aluBmode3 i
I
L
| dstEnabA3, dbtRegA]
|
I

| | aluAmode3
I

\

I

1 [dstEnabAs
dstRegAS

resultB4 I resultBS

lds\Enab 4, dbtRegAd

146

aluBinA3

| ALU m
Lod aluB3 i | auBa

| 2LS bits
I
aluBinB3 B u
]
‘ D
i ata mDputda
- | Addr Dout
i
I
|
I

align
Din sign-extend

mDoutdb

mDin3a

mbin3b

aluAinB3

resultAd
resultAS

aluAinA3

Figure6: Stages3, 4 and5 of the pipeline

6 Conclusion

In this paperan integratedapproachfor teachingCom-
puter Architecture was presented,which is currently
usedat our University, and hasbeenfound to be very
effective. Its mainadvantagesrethefollowing:

1. It increasesheinterestof the studentsn Computer
Architectureandhardwarein general.Therewasa
significantincreasen the numberof studentscon-
centratingon Hardware after we have adoptecthis
approacteitherby takentheir undegraduatehesis
on a hardware subjector enroll on a hardware or
semi-hardvareorientedpostgraduaterogram.

2. It givesthe studenta thoroughlycomprehensiowf
themain subjectof ComputerArchitecture

3. It enhancetheirperformanceén theexamswhichis
probablydueto thefactthatthey getalot of hands-
on experienceon every aspeciof ComputerArchi-
tecture.

4. It provides them with skills that are very useful
whendesigninghardwareandnot only wheninves-
tigatingthearchitectureof asystem.

STAGE-2
wait | ¢ wait mddpw2 L mdforwa
| wait dstEnabg: dstEnab
E] ivalid2 dstEnaby T].dstEnaby
opeodeB| Control
opcode; PLA

mwrite2
mread3
needrAa, needrAb
needrBa, needrBb

rAa !
i dStEnabB4, dstReqB4 |
Bypass Logic {EnabB3. dstReqB:

guardA
guardB

selPCdst

TAb

\Br

1Ba dstEnabAd, dstRegAd 1
geladst 1Bb & Comparators dstEnabA3, dstRegA3 !
selrAa, selrAb !
selrBa, selrBb |
SelBing, selAinB, xferMode I
dstRegB2 | | dsiRegB3
diseuAZ i L] dstRegh3
] T
align & | immB13 |
dSIEGabAS, dstRegAS
i sign-ext. | immB13shifted?
i L ol TmmBIoshifted 13 dstEnabBs, dsiReqBs
uards I
aa I N :
l ‘ Ba test !
Be iBa

T

B o[} regBal | alusinag
aluBinA2 1

1Ba selBing ;

aluBinB2.

B aluBinB3

San regBb!

Register

mbin2 mbin3a

aluB3

File }

selinB

T
aluaing2_| 1 | aluaings

0 regAb| |

oo) riAb |oH |

"
]

reghal || _aluainaz | | awainas
a} ha XerMode | |
|

immA13

pel

xfer

Figure7: Stage2 of thepipeline

This approachis, we believe, idealfor a coursethatis
takenby studentghatmight wantto focuson hardware,
or havealreadymadesuchadecisionandthey wouldlike
to geta first ideaof how a systemis initially designed,
thensimulatedandfinally built andtested.lts maindis-
adwantages, we believe, thatit relatively increaseghe
work neededor the courseandmight not bethatappro-
priatefor caseswherejust anintroductionto Computer
Architectureis neededmaybebecauséherearea great
numberof more specializechardwaredesigncoursesn
thesyllakus).

References

[1] J.L. HennessyandD. A. Patterson,Computer Ar-
chitecture: A Quantitative Approach. MorganKauf-
mann,1990.

[2] P. S. Coe, F. W. Howell, R. N. Ibbett, andL. M.
Williams, “A Hierarchical ComputerArchitecture
Designand SimulationEnvironment; ACM Trans-
actions on Modelling and Computer Simulation,
vol. 8, Oct. 1998.

