Update Plans: Pointers in Teaching Computer Architecture

Hugh Osborne and Jifi Mencak
School of Computing & Mathematics
University of Huddersfield
Huddersfield HD1 3DH, U.K.
{h.r.osborne,j.mencak}@hud.ac.uk

ABSTRACT

Pointers are intrinsic to Computer Science. Each field of
Computer Science seems to use its own more or less ad hoc
notation for describing pointers and operations on pointers,
thus impeding crossover of students’ skills from one area to
another.

This paper describes Update Plans, a “universal” pointer
specification language, and its application to teaching Com-
puter Architectures. Consistent use of Update Plans as a
supplement to traditional notations can greatly enhance stu-
dents’ ability to apply skills learned in Computer Architec-
ture courses to other pointer applications, and this is also
illustrated.

1. INTRODUCTION

Pointers are innate to computer science in general, and to
Computer Architectures in particular. Students will be con-
fronted with pointers even at an introductory level (although
possibly implicitly) in discussions of e.g. [indirect] addressing
modes, and again at a more advanced level — e.g. [vectored]
interrupts. Students often experience difficulty in recognis-
ing the same concepts when they encounter then in other ar-
eas of Computer Science: e.g. in data structures and in com-
piler construction to name just two. Each field of computer
science seems to have its own notations and conventions for
describing pointer structures — e.g. Register Transfer Lan-
guage in computer architectures, informal diagrams when
describing data structures, pseudo-code with explicit point-
ers in compiler construction. While this may arguably have
the advantage of providing notations particularly suited to
each application, it does impede a crossover of students’ un-
derstanding of pointer applications and operations from one
subject to another — it is quite common for students to un-
derstand the abstract notion of pointers in data structures
but to have difficulty in implementing them in a high-level
language, let alone relating such an implementation to ad-
dresses and indirection in low level code. What is needed is
a “universal” pointer notation that can supplement, if not
replace, the profusion of conventions currently in use, and
which emphasises the “low-level” nature of most pointer op-
erations while still allowing a high level of abstraction in
their description.

This paper describes Update Plans, a “universal” pointer
specification language, its application to teaching Computer
Architectures, and its role in facilitating crossover of stu-
dents’ skills. The Update Plan formalism can be used to

specify a wide range of pointer applications. Abstraction
mechanisms within the language allow the appropriate level
of information hiding, but in constrast to informal notations
the hidden information can be fully recovered from the Up-
date Plan specification.

The remainder of this paper is organised as follows. Sec-
tion 2 contains a brief introduction to Update Plans. This
paper is, however, not intended as a tutorial in Update
Plans, and the reader is referred to [4, 3, 5] for more informa-
tion. Sections 3 and 4 concentrate on the mechanics of Up-
date Plan descriptions in describing and teaching concrete
and abstract machine architectures. Section 5 illustrates
how the same formalism can be used to describe pointers
in abstract data types thus encouraging students to identify
the relationship between high level and low level operations
involving pointers. These three sections are again not in-
tended as tutorials in the particular pointer operations, but
as illustrations of the didactic application of Update Plans.
The aim of this paper is to show that Update Plan descrip-
tions are at least, if not more suitable than traditional meth-
ods as a tool for teaching pointers. Furthermore they can be
used in a wide range of areas while emphasising a Computer
Architecture perspective. The overall approach to teaching
pointers need not change — a change of tool, rather than
a change of method is being proposed here. Section 6 sum-
marises the use of Update Plans as an educational tool in
many fields of Computer Science, and discusses possible fur-
ther developments.

2. UPDATE PLANS

The Update Plans formalism was originally introduced [8] as
a ‘target language’ in the framework of the design of a trans-
lator generator. It has since been extended for the general
description of machines and algorithms, and as a tool for
completion of formal proofs of program implementations [4,
5]. It has also been used as a didactic tool at various uni-
versities.

The basic concept underlying the Update Plan formalism is
that of an update of a machine configuration, each possible
update being specified by an update rule.

An update plan is a set of update schemes, each of which may
contain unspecified values. A update scheme containing no
unspecified values is called an update rule. Update schemes
yield update rules by instantiation. A scheme consists of
a left-hand side and a right-hand side, both being sets of

locator expressions.

A locator expression is a triple, written a[€]3, where a and 3
are addresses or locators in one of a set of stores in an under-
lying machine model. Each store is a linear countably infi-
nite sequence of memory cells (e.g. bytes or machine words).
The above locator expression expresses the fact that a < 3
and that the cells between the addresses o and g contain (a
particular representation of) the value of £. The notation
of a locator expression is chosen such that it looks like the
picture #:

An update scheme states that if it is applicable (i.e. if all
locator expressions in its left-hand side are satisfied), the
memory may be minimally updated such that thereafter all
locator expressions in its right-hand side are satisfied. The
left and right-hand side of an update scheme are separated
by an arrow (=) which optionally carries a guard (5 v)
which is an additional applicability condition.

For instance, the two-scheme update plan in Figure 1 imple-
ments Euclid’s algorithm for computing the greatest com-
mon divisor of the number initially between A and B and
that initially between B and C. Capitalised words denote
constants: A, B and C are fixed locators and x and y are
unspecified values. In fact, if at any stage of the computa-
tion the machine configuration contains A[9]B and B[6]C,
(only) the second update scheme can be instantiated to an
applicable update rule, whereupon the 9 is replaced by a
3. An unspecified value on the left hand side of an update
scheme can be considered a variable which obtains its value
by means of instantiation.

Simple notational conventions acknowledge the existence of
a programme counter at a (hidden) fixed locator (by con-
vention PC), and allow the omission of irrelevant addresses
and the combination of adjacent locator expressions. The
update schemes in figure 2 for example, which specify the
push and add instructions on some zero address machine are
examples of applications of these conventions. The locator
SP is the stack pointer.

The expressive power of Update Plans is greatly increased
by the use of a macro-like mechanism known as archetypes.
Using the archetype mechanism complicated pointer struc-
tures, families of such structures, and even infinite classes
of arbitrarily large structures may be replaced by a single
archetype call, thus making it possible to express many up-
date schemes as one.

Archetypes are inspired by macro mechanisms. Their pa-
rameter resolution system is purely “macro” in flavour, though
their expansion may be context driven, i.e. dependent on the
configuration in which the macro is expanded.

An archetype definition defines a left and right hand side
in the archetype body. When an archetype call is expanded
the left and right hand sides of its body are included in the
left and right hand sides respectively of the update scheme
in which the call appears. There is a parameter resolution
mechanism to ensure consistent replacement of archetype
parameters.

An example of an archetype definition, and of a possible ap-
plication is given in Figure 3. The archetype definition (1)
defines a pop wich pops the value x from the stack (addressed
through the stack pointer SP). In (2) this archetype is ap-
plied in an update scheme defining an ADD instruction that
will pop a value from the stack and add it to the value in
the accumulator (ACC). Finally (3) shows the same update
scheme, but with the pop archetype replaced by its expan-
sion. Note that the information hidden by the pop archetype
has now become explicit.

Larger examples of Update Plan specifications can be found
in, e.g., [2, 3, 5].

3. CONCRETE ARCHITECTURES

Consideration of pointers is unavoidable when teaching Com-
puter Architectures. Even the simplest addressing mode
— direct addressing — involves a pointer. The object rep-
resented by a direct addressed operand is the address at
which the walue of that operand can be found. For exam-
ple, in 68K assembler MOVE 1234, 5678 means “copy the
value at address 5678 to address 1234” — 1234 and 5678
are pointers to the data. More complex addressing modes —
e.g. register indirect — can involve multiple indirections and
even side effects — e.g. predecrement addressing mode. A
popular notation for explaining these indirections and side
effects is Register Transfer Language. An example is given
in Figure 4 (adapted from [1]). While this notation is rea-
sonably transparent, and is relatively succinct for a single
opcode and operand combination, it intermingles the effects
of the opcode and the addressing modes, requiring a sep-
arate description for each possible opcode and addressing
mode, leading to a combinatorial explosion of definitions as
the number of instructions and addressing modes increases.

The Update Plan formalism separates the definition of the
opcode from the definitions of addressing modes, making it
easier to teach these as separate concepts. For example part
of the definition of an operand in some assembly language
might be as shown in Figure 5. This defines the archetype
oprnd with two parameters. The first parameter, ea, is the
effective address of the operand; the second, v is the value
of the operand. Line (4) defines a register indirect address-
ing mode, with r as the register identifier (e.g. R6). The
locator expression r[eal states that the effective address
can be found in this register, while the locator expression
ea[v] describes the indirection needed to find the value v
at effective address ea. Line (5) provides an alternative def-
inition of an operand, this time in predecrement addressing
mode. Again r is the register identifier. Access to the effec-
tive address and value is similar to the previous case, except
that the value in the register must be decreased (moved left
across the value v) to give the effective address. The locator
expression r[ea] to the right of the guard (=) expresses
the update of the contents of the register. These two lines
would be part of a longer archetype definition defining all
possible addressing modes in terms of their effective address
and value.

Once the addressing modes have been defined they can be
used to define the effect of opcodes. For example, the ADD op-
code is defined in Figure 6. This definition explicitly shows
the effect of instruction execution on the programme counter

Figure 1: Euclid’s Algorithm for the Greatest Common Divisor, its Implementation in Update Plans, and an

Instantiation of an Update Scheme
while (z # y) {
if (@<y)y=y-uz
else r =z —y;

AxBBly]c Hx<yl B[y—x|C

} AxBB[y]c x>y} Alx—y]B. H A[9]B B[6]C = A[3]B.

return r;

Figure 2: PUSH and ADD Instructions Specified in Update Plans

PUSH x SP[q]

= SP[p| p[x]q.

ADD SP[q] [x yl]g = SP[p] p[x +yla.

Figure 3: Definition, Application and Expansion of a pop Archetype

(Definition)
(Application) ADD pop(x) ACC[y] =
(Expansion) ADD SP[s] s[x]t ACC[y] —

pop(x) = SP[s] s[x]t == SP[t]. (1)

ACC[x +y]. (2)
SP[t] ACC[x +y]. (3)

Figure 4: RTL Definitions for Typical 68K Instructions

[Di(0:15)1¢-[Di(16:31)1, [Di(16:31)14-[Di(0:15)]

MOVE Di,Dj [Djl<+[Dil]

MOVE P,Di [Dil«[M(P)]

MOVE Di,N M)]+« [Di]

EXG Di,Dj [Templ<-[Dil, [Dil<-[Djl, [Djl« [Temp]
SWAP Di

LEA P,Ai [Ai]l<«P

Figure 5: Definition of an Operand in Update Plans

oprnd(ea,v) =

= it..E.GIND r r[ea] ea[v] = . (4)

= PREDEC r r[b] eafv]b = r[ea]. (5)

Figure 6: Definition of a Two Address ADD Instruction
PC[pc] pc[ADD op(eax, x) op(eay, y)]qc = PC[qc] ea[x +y].

Figure 7: Alternative Definition of a Two Address ADD Instruction

ADD op(eax, x) op(eay,y)

(PC). The notational conventions mentioned in Section 2 also
allow an alternative form as shown in figure 7 in which the
emphasis is on the functionality of the instruction.

By separating the definitions of the opcodes from the defi-
nitions of the addressing modes not only has the specifica-
tion of the instruction set become much more compact and
manageable (a simple two address machine with only 16
opcodes and 8 addressing modes which would require 1,024
(16 x 8 x 8) RTL definitions for a full specification only needs
24 (16 + 8) lines in an Update Plan specification) but also it
becomes much easier to teach these two concepts indepen-
dently and in an incremental fashion. Note that the order of
presentation of these elements of the instruction set would
typically be reversed when presenting them to students. The
opcodes can be introduced using a reduced set of addressing
modes (e.g. only direct address) as shown in Figure 8, and
only when students have mastered this reduced instruction
set will the full set of addressing modes be introduced. This

= ea[x+y]

approach can be reinforced by the use of a suitable assem-
bler emulator, such as the Postroom Computer [6, 10], which
supports this incremental approach. The Postroom Com-
puter is presented to students using the Update Plan for-
malism to reinforce informal descriptions of the machine. It
also uses the Update Plan formalism to describe its internal
state when students trace execution of Postroom Computer
programmes. Experience has shown that students soon mas-
ter an (informal) understanding of the meaning of Update
Plan notation.

4. ABSTRACT ARCHITECTURES

Pointers are also unavoidable when teaching abstract ma-
chine architectures, whether the machine is for a procedural,
functional, logical or object oriented language. This section
presents an example from an implementation of a functional
language. A functional language implementation has been
chosen because the data structures in implementations of
functional languages are typically small, and very limited in

Figure 8: Definition of a Simple Two Address ADD Instruction

ADD ea, eay; eas[x] eay[y]

number. The methods illustrated here could also be applied
to more complex abstract machines.

Peyton Jones [7] describes function evaluation by graph re-
duction using pointer reversal by a combination of informal
diagrams and a rather clumsy notation for describing the
pointer reversal itself, which uses the implicit function ‘Left’
which hides an essential indirection, requires inspection of
the corresponding diagram to show that the operation can
only be applied if the forward pointer ‘F’ points to an appli-
cation node, and needs an explicit statement of the simul-
taneity of the components of the pointer reversal operation
(see Figure 9 — adapted from [7]). Not only can pointer
reversal be expressed much more succinctly in Update Plans
(see Figure 10), but all of the hidden information in Figure 9
is now explicitly present in the description.

Note also that the implementational structure of an appli-
cation node is much clearer in the Update Plan specification
— an application node being a structure containing a con-
stant (APP) identifying it as an application node, and two
pointers (c and d on the left hand side, b and d on the right
hand side).

Relatively simple Update Plan specifications of the other
operations involved in graph reduction can be given, sup-
plementing an informal diagrammatical explanation, and
allowing students to experiment with the implementation.
A prototype implementation of (a subset of) Update Plans
is currently being used in an advanced level course on the
implementation of functional languages. Students can, for
example, be given Update Plan implementations of stan-
dard graph reduction operations and be asked to develop
a A-calculus to graph expression compiler, or they can be
asked to develop a compiler from A expressions to Update
Plan specifications of supercombinators.

It should again be emphasised that Update Plan specifica-
tions are not proposed as a replacement for informal nota-
tions, but as a supplement. The advantages are threefold.
Update Plans have a formal semantics, making specifica-
tions precise. The existence of an implementation (albeit
currently limited) makes it possible for students to exper-
iment with the construction of graph manipulation primi-
tives. In addition, the students following this course have
encountered Update Plans earlier in their studies in an in-
troductory course in Computer Architectures, making the
crossover of skills easier.

5. ABSTRACT DATA TYPES

Data structures are another area of Computer Science where
pointers are rife — both explicitly in e.g. lists, stacks, queues,
trees etc., and implicitly in arrays, records, structures, ob-
jects, etc. This is illustrated here by using Update Plans to
describe binary trees and operations on them. This exam-
ple shows how the single rotate left operation in AVL trees
can be defined using (only) Update Plans. The most com-
mon way of explaining such structures and operations is by
a combination of informal diagram and (pseudo) code, as

= eax[x+7y]

shown in Figure 11 (adapted from [9]). In the single rotate
left operation an unbalanced node having no children on the
left, but both a child and a grandchild on the right is bal-
anced by promoting the right hand child to the root node,
with the original root node as the new root node’s left hand
child.

In Update Plans the data structure can be defined as an
archetype. Figure 12 contains an example defining a binary
tree. The first archetype (6) defines the abstract structure of
a binary tree. This archetype can be read as: “A binary tree
is either the empty tree, or a node containing a key and two
subtrees”. Archetypes (7) and (8) then define the concrete
structure of binary trees, defining the empty tree to be the
NULL pointer, and a node to be a pointer to a data structure
containing a key, and two pointers to the node’s subtrees.
A definition of the single rotate left operation is given in
Figure 13. Note that this definition can be read as the tex-
tual representation of the tree diagram shown in Figure 11.
In other words, this definition of the operation implicitly
contains the pointers. In contrast to the usual style of ex-
planation of the operation as shown in Figure 11 there is,
however, no need to change the representation to make the
pointers explicit — simple expansion of the node archetypes
suffices, as shown in Figure 14. It should be emphasised that
this is the same update scheme as in Figure 13, only after
archetype expansion. The abstract data structure in Fig-
ure 13 has been transformed into a concrete representation
using pointers while staying in the same paradigm.

6. CONCLUSIONS

The previous three sections have demonstrated the appli-
cation of Update Plans to teaching Computer Architecture.
By using a unified notation that is not only applicable to
teaching Computer Architectures, but that is also suitable
for describing pointer applications in other areas of Com-
puter Science crossover of students’ skills and understanding
throughout the curriculum is greatly facilitated. Also, stu-
dents often find it difficult to relate the high level concept of
pointers to the low level concept of addresses. By using the
same formalism to describe both the relationship is made
explicit, strengthening students’ understanding of pointers
from a Computer Systems Architecture perspective.

Update Plans cannot completely replace the other meth-
ods discussed here, especially informal graph diagrams — a
picture is, after all, worth a thousand words, or even Up-
date Plans — but the formalism should be used to com-
plement and unify explanations of the réles of pointers in
Computer Science and to emphasise the low level nature of
most pointer operations.

The Update Plan formalism has been used successfully as a
descriptive tool in teaching introductory Computer Archi-
tectures. An implementation of a subset of Update Plans
is also available, and this is being used to provide more ad-
vanced students with hands-on experience — designing and
implementing their own instruction sets, and building and
using an abstract intermediate code machine.

Figure 9: Pointer Reversal in an Implementation of a Functional Language

-
B—b b
F = Left(F) T
Left(F) = B simultaneously | p _, @ —& ¢ B— @ — ¢
B = F l
d F —d

Figure 10: Updata Plan Specification of Pointer Reversal
F[£] Bb] £[APP c d] = FJc] B[f] £[APP b d].

Figure 11: Single Rotate Left in an AVL Tree

AVLNode

oldRoot = this;
AVLNode =

newRoot = (AVLNode) right;
oldRoot.right = newRoot.left;
newRoot.left oldRoot;

return newRoot;

Figure 12: Defining a Binary Tree in Update Plans

tree() = empty().
= node(key, tree(), tree()). (6)
empty() = NULL. (7)
node(key, left,right) = a alkey left right]. (8)

Figure 13: The Single Rotate Left Operation on AVL trees
ROL oldroot(x, tree();,newroot(y, tree()s,, tree()s,))
= newroot(y, oldroot(x, tree():, tree()s2,)).

Figure 14: The Update Scheme from Figure 13 after Expansion of the node Archetypes
ROL oldroot oldroot[x tree(): newroot] newroot[y tree()z, tree()s]
—> newroot newroot[y oldroot tree()s,] oldroot[x tree():, tree()s].

7. REFERENCES

[1] Alan Clements. The Principles of Computer
Hardware. Oxford University Press, 2000.

[6] Hugh Osborne. The Postroom Computer: Teaching
introductory undergraduate computer architecture. In
Proceedings of the 38rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2002), 2002.

[2] Hugh Osborne. The semantics and syntax of update
schemes. In Code Generation — Concepts, Tools, [7] Simon Peyton Jones. The Implementation of
Techniques, Workshops in Computing. Springer Functional Programming Languages. Prentice Hall,
Verlag, 1992. 1987.

[3] Hugh Osborne. Update Plans. In Proceedings of the [8] Hans Meijer. Programmar: A Translator Generator.
25th Hawaii International Conference on System PhD thesis, University of Nijmegen, Toernooiveld 1,
Sciences. IEEE Computer Society Press, 1992. Nijmegen, The Netherlands, 1986.

[4] Hugh Osborne. Update Plans — A High Level Low [9] Russel Winder and Graham Roberts. Developing Java
Level Specification Language. PhD thesis, University Software. John Wiley & Sons, 1998.
of Nijmegen, Toernooiveld 1, Nijmegen, The - . .
Netherlands. 1994. [10] William Yurcik and Hugh Osborne. A crowd of Little

’ Man Computers: Visual computer simulator teaching

[5] Hugh Osborne. Update Plans for parallel tools. In Proceedings of 2001 Winter Simulation

architectures. In M. Kara, J.R. Davy, D. Goodeve,
and J. Nash, editors, Abstract Machine Models for
Parallel and Distributed Computing, pages 79-90,
Amsterdam, 1996. IOS Press.

Conference, New York, 2001. ACM.

