PECTOPAH: Promoting Education in Computer
Technology using an Open-ended Pedagogicall y
Adaptab le Hierarchy

Hugh Osborne, Shirley Crossley and Jifi Mencak
School of Computing & Mathematics

University of Huddersfield
Huddersfield HD1 3DH, U.K.
{h.r.osborne,j.mencak}@hud.ac.uk
shirleycrossley@blueyonder.co.uk

1. TEACHING COMPUTER ARCHITECTURE

1.1 Computer SystemgAr chitecture

An understanding of Computer Systems Architecture (CSA)
is essential to an understanding of Computer Science. There
is however a tendency, at all levels, in teaching Information
and Communications Technology (ICT) to neglect CSA, but
teaching ICT without teaching CSA is like teaching Russian
without teaching the Cyrillic alphabet — students may be-
come reasonably fluent in the application of abstract high
level skills (e.g. they know that the Russian for restaurant is
restoran), but lack the basic skills needed to maintain and
extend those skills (e.g. they cannot identify PECTOPAH
as being the “real” Russian for restaurant). There are two
major reasons for the neglect of CSA in teaching ICT. There
is a misconception of the effect of technological change, and
there is a tendency to use inappropriate didactic tools.

1.2 The Role of TechnologicalChange

“With IT technology developing so rapidly, is it really worth
trying to teach something that will be out of date within a
very short time?” As rapid as the developments have been it
is the high level applications of IT that have changed — the
basic principles of CSA are essentially the same as they were
50 years ago. Learning these basic principles allows students
to build their understanding of high level IT applications on
their knowledge of the basic principles of digital computers,
confident that these principles are unlikely to change quickly
and that they will be able to apply the same understanding
to further developments and thus maintain a state of the art
knowledge.

1.3 Usingthe Right Tools

CSA is traditionally considered to have a high learning thresh-
old. This is due to the difficulty of teaching it in an incre-
mental and hands-on fashion. For CSA hands-on experience
should be provided by writing low level programmes, but low
level programming already requires a solid grounding in as-
pects of CSA| e.g. internal data representation, the memory
hierarchy, interaction with peripheral devices, etc.

This perceived difficulty is again a misconception, due to
the use of inappropriate tools. A common approach is to
use the inbuilt assembly language of some real machine to
provide hands-on experience. These languages are not de-

William Yurcik
Dept. of Applied Computer Science
lllinois State University
Normal
lllinois
USA
wijyurci@ilstu.edu

signed as didactic tools, but as programming tools for ex-
perienced users who already have a thorough understanding
of CSA, making such languages hard to understand, and
making it hard for students to separate the (manufacturer
specific) incidental from the (subject wide) essential. The
frequently cryptic documentation only exacerbates the prob-
lems students have. Using such a tool to learn CSA is akin
to trying to learn Russian using only a Russian/English-
English /Russian dictionary — a very useful tool in skilled
hands, but inappropriate as a beginner’s guide.

This abstract describes three tools that together provide a
progressive hierarchy of teaching aids thta can be used at
many levels of teaching, providing students with a seam-
less incremental toolbox that can be used throughout their
education.

The remainder of this abstract is organised as follows: Sec-
tion 2 describes the teaching philosophy behind the tool-
box; in Section 3 the three components of the toolbox are
described; Section 4 discusses the use of these tools; and
section 5 is a summary of their integration in the toolbox.

2. INCREMENTAL TEACHING

The aim of any good course must be to introduce students to
new concepts in an incremental fashion. The subject mat-
ter must be analysed and a plan of delivery developed so
that the learning threshold is at all times as low as possi-
ble. Learning of concepts is strongly reinforced by “hands-
on” experience, and this should be introduced as early as
possible — any course in which many weeks of background
introduction are required before students can undertake re-
alistic exercises is likely to be perceived as “difficult” or “too
theoretical”.

Low learning thresholds by no means exclude high learning
expectations. It is essential that the teacher has high expec-
tations of the students’ learning, and communicates these
to the students. Students perform to expectations, so high
expectations bring out the best in achievement.

These two aims are strongly related to the need to struc-
ture courses so as to enable students of the widest possible
range of abilities to profit to the maximum of their capa-
bilities from the material on offer. A well structured course



will provide students with knowledge and skills at various
levels. The course should contain enough advanced material
to challenge the more able student, allowing them the op-
portunity to develop and prove their ability, while ensuring
that the basics are covered in sufficient detail for the less
able to provide them with the basic knowledge expected of
them.

Incremental teaching is also the ideal on a longer timescale.
Students making the transition from, for example, secondary
to tertiary education often experience a “fault line” where
there is a mismatch between their prior knowledge and ex-
perience and the prerequisites assumed by their new insti-
tution. While such problems are to some extent unavoid-
able, the development of national curricula and the provision
of integrated tools and methodologies can help to alleviate
them.

3. APPROPRIATE TOOLS FOR CSA EDU-

CATION
3.1 Primary andSecondaryEducation—“How

Computers Really Work”
There is a shortage of appropriate material for teaching
late elementary and secondary school pupils the essentials of
Computer Systems Architecture. “How Computers Really
Work” is a pilot interactive CD-ROM for teaching CAS to
primary and seondary school children. Students are guided
throughout by “Chip”, an animated floppy disk. There are
areas on the CD covering peripherals, computer hardware
and software, the internet and the history of computing.
There is also a quiz consisting of multiple choice questions
covering material from all other sections of the CD. The
largest area of the CD is Computer Architecture area deal-
ing with the CPU, memory and data. The description of the
CPU is based on the Postroom Computer (see section 3.2).

3.2 Intr oductory UndergraduateLevel—“The
Postroom Computer”

The problem of teaching low level programming at an intro-
ductory undergraduate level was addressed as early as 1965
by Stuart Madnick and John Donovan (see e.g. [3]). In the
Little Man Computer (LMC) they provided an extremely
simplified model of low level programming and computer
architecture. The LMC model has proven to be of lasting
popularity, as the number of LMC emulation programmes
currently in existence, 35 years after it was originally pro-
posed, shows (see, e.g., [11] or [10] for a survey).

The Postroom Computer (PC) [8, 9] is an extended emula-
tion of the LMC model, in which the emphasis is on flex-
ibility and generality. It is designed to introduce aspects
of CSA and low-level programming in an incremental way.
The extensions are designed to provide a range of computing
models within the LMC/PC paradigm. As they are intro-
duced they can be related both to the LMC/PC paradigm
and to “real” machines. The PC provides a powerful and
flexible tool for teaching CSA. By adding orthogonal exten-
sions to Madnick and Donovan'’s basic LMC aspects of CSA
can be introduced in a stepwise fashion, never overwhelm-
ing students with details, yet leading eventually to a full
understanding of the principles of CSA.

The PC also introduces students to a more formal descrip-
tion (Update Plans, see section 3.3) of computer systems

architectures.

3.3 AdvancedUndergraduate/Postgraduate—

“Update Plans"
Update Plans (UP) is a formalism for the description of ab-
stract machines and algorithms. UP is particularly suitable
as a specification language for the description of large classes
of computer systems architectures.

UP has didactic uses in many areas of Computer Science
other than CSA — for example data structures and com-
piler construction. The common denominator in all these
applications is that of a pointer. Pointers are intrinsic to
Computer Science. Each field of Computer Science seems
to use its own more or less ad hoc notation for describing
pointers and operations on pointers, thus impeding crossover
of students’ skills from one area to another. UP is a “uni-
versal” pointer specification language. Consistent use of UP
as a supplement to the traditional notations can greatly en-
hance students’ ability to apply skills learned in one domain
to other pointer applications.

4. USING THE TOOLS

4.1 How Computers Really Work

A pilot version of the interactive CD-ROM was tested on a
group of children and their teachers. The children all en-
joyed the package and liked the classroom metaphor used
in the CD-ROM. The teachers found it bright and cheer-
ful, and felt that the animations would catch the children’s
attention. The children did have some difficulty in under-
standing the Postroom Computer section. However, in the
pilot version, there was no facility for hands-on program-
ming of the Postroom Computer. Fully integrating a user
friendly GUI to the Postroom Computer would undoubtedly
greatly enhance the usefulness of this tool.

4.2 The Postroom Computer

The PC is supported by both online documentation[1] and
a fully integrated system of course materials [2], including a
range of exercises allowing students of all levels to advance
their knowledge and skills.

Experience has shown that after one semester (12 weeks),
with one hour of lectures and one hour of supervised prac-
tical exercises per week, first year first semester undergrad-
uates with no prior knowledge of the subject demonstrate
a good understanding of the subject matter and can suc-
cessfully undertake a range of ambitious low level program-
ming exercises of a level normally considered to be too ad-
vanced for introductory CSA courses. The students typically
achieve a higher level of understanding of the principles of
CSA than usual at this level of instruction.

4.3 Update Plans

UP was not originally developed as a teaching aid, but as
a theoretical tool. It has been the target of academic re-
search [4, 5, 6, 7], which has shown that the formalism is a
valuable aid for the description and analysis of a wide range
of computer systems architectures. UP has also been used
as a teaching aid at various universities, and has shown its
worth in helping students to understand how the compo-
nents of computers, both hardware and software, interact.
An implementation of a subset of Update Plans is currently



being used as a teaching aid for an advanced course on the
implementation of functional languages.

5. THE TOOLBOX

Each of the three components described is a useful tool in its
own right. Together they provide a long term incremental
tool for teaching CSA.

How Computers Really Work provides a basic intro-
duction to CSA, including a first contact with the Postroom
Computer model.

The Postroom Computer can be used as an incremen-
tal hands-on teaching aid for introductory undergraduate
CSA. No prior exposure of the students to the Postroom
Computer is required for successful deployment of this tool,
though it would of course be an advantage. As well as in-
troducing students to the important concepts of CSA, the
Postroom Computer model will also probably be their first
introduction to precise and formal descriptions of computer
systems structures, using Update Plans.

Update Plans provide a tool for further development of
student’s understanding of CSA, allowing them to develop
and test their own models of advanced computer systems ar-
chitectures. Update Plans are also applicable to many other
areas of computer science (e.g. data structures and compiler
construction), thus facilitating crossover of students’ skills
and understanding. Further applications of Update Plans
can be developed to encourage this crossover, and to pro-
vide an open-ended tool in teaching computer science.

6. REFERENCES
[1] http://scom.hud.ac.uk/staff/scomhro/Courses/
PostroomComputer/.

[2] http:
//scom.hud.ac.uk/staff/scomhro/Courses/CFS155/.

[3] Irv Englander. The Architecture of Computer
Hardware and Systems Software. John Wiley & Sons,
New York, 2000. Second edition.

[4] Hugh Osborne. The semantics and syntax of update
schemes. In Code Generation — Concepts, Tools,
Techniques, Workshops in Computing. Springer
Verlag, 1992.

[5] Hugh Osborne. Update Plans. In Proceedings of the
25th Hawaii International Conference on System
Sciences. IEEE Computer Society Press, 1992.

[6] Hugh Osborne. Update Plans — A High Level Low
Level Specification Language. PhD thesis, University
of Nijmegen, 1994. http://scom.hud.ac.uk/staff/
scomhro/Papers/PhD/phd.html.

[7] Hugh Osborne. Update Plans for parallel
architectures. In M. Kara, J.R. Davy, D. Goodeve,
and J. Nash, editors, Abstract Machine Models for
Parallel and Distributed Computing. I0S Press, 1996.

[8] Hugh Osborne. The Postroom Computer. ACM
Journal of Educational Resources in Computing, 2(1),
March 2002.

[9] Hugh Osborne. The Postroom Computer: Teaching
introductory undergraduate computer architecture. In
Proceedings of the 83rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2002), 2002.

[10] Gregory S. Wolfe, William Yurcik, Hugh Osborne, and
Mark Holliday. Teaching computer
organization/architecture with limited resources using
simulators. In Proceedings of the 83rd ACM Technical
Symposium on Computer Science Education (SIGCSE
2002), 2002.

[11] William Yurcik and Hugh Osborne. A crowd of Little
Man Computers: Visual computer simulator teaching
tools. In Proceedings of 2001 Winter Simulation
Conference, New York, 2001. ACM.



