
Abstract

Learning is not a spectator sport! Yet, the
majority of classroom time is spent lecturing.
While traditional lecture might be useful for
disseminating information, textbooks and web
pages already do that. Why spend valuable class
time telling students what the book says.
Students need to be more engaged than listening
and note taking allow! In-class questioning can
be very effective at actively engaging students.
This paper provides some background
information about questioning, supplies some
process suggestions for those wishing to enhance
their use of questions, and provides some
Computer Architecture specific examples of
questions.

1. Introduction

For several years we have realized that
traditional lecture is too passive and probably is
not the best use of in-class time. Studies have
shown that after 10-15 minutes of lecturing
students essentially stop learning, but their
attention-span clock is reset by interjecting
activities to break up the lecture. (Stuart &
Rutherford 1978) Additionally, Students retain
only a small fraction of the material covered,
attendance only has a marginal effect on
performance, and learning via lecture is
independent of the lecturer's quality. (Stuart &
Rutherford 1978) The bottom line is that lecture
is not very effective!

We accept as fundamental that it is desirable to
have "engaged" students who "actively" process
the content we attempt to teach them. Active
learning (rather than passive memorization of
content) should be the goal of instruction.
Achieving active learning is, however, not
necessarily easy. Our goal became to better
understand the art and science of asking
questions in class so that our students would
learn more or better by being actively engaged in
the content of our courses. At WCAE 2000,
Fienup (2000) explored the use of active and
group learning in Computer Architecture. This
paper is an extension of that work by providing
some background information about questioning,
supplying some process suggestions for those
wishing to enhance their use of questions, and
providing some Computer Architecture specific
examples of questions.

We discovered that there are a variety of goals
that one might have when asking questions. The
next part of the paper will discuss various goals
for questions and other insights we gained from
the literature and our conversations. The bulk of
the paper will include exemplar questions and
attendant goals. We hope they will be useful to
readers who wish to include more questioning in
their Computer Architecture teaching (and allow
some to skip the step where you say "duh" and
hit yourself on the forehead for not realizing that
there is more to questioning for active learning
than just blithely asking questions).

Improving Computer Architecture Education
Through the Use of Questioning

Mark Fienup and J. Philip East
Computer Science Department
University of Northern Iowa
Cedar Falls, IA 50614-0507

fienup@cs.uni.edu
east@cs.uni.edu

2. Background RE Questioning

We used several techniques for gathering
information about questioning. We examined
readily available literature, reflected on our prior
experiences with questioning, and talked about
our experiences. From these activities, we
identified several goals of questioning in the
Computer Science classroom:
§ to have students practice a skill
§ to grade student performance
§ to provide students with practice on

applying knowledge
§ to motivate a topic
§ to motivate students
§ to gauge student understanding
§ to engage students in active learning
§ to develop students' meta-knowledge
§ to regain/reset student attention spans
In examining the literature (e.g., Dantonio &
Beisenherz, 2001, Chuska, 1995, Wasserman,
1992; Wilen, 1991), we encountered similar lists.
For example, Wilen (1991) indicates that

Although the two major enduring purposes of
teacher questions are to determine student
understanding of basic facts associated with
specific content and to have students apply
facts using critical thinking skills, educators
have suggested other related purposes:
§ to stimulate student participation
§ to conduct a review of materials

previously read or studied
§ to stimulate discussion of a topic, issue,

or problem
§ to involve students in creative thinking
§ to diagnose students abilities
§ to assess student progress
§ to determine the extent to which

student objectives have been achieved
§ to arouse student interest
§ to control student behavior
§ to personalize subject matter to support

student contributions in class (p. 8-9)

Both these lists can probably be condensed.
They do, however, suggest rather strongly that a
variety of goals may be achieved via questioning

and that the questioning activity is not simple.
Additionally, we also note that the results of
questioning activity can probably be classified as
recall of knowledge and application of
knowledge (understanding).

From our perspective, recall of knowledge is
important but probably does not constitute active
learning (which is our goal). We might, however,
legitimately use a recall question to achieve a
goal such as assessing student knowledge and
understanding, or as a motivational lead-in to
stimulate student interest in or attention to
upcoming topics.

The goal in which we are most interested is that
of engaging students' minds on the current
lecture topic in a relatively restricted way. We
see the role of in class questions to be one of
initiating intellectual activity in student minds. In
general, such activity might involve:
§ practice of some specific intellectual

activity, e.g., designing, testing, debugging,
interpreting specifications, etc.

§ applying specific knowledge
§ having students examine their own

knowledge and understanding
While we have approached this goal from the
point of view of questioning, we assume we are
not restricted to oral questions or even to
questions. Asking students to engage in an
intellectual activity can be construed as asking a
question.

3. Process Suggestions

Obviously, we suggest that questioning (and
other activity) be used to engage students more
actively in the content of Computer Architecture.
But that is not as simple as asking questions. It
must be planned. The planning may need to
involve a variety of issues and occur at various
times and levels in a course.

Before the course begins, we recommend
familiarizing yourself with the various goals and
types of questions that can be asked and

considering the impact on course planning. For
example, we believe that there are benefits to
having small (4-5 students) groups working
together on questions. Group formation can be
left to students or dictated by the instructor. We
prefer the latter. If the "better" students are
spread throughout the groups, there is potentially
a teacher per group. Weaker students are more
likely to ask questions of their peers. Because
students' mental contexts have more in common
with students than the professor, the student
"teacher" in the group may be in a better position
to communicate effectively. We believe that the
better students also benefit by trying to explain
concepts to weaker students. Think about how
much you learned about the material of a course
the first time that you taught it.

You should also consider addressing your goals
for the in-class questioning activity in your
syllabus and, occasionally, in class. If students
understand why you are asking so many
questions and not just 'telling" them what they
are supposed to know, they may well participate
more fully and learn more. You may also wish to
incorporate some aspect of grading (e.g., class
participation) to reflect your opinion of the
importance of active learning. We would
suggest about 10% of the course grade be based
on in-class participation of the questions. We
base this portion of their grade on student
evaluations from peers within their in-class
groups.

Before each class or unit, plan your questions.
Questions should be used to enhance the learning
of the most important topics of each class.
Identify the most important content goals or
ideas in the lesson. Then proceed to planning
your lesson (and the questioning you will use in
it). It is as important to consider what you are
going to ask as it is to consider what you are
going to tell. Do not treat your questions lightly.
Consider the goal(s) you wish to achieve with
each question. Think carefully about how
students will respond to the question.
§ Are they likely to just turn off and wait until

the "real" classwork starts back up? If so,

can you ask the question differently or do
something in class that short-circuits that
reaction?

§ How much time is necessary for them to
formulate a reasonable response?

§ Is the question clear and unambiguous?
§ Is the question too easy or difficult?
§ Will students be adequately prepared when

the question is asked?

Additionally, consider using non-oral questions.
Placing questions on a transparency or handout
will demonstrate that you consider them
important. Doing so may also communicate to
students that you expect them to spend some
time on the question while at the same time
encouraging you to wait until students have had
time to process it. Many students have
commented that revisiting questions asked in
class an effective way to prepare for
examinations since they focus on the important
skills and concepts of the course.

What you do during class can affect the success
of your plans. When you ask questions, allow
students a chance to respond. If students don't
respond, wait. If students still don't respond,
wait! Eventually, they will respond (if not in
today's class, then in tomorrow's). Also, after a
student response, wait and think. We find that
our first impulse is often less useful than we
would have liked. Consider what the student
might have been thinking and whether and how
you might follow up on the response to enhance
the learning of both that individual and other
students. If nothing else, when you pause, the
students will think you are taking the response
seriously.

Be careful how you respond to student answers.
You want to foster an atmosphere where
students do not feel threatened by answering the
questions. Even comments like "that's not quite
on the mark, Bob" can be enough to make
students hesitant to respond to questions. Since
we tend to have groups answering a question,
we might simply ask what another group thought.

However, it is important that the correct answer
is identified as such.

Finally, it is important to spend time after class
reflecting on what happened. (Schon, 1983) We
often find this hard to do. But, it is necessary, we
believe, in order to achieve success at changing
our teaching behavior. The up-front planning is
quite important, but will be mostly wasted if we
do not take time to analyze how well the plans
worked. In essence, the reflection assesses how
well reality matched the plans and, if so, whether
the desired outcomes were achieved. Did we
actually follow our plans? If not, is that good or
bad? Did the students behave or respond as
anticipated? Does the planned questioning
appear to achieve the desired results? If not,
what other questioning or activity might be
better? The goal of the reflection is to make us
aware of what we do. We suggest a brief
reflection time, perhaps keeping a journal or
annotating the lesson plan. Of course this data
will need to be fed back into the planning process
of the next iteration of the course and indirectly
for future lessons in the current and other
courses.

4. Sample Computer Architecture
Questions

In the discussion below, we provide some
examples of questions or class activities. Along
with the examples we provide some discussion
of our intended goals and of the processes we
experienced or expected with the questions. We
do not limit ourselves to positive examples. It
seems useful to supply some examples of not so
good questions so that others might learn from
our mistakes.

4.1 Knowledge Recall Questions

Knowledge recall questions are relatively easy to
ask. Often, however, they do little to enhance
instruction. The following questions are probably
not particularly helpful, even though they exactly
address what we want to know.

§ What did you learn in this chapter?
§ What are the main points in the reading?
§ Do you have questions over the

chapter/section?
A small set of quick-check kinds of questions,
however, might be useful. They could provide
examples of some types of test questions as well
as a review of important points in the content.
For example:
§ What is a cache?
§ What is the purpose of the (shift left logical)

"SHL" assembly language instruction?
§ What is an operating system?
§ How is bus skew handled in the PCI

protocol?
Even though these questions do have some
utility, we are inclined to believe they should
probably be subsumed into the next category of
question in which skills are practiced.

4.2 Skill Demonstration Questions

Many relatively simple skills such as converting
from a decimal number to binary, or using a
newly introduced assembly language instruction
are often just demonstrated by professors with
the assumption that students have mastered the
skill since they did not ask any questions about it.
Worse yet, students might fool themselves into
thinking they have mastered the skill too. Life
would be much easier if we could learn to swim
by watching someone swim. Demonstrations of
even the simplest skills by the professor should
be followed up by practice questions for the
students. The development of skill requires
practice, and feedback as to the correctness of
practice. Some examples here are:
§ Converting between base 10, 2, and 16.
§ Addition of two binary numbers
§ Trace the assembly language program

containing the newly introduced (shift left
logical) "SHL" to showing the resulting
register values.

§ Use the newly introduced (shift left logical)
"SHL" assemble language instruction to
calculate....

§ Draw the timing diagram for the code
segment on the given pipelined processor.

§ If the given cache is direct-mapped, what
would be the format (tag bits, cache line
bits, block offset bits) of the address?

§ What does the given assembly language
code "do"? Similar in nature to tracing, this
question requires students to abstract from
code to a general statement of code
purpose. Tracing is necessary for
understanding a program and, we believe,
skill at abstraction is necessary for coding
skill to progress to design skill.

§ Using the given hit ratio and access times
for the cache and memory, calculate the
effective memory access time.

Other courses have similar examples of
relatively low-level skills necessary for
competence in the subject—various proof
techniques in discrete structures, using syntax
diagrams to see if a block of code is syntactically
correct, and counting statements in algorithms.

4.3 Questions Drawing on Personal

Experience

Questions asking students to draw on their past
experiences can often be used instead of asking
a more direct, but too complex or abstract,
question. For example in Computer Architecture,
when discussing immediate-addressing modes
with respect to instruction-set-design issues, you
might be tempted to ask the question: "How
many bits should be used for an immediate
operand?" It is more constructive to make the
question more concrete by asking students to
draw on past experiences by asking questions
like the following:
§ From your programming experience, what

range of integer values would cover 90% of
the constant integer values used in all the
programs you have ever written?

§ How many binary bits would you need to
represent this range of values?

The sequence of questions focuses the
discussion on the sought after answer.

Questions requiring students to examine their
own knowledge and understanding can often be

used to motivate a deeper understanding of a
topic, but the instructor must be careful that the
intended point is made by the activity. To
motivate hardware support for operating systems
in a Computer Architecture course, I often ask
the following sequence of questions:
§ What is an operating system

(hardware/software, goals, functionality)?
§ How does OS/hardware protect against a

user program that is stuck in an infinite
loop?

The first question motivates the students to think
about operating systems and their role. They
usually decide that an operating system is
software used to provide services such as
security, file access, printer access, etc. On the
second question, students typically answer that
the system allows users to break/interrupt a
program after a while. Having good oral
questions to follow up on student answers is
important. Asking about "what happens in a
batch system?" steers the discussion back
toward the desired answer of a "CPU timer".
Other times students respond to the second
question with answers like "the operating system
will be watching for infinite loops." The instructor
might follow up with a question like, "In a single
CPU system, how many programs can be
executing at once?" If the students answers
"one", then you might ask, "If the user program
with the infinite loop is running, then how can the
operating system (which we decided was a
program) be running too?" This gets the
discussion back to the need for the CPU-timer
hardware support.

4.4 Questions to Create Cognitive

Dissonance

An Earth Science colleague once told me that
students in his crystallography course did not
have preconceptions about the content in his
course. He was wrong. Students may come to
us with little knowledge and incorrect
assumptions about word usage and meaning, but
they will always have some preconceptions
about our content. Often the preconceptions will
be inaccurate and hard to replace. Identifying

and attempting to fix them and to short-circuit
the establishment of new misconceptions are
critical aspects of teaching. The strongest
learning occurs when we are able to produce
cognitive dissonance in student minds. We need
this kind of learning to alter misconceptions—
weaker techniques will not work. Additionally, it
would be nice if we were able to generate such
a mindset at will. Probably we cannot, but we
can try.

The last example from the previous subsection is
a good example of creating cognitive dissonance
is student minds. By asking the question "If the
user program with the infinite loop is running,
then how can the operating system (which we
decided was a program) be running too?"

Along the same lines, other questions that can
create cognitive dissonance when teaching about
hardware support for operating systems would
be:
§ Since a user's program needs to be allowed

to perform disk I/O, how does the
OS/hardware prevent a user program from
accessing files of other user?

§ Since a user program needs to be able to
perform memory accesses, how does the
OS/hardware prevent a user program from
accessing (RAM) memory of other user
programs or the OS?

4.5 Questions to Motivate a Topic

Before discussing a new topic it is often useful to
ask a question related to the topic to get students
curious. Alternatively, it is sometime useful to
ask a question about a topic's prerequisite
knowledge. This kind of question is an advance
organizer and should serve to establish cognitive
hooks into students' past experience. For
example, before taking about parameter passing
in assembly-language ask questions about how
students view the run-time stack it their most
familiar high-level language.

Clearly, our lists of questions are incomplete.
Space concerns make that necessary. So too

does our level of progress. Frankly, we have only
begun the work necessary to become better
questioners (and, thus, better teachers). Many
more examples of Computer Architecture
questions can be found on-line at Fienup (2001).

5. Conclusions

Our most significant insight is that asking good
questions takes work. We had to (and may still
need to) read about questioning and apply what
we read to teaching Computer Architecture.
Additionally, relatively significant planning is
necessary. In essence, we need to plan for
questions, much as we plan for lecture.

We are still convinced that doing the extra work
pays off. We think student learning has
improved, i.e., more students are learning more
of the material at a level we think is good.
Additionally, we believe the "extra" work in
planning will lessen, and perhaps disappear. As
we learn more and practice questioning (and
planning for it), the time requirements will be
less. Also, as questioning becomes a bigger part
of our teaching, the planning of telling is replaced
by planning for questioning.

Should you decide to include more questioning in
your teaching, we have some advice beyond that
of reading and planning. Reflect on your
questioning behavior. Explicate your goals and
plans before teaching. After teaching, reflect on
how well you implemented your plans and on
how well the questioning worked. Then introduce
those conclusions into your future planning. (This
may require some record keeping.) Finally, do
not expect perfection. Like all other human
endeavors, you will get better with practice,
particularly with good (reflective) practice.

6. References

Chuska, K. R. (1995) Improving classroom

questions. Bloomington, IN: Phi Delta
Kappa.

Dantonio, M & Beisenherz, P.C. (2001)
Learning to question, Questioning to learn.
Boston: Allyn and Bacon.

East, J. P. (2001) Experience with In-person
Grading. Proceedings of the 34nd Midwest
Instruction and Computing Symposium, April
5-7, 2001. Cedar Falls, IA.

Felder, R. & Brent, R. (1996). Navigating the
bumpy road to student-centered instruction.
College Teaching, 44, 43-47.

Fienup, M. (2000) Active and group learning in
the Computer Architecture classroom,
Proceedings of the Workshop on Computer
Architecture Education, June 2000,
Vancouver, B.C., Canada.

Fienup, M. (2001) Fall 2001 Computer
Architecture course home page.
http://www.cs.uni.edu/~fienup/cs142f01/in-
class-materials.

Frederick, P. (1986). The lively lecture - 8
variations. College Teaching, 34, 43-50.

McConnell, J. (1996). Active learning and its use
in Computer Science. SIGCSE Bulletin, 28,
52-54.

Schon, D. A. (1983). The reflective practitioner:
How professional think in action. New York:
Basic Books.

Silberman, M. (1996). Active learning: 101
strategies to teach any subject. Boston: Allyn
& Bacon.

Stuart, J. & Rutherford, R. J. (1978, September
2). Medical student concentration during
lectures. The Lancet, 514-516.

Wasserman, S. (1993) Asking the right question:
The essence of Teaching. Bloomington, IN:
Phi Delta Kappa.

Wilen, W. W. (1991) Questioning Skills, for
Teachers. Washington, D.C.: National
Education Association.

