

Week 9 Object-Oriented Languages and Systems 1

Readability

“Programs must be written for people to read,
and only incidentally for machines to
execute.”—Abelson & Sussman

Guideline: Give a variable the narrowest
scope that you can.

Give an example of this principle.

Outline for Week 9

I. Readability

II. Polymorphism

 A. Dynamic method invoc.
 B. Overloading vs. overriding

III. Exercise: Singleton

IV. Exercise: Adapter

Why is this a good principle?

Guideline: Using standard idioms, make code as concise as
possible.

Example: In the following statement, b is a boolean variable:

 if (b == true)

 return true;

 else

 return false;

This statement is far too verbose. An equivalent and much more
readable statement is—

In most cases, this can be made even more readable. How?

Guideline: Variable names should be neither too short nor too long.

Consider a variable that controls whether a while-loop is exited.

 while (variable) {

 …
 }

What is a good name for this variable?

Which should be shorter, in general? Variable names or names of
constants?

https://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 2

In general, names that are used less frequently can be longer.

Guideline: Names should be descriptive of the entity they apply to.
They should not be vague or overly general.

Give an example of a bad (variable, method, etc.) name you have
encountered in code that you were refactoring or interfacing to.

Here are some examples from Expertiza.

Guideline: Names should not be redundant.

Suppose course_controller.rb contains a method called
create_course. What should it be?

Suppose it contains a method called create_section. What

should it be?

An excellent discussion of variable naming can be found in Code
Complete, by Steve McConnell, on electronic reserve for this course.

Guideline: Factor out duplicated code.

If a program has two places where the same sequence of instructions
is being executed, it is almost always beneficial to move the
duplicated code into a separate procedure.

Example: Suppose you are developing a class of objects one of
whose responsibilities is to parse an input string, such as a
complicated mathematical expression.

Part of the process of parsing involves checking that the input is valid.
So the class might have a method like this:

public void parse(String expression)

{

 ...do some parsing...

 if(! nextToken.equals("+")) {

 //error

 System.out.println

 ("Expected +, but found " + nextToken);

 System.exit(1);

https://docs.google.com/forms/d/e/1FAIpQLSeop227Eh1R0nUxAWUSgqMuoIbKtzOwlth9a7ov92UDhadStQ/viewform?usp=sf_link
https://docs.google.com/document/d/14qpwbPOUJRMXbjnctnz4hrUFhEgVsctLcPJmUkXQ_bg/edit?usp=sharing
https://reserves.lib.ncsu.edu/?cmd=viewReserve&reserve=429488
https://reserves.lib.ncsu.edu/?cmd=viewReserve&reserve=429488

Week 9 Object-Oriented Languages and Systems 3

 }

 ...do some more parsing...

 if(! nextToken.equals("*")) {

 //error

 System.out.println

 ("Expected *, but found " + nextToken);

 System.exit(1);

 }

 ...

}

How can we clean this code up?

private void handleError(String message) {

 System.out.println(message);

 System.exit(1);

}

public void parse(String expression)

{

 ...do some parsing...

 if(! nextToken.equals("+"))

 ...do some more parsing...

 if(! nextToken.equals("*"))

 ...

}

Besides being more readable, this code has another advantage.
What?

Guideline: A method should do only one thing and do it well.

Here's an example of a method to avoid:

void doThisOrThat(boolean flag) {

 if(flag) {

 ...twenty lines of code to do this...

 }

 else {

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 4

 ...twenty lines of code to do that...

 }

}

How should we change it?

Inheritance vs. delegation

Delegation—where one object passes a message on to another
object—can often achieve the same effect as inheritance. Let’s look
at an example.

Consider the java.util.Stack class. How many operations does

it have?

Suppose in a program you want a “pure” stack class—one that can
only be manipulated via push(…) and pop().

Why would you want such a class, when Java already gives you that
and more?

What is the “simplest” way to get a pure Stack class?

Or you could create Stack class “from scratch.” What’s wrong with

doing this?

Another option is to create your own Stack class, but have it include

a java.util.Stack.

https://docs.google.com/forms/d/e/1FAIpQLScy6nTheBL4clgNvTtbmU7Pmm9_qFrzD3SYrQrpbwjz5KV28g/viewform?usp=sf_link

Week 9 Object-Oriented Languages and Systems 5

What is the name for the approach are we using here?

Here’s what this class might look like.

public class MyStack

{

 private java.util.Stack stack;

 public MyStack(){stack = new java.util.Stack();}

 public void push(Object o) { stack.push(o); }

 public Object pop() { return stack.pop(); }

 public object peek() { return stack.peek(); }

 public boolean isEmpty(){return stack.empty();}

}

Delegation is particularly useful where objects might need to “change
state”—think of a student becoming an employee. Both Student and
Employee can delegate to Person.

Exercise: Delegation in a sorted list

This exercise is an example of creating a sorted ArrayList of

Strings by delegating to Java’s ArrayList class. Every time an

element is added to the list, the sort method of Collections is

called.

This exercise asks you to fill in the blanks so that the list stays sorted.

Polymorphism

Unbounded vs. subtype polymorphism

In a statically typed o-o language like Java or C++, you can declare a
variable in a superclass, then assign a subclass object to that type:

public class Bicycle {

 protected int gear;

 public void setGear(int nextGear) {

 gear = nextGear;

 }

}

public class MountainBike extends Bicycle {

 protected int seatHeight;

https://docs.google.com/forms/d/e/1FAIpQLSfLo6TRinhLpRPPQUlgR6nQaI-z_UL_3uVTL4UBGsY-uggWDQ/viewform?usp=sf_link

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 6

 public void setHeight(int newSeatHeight) {

 seatHeight = newSeatHeight;

 }

}

public class BikeSim {

 public static void main() {

 ...

 Bicycle myBike = new MountainBike();

 ...

 myBike.setGear(3);

 myBike.setHeight(5);
 }

}

Which statement is illegal in the code above? Why?

In most dynamically typed o-o languages, including Ruby, that
statement would be legal. In Ruby, if a method is defined on an
object, the object can respond to the message.

It doesn’t matter what class the object is declared as … in fact, the
object isn’t declared!

This is called unbounded polymorphism—the polymorphism is not
limited by the declared class of the object.

In contrast, statically typed o-o languages usually have subtype
polymorphism—the compiler checks that the invoked method is
defined in the type that the object is declared as.

Unbounded polymorphism is related to duck typing, which was
discussed in the Week 3 online lectures [§2.4 of the textbook].

Dynamic method invocation

A call to an inherited method works just as if the inherited method had
been defined in the caller’s class.

But suppose the subclass (e.g., MySpiffyLabel) overrides a

method of the superclass (e.g., JLabel).

JLabel label = new MySpiffyLabel("A label");

label.paint(g); //for some Graphics object g

https://docs.google.com/forms/d/e/1FAIpQLScuwbCIBiTq1fZhakKFToHb_0Sq9rFcGP_Kj7kBn_okl3GKuw/viewform?usp=sf_link

Week 9 Object-Oriented Languages and Systems 7

MySpiffyLabel

• inherits a paint method from JLabel, and

• implements its own version of paint.

Which of those two implementations of paint will be executed in the

second line of above example?

• The paint defined in JLabel?

• The paint defined in MySpiffyLabel?

Dynamic method invocation: To invoke a method on an object, the
JRE looks at the class of the receiving object to choose which version
to execute.

For example, when asked to execute label.paint(g), the Java

environment does not look in the declared class of label (namely,

JLabel).

Instead it chooses the paint method in the actual class of the object

referred to by label (namely, MySpiffyLabel).

When a method is called on an object of a subclass that overrides a
superclass method, the overriding version of the method is always
called.

Let us consider a rather tricky, but illustrative, example.

Abstract class Fruit has subclasses Apple, Orange, and Pear.

Since it is an abstract class, its name is shown in italics in the class
diagram.

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 8

 Note that Apple has a getStyle() method to return the kind of

apple (Delicious, McIntosh, etc.).

Because of subtype polymorphism, it is legal to declare a variable as
being of some class and then assign an object of a subclass to it:

Fruit fruit = new Apple("McIntosh");

Suppose that we have several fruits, and want to print out the colors
of each. This code will do the trick:

Fruit[] A = new Fruit[3];

A[0] = new Apple("Granny Smith");

A[1] = new Orange();

A[2] = new Pear();

for(int i = 0; i < A.length; i++) {

 if(A[i] instanceof Apple)

 System.out.println(

 ((Apple) A[i]).getColor());

 else if(A[i] instanceof Orange)

 System.out.println(

 ((Orange) A[i]).getColor());

 else if(A[i] instanceof Pear)

 System.out.println(((Pear)

A[i]).getColor());

 else

Week 9 Object-Oriented Languages and Systems 9

 System.out.println(A[i].getColor());

What’s wrong with this?

How can we simplify it?

What would happen if no getColor method were defined in Fruit?

Overloading vs. overriding

Two methods are overloaded if they are in the same class, but have
different parameter lists.

When a method is overridden, one of its subclasses declares a
method of the same name, with the same signature.

Consider this example. All of our Fruits inherit an equals method

from class Object. Suppose that Fruit declares its own equals

method:

Object>>public boolean equals(Object obj) (1)

Fruit>>public boolean equals(Fruit fruit) (2)

Has Fruit overridden the equals method?

Which equals method is called in each case below?

Object o = new Object();

Fruit f = new Fruit();

Object of = new Fruit();

f.equals(o);

f.equals(f);

f.equals(of);

What about these calls, using the same variables?

https://docs.google.com/forms/d/e/1FAIpQLSczy7bYZYDZAFxgoOzMe1uRNHFJFhztWTe95oWvN5qxa0j6BQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdeOqYeONoAa5n5pJXmmbjasHawCIclIyRbSPO_Va3TB-Q9xw/viewform?usp=sf_link

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 10

o.equals(o);

o.equals(f);
o.equals(of);

of.equals(o);

of.equals(f);

of.equals(of);

Now, let’s throw overriding into the picture and declare, in class
Fruit—

Object>>public boolean equals(Object obj) (1)

Fruit>>public boolean equals(Fruit fruit) (2)

Fruit>>public boolean equals(Object obj) (3)

Which methods are called now?

Object o = new Object();

Fruit f = new Fruit();

Object of = new Fruit();

f.equals(o);

f.equals(f);

f.equals(of);

o.equals(o);

o.equals(f);

o.equals(of);

of.equals(o);
of.equals(f);
of.equals(of);

In summary, the compiler decides which overloaded method to call by
looking at the declared type of

• the object being sent the message and

• the declared types of the arguments to the method call.

The particular version of the overloaded method is chosen at runtime
by dynamic method invocation using the actual type of the object
being sent the message.

The actual classes of the arguments to the method call do not play a
role.

https://docs.google.com/forms/d/e/1FAIpQLSdlOppY0iuoJxBXMxvhF8pqvJmUT02kOfbrWqv6OQHkJUid_A/viewform?usp=sf_link

Week 9 Object-Oriented Languages and Systems 11

This is very different from a language like CLOS, which uses the
actual types of the arguments to decide which method to execute.

Exercise: Singleton pattern

In the Week 5 video lecture, we saw the Singleton pattern defined in
Ruby.

require 'singleton'
class Registry
 include Singleton
 attr_accessor :val
end
r = Registry.new #throws a NoMethodError
r = Registry.instance
r.val = 5
s = Registry.instance
puts s.val >> 5
s.val = 6
puts r.val >> 6
s.dup >> TypeError: can’t duplicate instance of singleton Registry

The idea is to prevent more than one object of the class from being
defined, and to return the single instance by using a class method.

Here is an exercise with another Singleton pattern, except blanks are
left in the code. You need to fill in the blanks to get the code to run.

class Balance
 attr_reader __________(1)__________

 def __________(2)__________(balance)
 @balance = balance
 __________(3)__________ = nil
 end

 def __________(4)__________.instance
 @first_instance = __________(5)__________(100)

if @first_instance.nil?
 __________(6)__________
 end

 def withdraw(amount)
 @balance > amount ? (@balance -= amount) :

(puts 'Insufficient balance')
 end

https://docs.google.com/document/d/1jsOuMewrjce14N_8Jgh3YElLmczgpR47rjwCogF_VDA/edit#heading=h.jlki3gbzg57w
https://docs.google.com/forms/d/e/1FAIpQLSc1rvWRJJ8NDBOnbj7y-5TRDzbLluAwIghWS06rrInSl4Lglg/viewform?usp=sf_link

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 12

 def deposit(amount)
 @balance += amount
 end
end

class FamilyMember
 def initialize(name)
 @name = name
 @balance = Balance.__________(7)__________
 end

 def withdraw(amount)
 __________(8)__________(amount)
 end

 def deposit(amount)
 __________(9)__________(amount)
 end

 def balance
 __________(10)__________
 end
end

Fill in the blanks in the Singleton class and the FamilyMember

class. Note that Singleton is not implemented as a mixin, though it
could be.

Exercise: Adapter Pattern

An adapter allows classes to work together that normally could not
because of incompatible interfaces.

• It “wraps” its own interface around the interface of a pre-existing

class. What does this mean?

• It may also translate data formats from the caller to a form

needed by the callee.

One can implement the Adapter Pattern using delegation in Ruby.
Consider the following contrived example.

Week 9 Object-Oriented Languages and Systems 13

• We want to put a SquarePeg into a RoundHole by passing it to

the hole's peg_fits? method.

• The peg_fits? method checks the radius attribute of the peg,

but a SquarePeg does not have a radius.

• Therefore we need to adapt the interface of the SquarePeg to

meet the requirements of the RoundHole.

class SquarePeg

 attr_reader :width

 def initialize(width)

 @width = width

 end

end

class RoundPeg

 attr_reader :radius

 def initialize(radius)

 @radius = radius

 end

end

class RoundHole
 attr_reader :radius

 def initialize(r)
 @radius = r
 end

 def peg_fits?(peg)
 peg.radius <= radius
 end
end

Here is the Adapter class:

class SquarePegAdapter
 def initialize(square_peg)
 @peg = square_peg
 end

 def radius
 Math.sqrt(((@peg.width/2) ** 2)*2)
 end
end

hole = RoundHole.new(4.0)
4.upto(7) do |i|

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 14

 peg = SquarePegAdapter.new(SquarePeg.new(i.to_f))
 if hole.peg_fits?(peg)
 puts "peg #{peg} fits in hole #{hole}"
 else
 puts "peg #{peg} does not fit in hole #{hole}"
 end
end

>>peg #<SquarePegAdapter:0xa038b10> fits in hole
#<RoundHole:0xa038bd0>
>>peg #<SquarePegAdapter:0xa038990> fits in hole
#<RoundHole:0xa038bd0>
>>peg #<SquarePegAdapter:0xa0388a0> does not fit in hole
#<RoundHole:0xa038bd0>
>>peg #<SquarePegAdapter:0xa038720> does not fit in hole
#<RoundHole:0xa038bd0>

Here is an exercise on the Adapter pattern. Fill in the blanks.

interface Bird
{
 // birds implement Bird interface that allows
 // them to fly and make sounds adaptee interface
 public void fly();
 public void ______(2)______();
}

class Sparrow implements ___(1)___

{

 // a concrete implementation of bird

 public void ____(4)___()

 {

 System.out.println("Flying");

 }

 public void makeSound()

 {

 System.out.println("Chirp Chirp");

 }

}

interface ToyDuck

{

 // target interface

 // toyducks dont fly they just make

https://docs.google.com/forms/d/e/1FAIpQLScv5Y5aQBRsq4IAZZ72jsbNL1Cqx4pogrPpfzQ7OEGOuq4qKw/viewform?usp=sf_link

Week 9 Object-Oriented Languages and Systems 15

 // squeaking sound

 public void squeak();

}

class PlasticToyDuck implements ToyDuck

{

 public void _____(3)____()

 {

 System.out.println("Squeak");

 }

}

class BirdAdapter implements ToyDuck

{

 // You need to implement the interface your

 // client expects to use.

 Bird bird;

 public BirdAdapter(Bird bird)

 {

 this.bird = bird;

 }

 public void squeak()

 {

 bird.______(5)_______();

 }

}

class Main

{

 public static void main(String args[])

 {

 Sparrow sparrow = new Sparrow();

 ToyDuck toyDuck = new PlasticToyDuck();

 // Wrap a bird in a birdAdapter so that it

 // behaves like toy duck

 ToyDuck birdAdapter = new BirdAdapter(sparrow);

© 2025 Edward F. Gehringer CSC/ECE 517 Lecture Notes, Spring 2025 16

 System.out.println("Sparrow...");

 sparrow.fly();

 sparrow.makeSound();

 System.out.println("ToyDuck...");

 toyDuck.squeak();

 // toy duck behaving like a bird

 System.out.println("BirdAdapter...");

 birdAdapter.squeak();

 }

}

