

Week 11 Object-Oriented Design and Development 1

Cohesion and Coupling

Let’s consider the boundaries between
classes—what functionality should be in one
class vs. in another.

We want to maximize cohesion and minimize
coupling.

Outline for Week 11

I. Cohesion & coupling
 A. Maximizing cohesion

 B. Separation of
responsibility

 C. Minimizing coupling

 D. The Law of Demeter

II. Creational patterns
 A. Factory Method

 B. Abstract Factory

Maximizing cohesion

The basic guideline of class design is,

Every class should be responsible for doing one thing only and
doing it well.

Readers should be able to understand the behavior of the class
without reading the code.

The fact that all the behavior of a class is closely related is called
“cohesion.”

Another example is a “god” class that controls all the other objects in
the program. The objects are reduced to mere data-holders.

A common problem is when code to check for a condition is littered
throughout the system, so that to understand a class, the reader
needs to read about several unusual conditions. Here is an example
from Expertiza.

Separation of responsibility

It is not always clear which class should do what. Sometimes we
need to consider the advantages and disadvantages of each
assignment of responsibility.

Consider these examples.

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 2

Example 1: When an array of objects needs to be sorted, the objects
need to be compared to each other.

• Should the objects know how to compare themselves to other
objects with a method similar to String’s
compareTo(Object) method, or

• should a separate object, such as the Comparator, be
responsible for doing the comparing?

public class Comparator {
 public int compare(String o1, String o2) {
 return s1.compareTo(s2);
 }

 public int compare(Integer o1, Integer o2) {
 int i1 = o1.intValue();
 int i2 = o2.intValue();
 return i1 – i2;
 }

 ...compare methods for other types of data...
}

Submit your answer here.

For example, the Array class in the java.util package includes
two methods that sort arrays of objects. One method uses the
compareTo(Object) method of each object and the other uses a
Comparator to do the comparing.

Example 2: Consider a LinkedList implemented from Nodes.

Each Node consists of data and a link (next).

When your program traverses a list, which object is responsible for
keeping track of where it is?

Week 11 Object-Oriented Design and Development 3

• The client could keep a reference to the current node, and
dereference next to move to the next node.

• The LinkedList object could keep a reference to the current
node

 Then the client would ask the list—

◦ for the data in the current node, and
◦ to move to the next node (causing the list to update its
current pointer).

• A third object could keep track of where the program is in the
list.

Then the client would ask the third object—

◦ for the data in the current node, and
◦ to move to the next node (causing the 3rd object to update its
current pointer).

Which approach is best? Vote here.

• What, if anything, is wrong with the first one?

• What, if anything, is wrong with the second one?

• What, if anything, is wrong with the third one?

Guideline 1: Different responsibilities should be divided among
different objects.

Guideline 2: Encapsulation. One class should be responsible for
knowing and maintaining a set of data, even if that data is used by
many other classes.

Corollary: Data should be kept in only one place. Cf. database
normalization Cf. deadlines this semester (negative example)

One class should be chosen to manipulate a particular type of data.

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 4

Other classes must ask this class when they need to use or change
the data.

Let’s see what happens if this guideline is not followed.

For example, suppose you have an object of class Department that
is responsible for maintaining a collection of Employee objects, held
in an ArrayList.

Other objects may need to access the Employee objects.

The Department would have a getEmployees method that returns
the ArrayList of Employee objects.

What is wrong with this approach? ? Clients could get at the
ArrayList and corrupt it, e.g., by removing Employees who should be
there or by adding other objects to the ArrayList, including non-
Employee objects!
How can this risk be avoided?

1. Have the getEmployees method return an ArrayList of the
Employees, but make it a new ArrayList that is a shallow clone
of the Department's ArrayList.

2. Assuming that other objects rarely need all the Employee objects,
have a “getter” method that finds and returns an employee
specified by particular criteria.

3. Have the Department class manipulate the Employee objects.
Clients have to ask the Department for any details regarding
Employees that they need.

4. Replace the getEmployees method with an iterator method
that returns an Iterator over the ArrayList.

The principle of encapsulation states that the Department should
never let other classes see the actual ArrayList, but only the data
in the ArrayList.

Week 11 Object-Oriented Design and Development 5

Guideline 3: Information Expert pattern. Assign a responsibility to
the class that has the data needed to fulfill that responsibility.

“Ask not what you can do to an object; ask what the object can do to
itself.”

Guidelines 2 and 3 establish that data should not be manipulated in
more than one place.

Similarly, code should not be duplicated in more than one place.

Guideline 4: The DRY principle. Code should not be duplicated. A
given functionality should be implemented only in one place in the
system.

Why is this a good guideline?

Minimizing coupling

Classes frequently need to be modified.

They should be written in such a way that changing one class is not
likely to break other parts of the code.

Guideline 5: Design your classes so that they can handle change.

The idea is to define your variables and values to have the widest
possible type rather than the narrowest type.

The widest possible type in Java is an interface that can be
implemented by any number of classes.

Here is an example of an e-mail sender that comes in a high-coupling
and low-coupling package.

Look at the difference between the two packages and answer these
questions.

Guideline 6: Do not use class methods when instance methods will
suffice.

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 6

What are some ways that class variables or methods can be used?

Class variables: Counting the # of objects of a class

Defining constants
public final static double PI = 3.14159265358979;

Providing a value used by all instances of a class (burnTime)
Can’t be a constant, since it’s read in by the UI

To implement the Singleton pattern (holding the only
instance) … or in general, anytime the constructor is made
private.

Class methods: Accessor methods for class variables

Methods that operate on elements of primitive classes, e.g.,
an isLeapYear method.

 private static boolean isLeapYear(int year) {
 if (year % 4 != 0) {
 return false;
 }
 if (year % 400 == 0) {
 return true;
 }
 return (year % 100 != 0);
 }

Math methods are another example: sin, cos, ceil, max

Methods that need to execute before any object is created,
e.g., public static void main(…)

To perform operations on a group of objects of the same
class

If the constructor is made private, but needs to be accessed
from outside the class (e.g., the Singleton pattern).

Overuse of class methods increases coupling between classes.

Functionality that should be a method of one class is in another class,
where no object is a receiver. This means that some of the
responsibilities of the class are actually implemented in other classes.

Week 11 Object-Oriented Design and Development 7

The Law of Demeter

Long chains of method calls mean there is a large amount of coupling
between classes.

Consider this approach to getting a bank balance:

Balance balance = atm.getBank(b).getBranch(r).
getCustomer(c).getAccount(a).getBalance();

Assume that b, r, c, and a are all strings.

How many classes does the calling class need to know about?

Another way to handle this would be to code,

Balance balance = atm.getBalance(b, r, c, a);

Now only the ATM class, not the caller, needs to worry about the
existence of the branch, the customer account, etc.

The Law of Demeter says that a class should only send messages to

1. this object itself
2. this object’s instance variables
3. the method’s parameters
4. any object the method creates
5. any object returned by a call to one of this object’s methods
6. the objects in any collection that falls into these categories

It should not send messages to objects that are returned by calls to
other objects.

This is also a good organizational principle. Consider what used to
happens when I wanted to retrieve or send back homework to off-
campus students. I just phoned Eva Boyce and she took care of it …

Here is an exercise on the Law of Demeter.

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 8

Creational patterns

Factory Method design pattern

Factory Method is a creational pattern—that is, a pattern that is used
for creating objects.

As we know, in o-o languages, objects can be created with some kind
of new method.

Calling new is fine if the calling code knows what kind of object it
wants to create. But a lot of times it doesn’t.

Suppose, for example, that the code is copying a diagram, which
consists of Shapes. If it gets in a loop and copies the shapes one by
one, you’d need a big if statement to decide which kind of object to
create.

Well, better to encapsulate that logic in a creation method, rather than
to expose it at the call site.

Then the client only needs to get in a loop calling the getShape()
method, and each time, the right kind of object will be created.

The method that creates the object could even be a static method
of the class that returns an instance of that class. This has two
advantages over using constructors:

1. The “new” object might in fact be a reused object that was
previously created (think “buffer pool”).

2. The object that is created might actually be a subclass object.

In any case, the client “is totally decoupled” from the code that
creates the object.

Choose one of the following two exercises for Factory Method.

 An example on creating wifi or Bluetooth streaming connections.
 An example that creates postcodes for the US, India, and the UK.

Week 11 Object-Oriented Design and Development 9

The Abstract Factory design pattern

The Factory (or Factory Method) pattern is good for creating single
objects of a specific type, as long as those objects don’t have to
“match” any other objects.

But a lot of times we do need objects to “match.”

 User interfaces need all of their widgets to have the same “look
and feel.”

 Web (or print) pages have a certain style, and all the elements
on the page need to match that style.

 A language run-time environment needs to make the
appropriate calls to the operating system it is running on.

In all these cases, instantiated objects all need to be from the right
“family.”

My favorite example of this comes from Refactoring Guru. When a
shop sells a set of furniture to a buyer, it’s important that the set
“match.”

Let’s look again at the entities in the pattern.

 The client—the code “using” the pattern—has-an Abstract
Factory.

 The Abstract Factory is an interface that contains a method for
creating each different “product.”

 One or more Concrete Factories implement the Abstract
Factory interface.

o Hence, each concrete factory implements a method for
creating each different “product.”

 When the various createProduct methods of a particular
Concrete Factory are invoked, they create objects that “match.”

o Specifically, the objects “match” because they implement
the variant defined by the same concrete factory.

CSC/ECE 517 Lecture Notes © 2025 Edward F. Gehringer 10

Now, to make sure you are following, answer these questions about
the furniture example.

 What is a “modern sofa”? An abstract product, concrete
product, etc.?

 What is a “chair”?

 What is a “Victorian furniture factory”?

 What does the method createCoffeeTable return?

Again, there are two choices of exercise:

 An example that builds applications in the Semantic or Angular
framework

 An example that creates phone numbers and postcodes for the
US or the UK.

Week 12 Object-Oriented Design and Development 1

Complete and consistent interfaces

Guideline 1: Give classes a complete
interface.

A class should have a full set of
methods so that it is as reusable in as
many situations as possible. Suppose
we have a GUI component that has a
setSelected() method that
highlights itself. What other method
should it have?

Outline for Week 12

I. Complete & consistent
interfaces

II. State pattern

III. Strategy pattern

IV. State vs. strategy

V. Visitor pattern

A setUnselected() method to remove the highlighting. Even
better would be to have one method setSelected(boolean b)
that highlights the component if b is true and unhighlights it if b is
false.

The component should probably also have an isSelected()
boolean function that tells whether the component is currently
highlighted.

Guideline 2: A well-formed class has a consistent interface.

By “consistent,” we mean that the methods that do similar things
should be laid out similarly.

Suppose a class maintains and manipulates an indexed collection of
people. It has

• a method that sets the ith person’s name and
• a method that sets the ith person’s age.

The two methods should have similar names and similar arguments
in the same order.

Suppose one signature is setName(String name, int index).
What should the other be? setAge(int age, int index). It
would be very confusing if the parameters were in a different order in
the two methods.

CSC/ECE 517 Lecture Notes ©2025, Edward F. Gehringer 2

State pattern

We’ve been talking about bad uses of case statements in programs.
What is one example? Testing objects’ classes; instead use
polymorphism.

Another way in which case statements are sometimes used is to
implement finite-state machines.

An example: Horner's Rule

A finite-state machine can be used to convert an ASCII string of
characters representing a real number to its actual numerical value.

The letters shown in the FSM stand for the following:

c - current character v - value of the number
s - sign of the number p - power

Week 12 Object-Oriented Design and Development 3

Note that this FSM assumes that the string contains a valid floating-
point number that

• starts with an optional + or –,
• has at least one digit, an optional decimal point,
• and any number (including 0) of digits before and after the decimal

point.

A value of 0 is returned if an invalid string is encountered.

Table form of FSM:

State/Input + or – . digit other

START INTEGER DECIMAL INTEGER ERROR

INTEGER ERROR DECIMAL INTEGER END

DECIMAL ERROR ERROR DECIMAL END

Using switch statements, this FSM can be coded as follows:

public class Parser {
 static double toDouble(String s) {
 double sign = 1; // sign of number (either 1 or −1)
 double value = 0; // current value of the number

 double power = 0.1; // current power of 10 for
 // digits after decimal point

 int i = 0;
 final int START = 0;
 final int INTEGER = 1;
 final int DECIMAL = 2;
 final int ERROR = 3;
 int state = START;
 char ch; //current character in string

 while (state != ERROR && i < s.length()) {
 ch = s.charAt(i++);
 switch (state) {
 case START: if (ch == ’.’)
 state = DECIMAL;
 else if (ch == ’−’) {
 sign = −1.0;
 state = INTEGER;
 }
 else if (ch == ’+’)
 state = INTEGER;

CSC/ECE 517 Lecture Notes ©2025, Edward F. Gehringer 4

 else if (Character.isDigit(ch)) {
 value = ch − ’0’;
 state = INTEGER;
 }
 else
 state = ERROR;
 break;
 case INTEGER: if (ch == ’.’)
 state = DECIMAL;
 else if (Character.isDigit(ch))
 value = 10.0 * value + (ch − ’0’);
 else {
 value = 0.0;
 state = ERROR;
 }
 break;
 case DECIMAL: if (Character.isDigit(ch)) {
 value += power * (ch − ’0’);
 power /= 10.0;
 }
 else {
 value = 0.0;
 state = ERROR;
 }
 break;
 default: System.out.println("Invalid state: " + state);
 }
 }
 return sign * value;
 }

 public static void main(String[] args) {
 if (args.length == 1)
 System.out.println(toDouble(args[0]));
 }
}

This FSM can be represented more elegantly by the State pattern.

How can we code State in a more o-o fashion? Hint: We can make
State an interface! Each state will implement this interface.

Horner’s Rule: To use the State pattern for Horner’s rule, the first
step is to define a State interface. Consider the table form of the
FSM.

 The rows of the table represent the different states.

Week 12 Object-Oriented Design and Development 5

 The columns of the table represent the different behaviors of
each state.

Therefore, what methods should be defined in the State interface?
Well, what do we need to test for each state?

Submit your State interface here.

public interface State {
 void onPoint();
 ;
 ;
 ;
 void onOther();
}

How should the States be defined?

class implements { … }

class implements { … }

class implements { … }

In Java, we can define a class within another class. This is called an
inner class.

Thus, our States can be defined as inner classes of Parser.

Here is the code for the Parser class, minus its inner classes:

public class Parser {
 private final State start = new Start();
 private final State integer = new Integr();
 private final State decimal = new Decimal();
 private State state = start;
 double sign = 1; // sign of number (either 1 or -1)
 double value = 0; // current value of the number
 double power = 0.1; // current power of 10 for
 // digits after decimal point
 char ch; //current character in string

 double toDouble(String s) {
 int i = 0;
 while (i < s.length()) {

CSC/ECE 517 Lecture Notes ©2025, Edward F. Gehringer 6

 ch = s.charAt(i++);
 if (ch == '.') state.onPoint();
 else if (ch == '+') state.onPlus();
 else if (ch == '-') state.onMinus();
 else if (Character.isDigit(ch))state.onDigit();
 else state.onOther();
 }
 return sign * value;
 }

 public static void main(String[] args) {
 System.out.println(new Parser().toDouble("-
914.334"));
 }
}

Exercise: Choose one method to implement in all three classes.
Submit your code here.

 void onMinus();
 void onPlus();
 void onDigit();
 void onOther();

If an illegal character is found, throw a NumberFormatException.

package statePattern; Note: Put this code in hidden text in the students’ version.

interface State {
 void onPoint();
 void onMinus();
 void onPlus();
 void onDigit();
 void onOther();
}

package statePattern;

public class Parser {

 private class Start implements State {
 public void onPoint() {
 state = decimal;
 }
 public void onMinus() {
 sign = -1.0;
 state = integer;
 }

Week 12 Object-Oriented Design and Development 7

 public void onPlus() {
 state = integer;
 }

 public void onDigit() {
 value = ch - '0';
 state = integer;
 }
 public void onOther() {
 throw new NumberFormatException();
 }
 }

 private class Integr implements State {
 public void onPoint() {
 state = decimal;
 }
 public void onMinus() {
 throw new NumberFormatException();
 }
 public void onPlus() {
 throw new NumberFormatException();
 }

 public void onDigit() {
 value = 10* value + (ch - '0');
 }
 public void onOther() {
 throw new NumberFormatException();
 }
 }

 private class Decimal implements State {
 public void onPoint() {
 throw new NumberFormatException();
 }
 public void onMinus() {
 throw new NumberFormatException();
 }
 public void onPlus() {
 throw new NumberFormatException();
 }

 public void onDigit() {
 value += power * (ch - '0');
 power /= 10.0;
 }
 public void onOther() {
 throw new NumberFormatException();
 }
 }

 private final State start = new Start();
 private final State integer = new Integr();
 private final State decimal = new Decimal();
 private State state = start;
 double sign = 1; // sign of number (either 1 or -1)

CSC/ECE 517 Lecture Notes ©2025, Edward F. Gehringer 8

 double value = 0; // current value of the number
 double power = 0.1; // current power of 10 for
 // digits after decimal point
 char ch; //current character in string

 double toDouble(String s) {
 int i = 0;
 while (i < s.length()) {
 ch = s.charAt(i++);
 if (ch == '.') state.onPoint();
 else if (ch == '+') state.onPlus();
 else if (ch == '-') state.onMinus();
 else if (Character.isDigit(ch)) state.onDigit();
 else state.onOther();
 }
 return sign * value;
 }

 public static void main(String[] args) {
 System.out.println(new Parser().toDouble("-914.334"));
 }
}

Strategy pattern

A related pattern is Strategy. This pattern helps when you need to
choose an algorithm for a task depending on some “parameter” of the
situation.

For example, consider quadrature (numerical integration) again.
Each time you calculate the area of a region, you need to know what
the function is that you are calculating the region underneath.

Or consider converting different file formats, e.g., .jpeg, .gif, .eps.

You could write a case statement whenever you needed to invoke
one of the algorithms. Is this a good idea?

Consider extensibility and maintainability. Every time you add
another file format, you need to add another case to every place in
the program where you select a way of doing an operation (e.g.,
open, process, close).

But suppose there is only one case statement. Is it OK then? No,
even in this case, the logic of which function to use is mixed in with
the class that does the quadrature, etc. It is better to separate the

Week 12 Object-Oriented Design and Development 9

concerns (cf. Factory Method, which encapsulates the case
statement in an external method).

Another situation might be where you are manipulating several
geometric shapes, e.g., circles, squares, and composites of circles
and squares. You need to—

 draw the shapes on a display
 move them to a different location
 rotate them by a certain number of degrees.

These tasks will be performed differently for each shape. You could
use a case statement everywhere you need to make the decision.
But that violates the DRY pattern.

The Strategy pattern allows you to make the decision once when you
begin to handle the shapes, and all of the other actions are performed
accordingly.

Exercise: Another common situation is when you are working with
various kinds of files. You need to open, close, and access them
differently depending on the file type.

Our example looks like this.

«Interface Data»

Database CSVData TSVData

 «Interface Extraction»

DatabaseExtraction CSVExtraction TSVExtraction

Fill in the blanks to complete the pattern.

State vs. Strategy

A definition of Strategy (from Head-First Design Patterns) is,

CSC/ECE 517 Lecture Notes ©2025, Edward F. Gehringer 10

The Strategy pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable.
Strategy lets the algorithm vary independently from clients
that use it.

Strategy allows clients to change algorithms at run time by using a
different strategy object. This basically lets them appear to change
class at run time.

Hmmm … that’s interesting. Strategy lets objects appear to change
class. Isn’t that what State does?

What are the differences between Strategy and State?

 State requires objects to “change state”; that’s the point of the
pattern. In Strategy,

 The State pattern deals with how you switch between different
states/implementations, while the Strategy pattern deals with
using different implementations to implement different
algorithms.

 In State, the behavior that’s invoked typically depends both on
the current state and an input. In Strategy, the behavior
depends on the “state,” but not on the input in any clear way.

 Martin Fowler: “We encapsulate each algorithm into a class in
strategy pattern, but we encapsulate each state into a class in
state pattern.

The Visitor pattern

Remember our discussion of overloading vs. overriding, from
Week 9? At that time, we said,

In summary, the compiler decides which overloaded method to call
by looking at

 the current type of the object being sent the message and
 the declared types of the arguments to the method call.

Week 12 Object-Oriented Design and Development 11

The method is chosen at runtime by dynamic method invocation
using the actual value of the object being sent the message.

The actual classes of the arguments to the method call do not play a
role.

This is very different from a language like CLOS, which uses the
actual types of the arguments to decide which method to execute.

Suppose we did want the classes of the arguments to be used to
determine which method to call.

My favorite example is “double-dispatching” in arithmetic expressions.

 If you add an integer and a floating-point number, what type
should the result be? Floating-point

 Assuming you have a Fraction class, if you add an integer and
a fraction, what type should the result be? Fraction

 If you add a floating-point number and a complex number, what
type should the result be? Complex

Help answer these questions by filling in this table.

Should either the floating-point or complex number be able to be the
receiver? Should either be able to be the argument?

So, the method called should depend both on the class of the
receiver and the class of the argument. How do we achieve this
effect?

Let’s say that we implement the Sum method in all numeric classes—
Integer, Floating Point, Fraction, and Complex.

So, if we’re performing an addition, we invoke the Sum method of the
receiver class.

Now, this Sum method knows that what it does actually depends on
the class of its argument. How does it achieve this effect? It turns
around and sends a message to the argument!

CSC/ECE 517 Lecture Notes ©2025, Edward F. Gehringer 12

This method, e.g., in the Complex class, is called something like,
SumFromFloatingPoint.

 What does it do? It adds a Complex number (originally the
argument, now the receiver) to a Floating Point number.

 What does it return? A Complex number

OK, suppose that we have the four numeric classes mentioned
above. How many Sum… methods do we need altogether?

4 + 16 = 20. We need a Sum method for each class, and a SumFrom
method for each of the 4 classes in each class.

What is the sequence of calls?

 mySum = myFloat.sum(myComplex)
o return

myComplex.sumFromFloatingPoint(myFloat)

Here is how Visitor is structured.

 Define an interface or abstract class Visitor.

 Visitor contains a visit() method, which is implemented in
each subclass of Visitor. (In our example, these are the
sumFrom methods.)

 These methods are invoked from subclasses of the Element
hierarchy. Each one of these classes has an accept()
method, which takes an object of the Visitor hierarchy as a
parameter.

 Each descendant of the Element class implements
accept()by calling the visit() method on the Visitor object
it was passed, with this as the only parameter.

 To perform an operation, the client creates a Visitor object, and
calls accept()on the Element object, passing the Visitor
object.

The Visitor pattern can be used to avoid tight coupling, as Bob Martin
explains.

