

Week 7 Object-Oriented Design and Development 1

Design

What do we mean by program design?

Why do we worry about design when writing a
program? Why isn’t it enough that the
program works?

Outline for Week 7

I. Design criteria

II. The CRC-card
 method

 Flight reservation

 Address book

 Course registration

Suppose the code is never intended to be read by anyone else, or
used again?

O-o design: The CRC-card method

In writing object-oriented software, it is very important to get the
design right.

If the design is wrong,

• Objects of one class may need to make extensive use of
features of another class (“high coupling”).

It’s OK if objects of one class merely use public features of
another class. But if you find your code depending on the
implementation of the other class, your code becomes
unmaintainable.

• Methods and instance variables grouped in one class have little
relationship with each other (low cohesion).

To get the design right, we should be careful to choose our classes.

The goals of this process are to—

• Discover classes.

• Determine the responsibilities of each class.

• Describe the relationships among the classes.

To discover the classes, we can look for the nouns in the task
description (sometimes called the “requirements document”).

CSC/ECE 517 Lecture Notes Spring 2024 2

For example, if I say,

The function of the system is to allow bus riders to plan a route
from origin to destination,

what might be the classes?

When choosing classes, make sure that what you identify …

• is a singular noun,

• does not really have the same functionality as some other
class,

• is not simply a primitive type or a library object,

Now let’s consider a sample system.

Example 1. Flight reservation

Requirements for the Flight Reservation System

• The mission is to allow round-trip airline tickets to be bought over
the Web.

• Each customer specifies an origination airport, a destination
airport, and dates for outbound and return flights.

• The customer reserves one outbound flight and one return flight
from a menu presented by the system.

• Each choice that the system presents consists of one or more
flight segments (there may be a stop or a change of planes).

• The customer may buy tickets for one or more passengers.

• No more tickets can be sold for a flight than there are seats on the
plane.

• Each passenger is assigned to a specific seat.

• The system calculates the total cost of the tickets by adding the
cost of the individual segments.

• If dissatisfied with the cost, the customer may select alternate
flights.

• After a customer has bought a ticket, (s)he will be e-mailed a
confirmation

Week 7 Object-Oriented Design and Development 3

Take a couple of minutes working with your group to identify the
classes. Then enter your class names here.

Also name some nouns that are not classes.

(Note: Be sure to avoid this common misconception: Something that
is an attribute of another class may be a class itself!)

Example 2. Address book

Here is a very complete example of an address book.

We will work our way from the requirements statement, through use
cases to CRC cards.

Responsibilities and collaborators

Finding the classes is only the first step in the design process.

Next, we need to look for responsibilities, which are usually verbs in
the task description.

For each responsibility, there may be one or more collaborators—
classes that need to be called to help fulfill the responsibility.

In summary, we have—

• Classes: To find the objects, look for the nouns.

• Responsibilities: Things a class knows or can do.

• Collaborators: Other classes that are directly involved in
fulfilling these responsibilities.

Now let’s consider some responsibilities of the Customer class in the
Flight Reservation system. Which collaborator(s) does each one
have? Enter responsibilities and collaborators here.

CRC cards

A common design practice is to write information for each class on a
separate card. A card has the form …

https://docs.google.com/forms/d/e/1FAIpQLSfD5A0PLeA8LsFdw6uW_HyHmj92tNLNLL-8M5mC40i81WYGsw/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScirM4U7uxAd0Ggi_b8tSy2UURuVlDNsMoSpTVcY7dhSoWSyA/viewform?usp=sf_link
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Requirements.html
https://docs.google.com/forms/d/e/1FAIpQLSfrtsH1JCE6Dm_XBilD7vJH61eb2nl-L_Vyn7br1cwmSsqGIA/viewform?usp=sf_link

CSC/ECE 517 Lecture Notes Spring 2024 4

Class Name

Responsibility 1 Collaborator(s) 1

Responsibility 2 Collaborator(s) 2

… …

Responsibility n Collaborator(s) n

We don’t have a good way for you to share entire CRC cards with the
rest of the class, but you can simulate a CRC card by filling out this
class/responsibility/collaborator form repeatedly.

Common errors in CRC-card design

In designs created by students, certain errors keep coming up over
and over. Here are some examples.

1. Using a class name that is not a singular noun.

“Customers”, “Segments”, “Buy”

2. Naming a system class as a key abstraction of the program.

“String”, “Date”

3. Defining a new class where an existing (usually primitive) object
would suffice.

“Cost”, “Time”

4. Thinking that something can’t be a key abstraction because it is
part of a larger abstraction.

“Seat” can’t be a key abstraction, because it’s part of the plane.

“Wheel” can’t be a key abstraction, because it’s an attribute of
the plane.

5. Confusing inheritance with composition.

“Seat” inherits from “Plane”

https://docs.google.com/forms/d/e/1FAIpQLSf9aTrfD_k_pw8iL7rio6CNI8gGXND_kUpuGW5i1E-5cJRmeg/viewform?usp=sf_link

Week 7 Object-Oriented Design and Development 5

6. Confusing an object with an aggregation of such objects.

Responsibilities of Seat include knowing the available number
of window, aisle, and exit-row seats

7. Confusing ambiguity with synonyms.

Ambiguous: 1 term, 2 meanings

Synonyms: 2 terms, 1 meaning

“Segment” and “leg” are synonyms with regard to flights,
because they mean the same thing.

8. Treating collaboration as a transitive relationship.

Class: Customer

Responsibility: Buy ticket

Collaborators: Passenger, Flight, Segment, Airport

Let’s see if we can find any of these errors in your designs for the
Flight Reservation System.

Example 3. Portfolio Manager

Here is a link to another requirements statement.

Beneath the requirements statement, there is a multipart question.
(This question was on Test 2 in Fall 2015.)

1. Please form groups of two or three.

2. Make a single copy of the Google doc.

3. Set it to be viewable by anyone at NCSU (and editable by your
teammates).

4. Register your team in Expertiza. (Note: Teammates on this
assignment do not count towards the 4 teammates you need to
work with this semester.)

5. Submit your Google doc to the “Design exercise” assignment.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/
https://docs.google.com/document/d/1pjfl04KBzHuSQCV_yOyocIvbQPohIF9wGXHckAxExzo/edit?usp=sharing

CSC/ECE 517 Lecture Notes Spring 2024 6

Then decide on answers to each part of the question. Fill in your
answers immediately below each part of the question.

After you do this, you will be given three other designs to review.
Some of them will be calibration exercises submitted by the
instructor. Others will be designs submitted by students.

You will be asked to find the above eight errors in the submissions,
as well as to identify any other mistakes.

