

Week 2 Object-Oriented Design and Development 1

1 CSC 517

Modules and Mixins

Modules are a way to group together methods, classes and
constants. Modules were introduced to programming languages in
the 1970s, to segregate data and operations into different pieces.

Ruby’s modules are are similar to namespaces in languages such as
C++. What’s a namespace?

Of course, whenever you mix namespaces, you have the possibility
of name clashes.

Say you have a graphics library that contains classes for Window and

(window.rb) and Border (border.rb).

You can add the statement require 'window' to the program,

and then use features of Window:

myWindow = Window.new
myWindow.open

Both window.rb and border.rb have a top method, which gives

the position of the top of the Window and the top of the Border,
respectively.

An application programmer wants to lay out windows with borders,

and thus loads both window.rb and border.rb into the program.

What’s the problem here?

The window functions can go into one module

module Window
def Window.top
..
end

end

and the border functions can go into another

Week 2 Object-Oriented Design and Development 2

2 CSC 517

module Border
def Border.top
...
end

end

When a program needs to use these modules, it can simply load the

two files using the Ruby require statement, and reference the

qualified names.

require 'window'
require 'border'
trueTop = Window.top + Border.top

Mixins
Modules are different from classes.

• Modules hold all their data within the module itself.

• Classes allow data to be distributed among various objects.

But modules can be “included” in classes. When you include a

module within a class, all its functionality becomes available to the
class.

The methods of the module become instance methods in the class

that includes it.

[Ruby’s require, include, and load statements have similar

functionality.

• include makes features available, but does not execute the

code.

• require loads and executes the code one time (somewhat

like a C #include).

• load loads and executes the code every time it is

encountered.]

http://stackoverflow.com/questions/318144/what-is-the-difference-between-include-and-require-in-ruby
http://stackoverflow.com/questions/318144/what-is-the-difference-between-include-and-require-in-ruby

Week 2 Object-Oriented Design and Development 3

3 CSC 517

Let’s contrast mixins with multiple inheritance in (what languages?).

Consider the following code:

module Introspect
 def kind
 puts "This object is a #{self.class.name}"
 end
end

class Animal
 include Introspect
 def initialize(name)
 @name = name
 end
end

class Car
 include Introspect
 def initialize(model)
 @model = model
 end
end

d = Animal.new("Cat")
c = Car.new("Ferrari")
d.kind # kind method is available through …

c.kind # .. the mixin Introspect

>>This object is a Animal

Week 2 Object-Oriented Design and Development 4

4 CSC 517

>>This object is a Car

Exercise: Select the correct method lookup order. Note that you need to

use your personal (not NCSU) Github account for the IDE.

In addition to including modules, classes can also be extended by

modules.

So, what’s the difference between including a module and extending a

class with it?

Note: It is also possible to extend instances, which will add methods of

the module to specific objects (not classes).

Comparable
A good example of the power of modules is Comparable, from the
Ruby library.

To use comparable in a class, the class needs to define a method

called <=> (sometimes called “rocket”).

Once we define this method, we get a lot of useful comparison

functions, such as <, >, <=, >=, == and the method between? for

free.

What is this like in Java?

Here is an example. Suppose that we have a Line class:

class Line
 def initialize(x1, y1, x2, y2)
 @x1, @y1, @x2, @y2 = x1, y1, x2, y2
 end
end

We compare two lines on the basis of their lengths.

https://docs.google.com/forms/d/e/1FAIpQLSfMKeoJpLCGSZGx2jAt95xw-aRcRsPav5A-lQQXFfy0tDybcw/viewform?usp=sf_link
https://prograils.com/posts/ruby-methods-differences-load-require-include-extend

Week 2 Object-Oriented Design and Development 5

5 CSC 517

We add the Comparable mixin as follows:

class Line
 include Comparable

 def length_squared
 (@x2-@x1) * (@x2-@x1) + (@y2-@y1) * (@y2-@y1)

 end

 def <=>(other)
 self.length_squared <=> other.length_squared
 end
end

<=> returns 1,0, or –1, depending on whether the receiver is greater

than, equal to, or less than the argument.

We delegate the call to <=> of the Integer class, which compares

the squares of the lengths.

Now we can use the Comparable methods on Line objects:

l1 = Line.new(1, 0, 4, 3)
l2 = Line.new(0, 0, 10, 10)
puts l1.length_squared
if l1 < l2
 puts "Line 1 is shorter than Line 2"
else if l1 > l2
 puts "Line 1 is longer than Line 2"
else
 puts "Line 1 is just as long as Line 2"
 end
end

>>Line 1 is shorter than Line 2

Exercise: Battle of Minions

https://docs.google.com/forms/d/e/1FAIpQLScIAzUwBQRq40ujvknJgpUpDXz9FuxMrc_sQFM0xVmFJAjm9A/viewform?usp=sf_link

Week 2 Object-Oriented Design and Development 6

6 CSC 517

This exercise utilizes Comparable in Ruby to implement a simple game called

“Battle of Minions.”

Suppose in a game, players can summon their minions to battle.

Every minion has four attributes:

• name • defense
• atk • HP

The rules for which minion wins a battle are …

1. The damage that one minion does to the other minion is equal to its atk

minus the other’s defense.

2. The winning minion is the one that has a higher HP compared to the
damage done by the other minion, except that …

a. If the atk of minion A is less than or equal to the defense of

minion B, minion B automatically wins.

b. If both atk's are less than or equal to the other’s defense, they

automatically tie.

Assume that

• minion A > minion B means minion A defeats minion B,

• minion A < minion B means minion B defeats minion A,

• minion A == minion B means they tie.

To execute the program from command line, please use this command:

ruby battle_of_minions.rb

Exercise

By filling in the blanks, complete the method <=>(other) in the Minion class

to implement the battle of two minions.

Expected output

Upon executing the program, you should see the following output (assuming all

the blanks are filled in correctly):

rider

If you finish early, implement the additional rule that if a minion has an HP ≤ 0, it

loses, and if both minions have an HP ≤ 0, they tie. Does this require additional

code?

Week 2 Object-Oriented Design and Development 7

7 CSC 517

Composing Modules
Enumerable [SAAS §3.7] is a standard mixin, which can be included in

any class.

It has a very useful method inject, which can be used to repeatedly

apply an operation to adjacent elements in a set:

[1, 2, 3, 4, 5].inject {|v, n| v+n }
>>15

Many built-in classes include Enumerable, including Array and Range.

('a' .. 'z').inject {|v, n| v+n }

Exercise: Use inject to define a factorial method.

Let’s define a VowelFinder class that includes Enumerable. It will

have an each method for returning successive vowels from a string. This

method yields each time it encounters a vowel.

class VowelFinder
 include Enumerable

 def initialize(string)
 @string = string
 end

 def each
 @string.scan(/[aeiou]/) do |vowel|
 yield vowel
 end
 end
end

https://docs.google.com/forms/d/e/1FAIpQLSeeoX-5v_uBTG8kg8V9DfM_hfyZaG3T6UvgCzeV5y1guCNf7A/viewform?usp=sf_link
http://langexplr.blogspot.com/2007/09/rubys-yield-statement.html

Week 2 Object-Oriented Design and Development 8

8 CSC 517

Here’s an example of its use:

VowelFinder.new("abacadabra").inject {|v, n| v+n}
>>

Exercise: Use yield to return every third element of an Array.

Reflection

We’ve already seen a few examples of where Ruby programs can discover
things about themselves at run time.

For example, we have seen calls like

3.14159.methods

Why do we call this “discovering things about [3.14159] at run time”?

Reflection allows program entities to discover things about themselves
through introspection.

For example, an object can ask what its methods are, and a class can tell
what its ancestors are.

While Java also provides reflection, it does so much more verbosely than
Ruby.

The related technique of metaprogramming allows one to create new
program entities, such as methods or classes, at run time. Why is this
called metaprogramming?

puts [1, 2, 3, 4, 5].length
>> 5
puts "Hey".class
>> String
puts "John".class.superclass # print the superclass of a String

https://docs.google.com/forms/d/e/1FAIpQLScy20QoJulBX13XlpdhnzIW6QhDKCDvPGeUEVqx1a8olSUxBw/viewform?usp=sf_link

Week 2 Object-Oriented Design and Development 9

9 CSC 517

>> Object

Peruse the Ruby documentation for Object and examine methods such as

instance_of? and kind_of?.

Note: While it may be useful, in debugging, to print out the class of an

object, it is almost always a mistake to test the class of an object:

if s.kind_of? Integer
then this_method
else that_method

end

Why?

Now look at Object methods like instance_variables, methods,

private_methods.

Then look at Module and examine such methods as class_variables

and instance_methods.

Exercise: Test your knowledge of reflection.

Methods of Array

Ruby’s Array class contains many methods for treating arrays as

collections. One example is collect. Applied to an array with a block as

parameter, it returns a new array that consists of the results of applying the

block to each element of the array.

a = [1, 2, 3]
a.collect {|x| x**2}
>> [1, 4, 9]

Array has several other methods for working with collections, such as

select and reverse. Read about them in the Array documentation.

https://ruby-doc.org/core-2.1.2/Object.html
https://docs.google.com/forms/d/e/1FAIpQLSdGnYesApzUd9xh7g67-URA1h2UcwiN_H9IHPjNO3l049drbw/viewform?usp=sf_link
https://ruby-doc.org/core-2.2.0/Array.html

Week 2 Object-Oriented Design and Development 10

10 CSC 517

Exercise: Test your knowledge of collection operators.

Now, time to put it all together and work on a more involved program, a

Blackjack game.

Exercise: Deck and Player

https://docs.google.com/forms/d/e/1FAIpQLScm6ElvfQxqHhdckJGbiA0Q9VpGWbaz_MSir4KrI_-bS6GvzA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfzub3kM-USON-r1mHX4J5Jf8V54rj-Ld8BI5n40701hU9WDA/viewform?usp=sf_link'

